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Abstract. Commercially available routers typically have a monolithic op-
erating system that cannot be easily tailored and upgraded and support new
network protocols. PromethOS is a modular router architecture based on
Linux 2.4 which can be dynamically extended by plugin modules that are in-
stalled in the networking kernel. To install and configure plugins we present
a novel signaling protocol that establishes explicitly routed paths transiting
selected nodes in a predefined order. Such paths can be non-simple, where a
given node is being visited more than once. 
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1 Introduction

In the past, the functionality of routers was very limited, namely forwarding packets
based on the destination address. Recently, new network protocols and extensions to ex-
isting protocols have been proposed and are being deployed, requiring new functional-
ity in modern routers at an increasingly rapid pace. However, present day commercially
available routers typically employ a monolithic architecture which is not easily upgrad-
able and extensible to keep up with new innovations. 

This paper presents the design and implementation of PromethOS1, an innovative router
architecture with a modular design that can be extended to support new and dynamically
deployed protocols. The specific objectives of this architecture are as follows:

• Modularity. The router architecture is designed in a modular fashion with com-
ponents coming in form of plugins which are modules that are dynamically load-
ed into the kernel and have full kernel access without crossing address spaces.

1. PromethOS originates from Prometheus who was the wisest Titan according to the
Greek mythology. His name means “forethought” and he was able to foretell the future.
The project was initially codenamed COBRA [14]. 



• Flexibility. For each plugin class, multiple plugin instances can be created. Dif-
ferent configurations of the same plugin can co-exist simultaneously in the kernel,
with plugin instances sharing the same code but operating on their own data. 

• Packet classification. By defining filters, incoming data packets are classified to
belong to a data flow and by binding a plugin instance to such a flow, all matching
packets will be processed by the corresponding plugin instance. 

• Performance. An efficient data path is guaranteed by implementing the complete
data path in kernel, preventing costly context switches. 

• Code Deployment. Efficient mechanisms exist to retrieve plugins from remote
code servers, install and configure them, and to setup network wide paths such
that traffic transits these plugins as desired by the application. 

• Integration in Linux. The implementation needs only minimal changes to the ex-
isting Linux source code and can easily be integrated into newer releases. 

We have implemented our framework based on the Linux 2.4 kernel. We have selected
this platform because of its portability, freely available source code, extensive docu-
mentation, and wide-spread use as a state-of-the-art experimental platform by other re-
search groups. Due to its modularity and extensibility, we are convinced that our pro-
posed framework makes it a useful tool for researchers in the field of programmable
router architectures and protocol design. All our code is released in the public domain
and can be retrieved from our website [21]. 

The main contributions of this paper are as follows: 

• Design and implementation of a modular and extensible node architecture that al-
lows code modules to be dynamically loaded into the networking subsystem at
runtime.

• Design and implementation of a novel signaling protocol to establish explicitly
routed paths through the network and the installation and configuration of plugins
along such paths.

In the remainder of this paper, we discuss the design and implementation of our frame-
work. In Section 2, we first focus on a single node, describe the architecture, and con-
sider how it can be extended by installing plugins into the networking subsystem. We
demonstrate an example use of the PromethOS plugin framework to give the reader a
feel of how the architecture can be used. Section 3 then focuses at the network scope,
discusses how explicitly routed paths can be setup, how plugins are retrieved from re-
mote code repositories and installed on selected nodes. Section 4 reviews related work
and Section 5 concludes this paper. 

2 PromethOS Node Architecture

2.1 Architectural Overview
The main objective of our proposed architecture is to build a modular and extensible
networking subsystem that enables to deploy and configure packet processing compo-
nents for specific flows. Figure 1 illustrates our dynamically extensible router architec-
ture. 



The most important components are as follows: 

• Network device drivers implement hardware-specific send and receive functions.
Packets correctly received from an interface enter the IP stack. 

• Netfilter classifies packets according to filter rules at various hooks. Packets
matching a filter are passed to registered kernel modules for further processing.

• The plugin framework provides an environment for the dynamic loading of plugin
classes, the creation of plugin instances as well as their configuration and execu-
tion. 

• The plugin loader is responsible for requesting plugins from remote code servers
which store plugin classes in a distributed plugin database.

• The path-based routing protocol is used to setup explicitly routed paths and to in-
stall plugins on selected nodes. 

• Other routing and signaling protocols compute the routing table and provide re-
source reservation mechanisms.

2.2 Netfilter Framework
The netfilter framework [23] provides flexible packet filtering mechanisms which are
performed at various hooks inside the network stack. Kernel modules register callback
functions that get invoked every time a packet passes the respective hook. The user
space tool iptables allows to define rules that are evaluated at each hook. A packet that
matches these rules is handed to the target kernel module for further processing. The
netfilter framework together with the iptables tool provide the minimum mechanisms
required to load modules into the kernel, specifying packet matching rules evaluated at
hooks, and the invocation of the matching target module. 

However, netfilter has a serious restriction since all loadable modules must be known at
compile time to guarantee proper kernel symbol resolution for the linking process. Thus,
only kernel modules that have been statically configured can be loaded into the net-
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working subsystem. This is a significant limitation since we envision a router architec-
ture that allows to load arbitrary new components at runtime. 

2.3 Plugin Framework and Execution Environment
To overcome this limitation, we are extending the netfilter framework with a plugin
framework. The plugin framework manages all loadable plugins and dispatches incom-
ing packets to plugins according to matching filters. When a plugin initially gets loaded
into the kernel, it registers its virtual functions with the plugin framework. Once a pack-
et arrives and needs to be processed by a plugin, the framework invokes the previously
registered plugin-specific callback function. Since plugins register their entry-points,
the entry functions do not need to be known at compile time, and for this reason the
plugin framework can load and link any plugin into the kernel. 

Every PromethOS plugin offers an input and output channel (in accordance with [7])
representing a control and reporting port. The control port is used for managing the
PromethOS plugin (such as configuration); the reporting port is read-only to collect sta-
tus information from the plugin. 

2.4 Plugin Classes And Instances
For the design of plugins, we follow an object-oriented approach. A plugin class is a
dynamically loadable Linux kernel module that specifies the general behavior by defin-
ing how it is initialized, configured, and how packets need to be processed. A plugin
instance is a runtime configuration of a plugin class bound to a specific flow. An in-
stance is identified by a node unique instance identifier. In general, it is desirable to
have multiple configurations of a plugin, each having its own data segment for internal
state. Multiple plugin instances can be bound to one flow, and multiple flows can be
bound to a single instance. Through a virtual function table, each plugin class responds
to a standardized set of methods to initialize, configure, reconfigure itself, and for pro-
cessing packets. All code is encapsulated in the plugin itself, thus the plugin framework
is not required to know anything about a plugin's internal details. Once a packet is as-
sociated with a plugin, the plugin framework invokes the processing method of the cor-
responding plugin, passing it the current instance (data segment) and a pointer to the
kernel structure representing the packet (struct sk_buff). 

2.5 Control from User Space
PromethOS and its plugins are managed at load-time by providing configuration param-
eters and at run-time through the control interfaces via the procfs. When the PromethOS
plugin framework initially gets loaded, it creates the entry /proc/promethos. Below this
entry, the control and reporting ports of individual plugins are registered. PromethOS
plugins are loaded by iptables which we extended with semantics required for the Pro-
methOS plugin framework. The communication to control plugins and report messages
between user space and plugins follows a request-reply approach. A control message is
addressed to the appropriate plugin by passing the plugin instance identifier as a param-
eter and the plugin then responds with a reply. 



2.6 Example Use of PromethOS Plugin Framework
To give the reader a feel for the simplicity and elegance with which plugins can be put
into operation, we illustrate the commands necessary to load and configure a Wave-
Video [17] plugin performing video scaling. Note that these commands can be executed
at any time, even when network traffic is transiting through the system. As mentioned
above, we use a PromethOS-enhanced iptables program that interacts with the iptables
framework. In the extension of iptables, we implement calls to the insmod program,
which serves as the primary tool to install Linux kernel modules.

• Loading and registering plugin:

# iptables -t promethos -A PREROUTING -p UDP -s 129.132.66.115 -dport 6060
-j PROMETHOS --plugin WV --autoinstance --config "65536"

This command adds a filter specification to the PromethOS plugin framework, re-
questing to install the WV plugin at the PREROUTING hook, and creating an in-
stance of this plugin to perform video scaling at 65536 Byte/s. If the plugin frame-
work is not yet loaded, the module dependency resolution of Linux installs it on
demand. 

• Upon successful completion of the plugin loading and instantiation, the plugin
framework reports the plugin instance number: 
Router plugin instance is 1

• By this instance number, the plugin control port can be accessed:

# echo '#1' 131072 > /proc/promethos/net/management

This reconfigures the WV plugin to scale the video to a maximum output of
131072 Byte/s. 

• The configuration of the PromethOS table can be retrieved with iptables:
# iptables -t promethos -L
Chain PREROUTING (policy ACCEPT)
target     prot opt source         destination         
PROMETHOS udp -- 129.132.66.115 anywhere udp dpt:6060 WV#1

• The plugin and the framework may be removed from the kernel by the standard
mechanisms provided by iptables and the Linux kernel module framework.

This example demonstrates the seamless integration of the PromethOS plugin frame-
work in Linux, allowing to load arbitrary code at runtime. 

3 Code Deployment on Explicitly Routed Paths

In the previous section, we have presented our active node architecture that can be dy-
namically extended with components coming in form of loadable kernel modules. The
mechanisms illustrated for installing and configuring plugins require local access to the
router which is a feasible approach for setting up routers with a static configuration.
However, the active networks paradigm envisions an infrastructure that can be pro-
grammed by network administrators and end users in a more flexible fashion. For active
networks we need new routing mechanisms that take into account that end-to-end paths
include processing sites. 



In this section we present a novel signaling protocol that allows to deploy plugins on
selected nodes and to establish paths transiting these nodes in a given order. In the con-
text of active networks conventional destination-based routing schemes cannot satisfy
the requirements demanded by active applications since traffic needs to transit process-
ing sites generally not located on the IP default path. In our opinion, the introduction of
new code into routers should be performed in a structured way, where network service
providers or end users explicitly configure the network with the required functionality,
enabling efficient allocation of network resources among competing applications. 

Finding an optimal routing and processing path can be seen in the context of constraint-
based routing, where processing constraints define requirements on the order and loca-
tion of processing functions. A suitable algorithm that finds an optimal route through a
sequence of processing sites has been proposed in [10]. 

Figure 2 depicts a sample network with various processing sites. Each site has an asso-
ciated cost (shown as the number in the node) that needs to be taken into account if pro-
cessing on that site occurs. In the example, we are looking for an end-to-end path that
includes two intermediate computations, with the constraints that the first computation
should be placed on one of the light grey nodes (R2 or R3), and the second on one of the
darker nodes (R6 or R8). An optimal solution for this constraint-based routing problem
(taking into account both link and processing costs) can produce a non-simple path, also
known as a walk, which is a sequence of consecutive edges where a given vertex is be-
ing visited more than once. Since such solutions are now possible when considering ac-
tive processing, the signaling protocol must also support such paths. In the following
we assume that such explicitly routed paths can be computed according to [10] and fo-
cus on the signaling protocol required for configuring such combined routing and pro-
cessing paths. 

3.1 Explicit Path Establishment
Our proposed Path-Based Routing (PBR) [15] protocol supports per-flow based explicit
path establishment for one-way, unicast flows routed through a predefined list of hops
and the installation and configuration of plugin modules along such paths. 

As illustrated in Figure 3, the path establishment is based on a two-phase scheme: In the
first phase, the protocol verifies whether sufficient resources are available along the
downstream path. Beginning at the source, each node checks whether the required re-
sources are available locally and if granted, reserves (but does not allocate yet) resourc-
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es, and forwards the reservation request to the next node along the downstream path.
This process is repeated until the destination node is reached. Once the first phase of the
setup process has been completed, it is assured that sufficient resources are available.
In the second phase, the actual allocation of network resources takes place. This hap-
pens along the reverse path, that is, on all routers from the destination towards the
source node. This includes the installation of flow-specific filters such that packets
matching the filter are forwarded on the corresponding outgoing interface, and the in-
stallation and configuration of plugins and binding them to the filter. Once all state has
been established along the path, the application is informed and can transmit traffic.

If during the first phase a request is refused due to limited resources, the path setup pro-
cess cannot continue and is aborted. The node then sends a reservation release message
along the reverse path so that nodes that have already reserved resources can free them.
Finally, the application is notified that the path could not be established.

The PBR protocol uses TCP as the transport mechanism between PBR peers (hop-by-
hop) to send control messages for path establishment, plugin deployment, and release
of resources. This guarantees reliable distribution of control messages. PBR uses soft-
state for both path and plugin information being stored on nodes to take into account
that network nodes and links are inherently unreliable and can fail. An application that
sets up a path is required to refresh the path (by sending the setup request periodically),
otherwise nodes will purge path and plugin state once the time-out expires. Path tear
down works analogous to the path setup process, with a release request used instead. 

3.2 Plugin Deployment 
In addition of setting up flow-specific routes, the PBR protocol allows to install and
configure plugin modules on selected nodes. To support this feature, the path establish-
ment message includes a list of nodes where plugins need to be installed. If the request-
ed target address for a plugin matches a node's own address, the node first checks
whether the referred plugin class has already been loaded into the kernel. If it is not
present, the plugin loader retrieves it from a remote code server and verifies the consis-
tency by checking the module's digital signature [9]. Then the module is loaded into the
kernel and linked against the current kernel image. Subsequently, the PBR daemon cre-
ates a new instance of the plugin, invokes the configuration method, and binds the
plugin instance with the filter describing the flow. Once the path has been established
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and the required plugins deployed, the application can begin transmitting data which
will be forwarded along the path and processed by intermediate plugins.

3.3 Message Details
A CREATE_PATH message is transmitted by the path-initiating router toward the des-
tination to establish an explicitly routed path. The message contains the following dif-
ferent subobjects: 

• FLOWSPEC object
The flow specification describes the format of packets that follow the explicit
path, described using the tuple <source addr/mask, dest addr/mask, source port,
dest port, protocol>. Any field can be wildcarded, network addresses can be par-
tially wildcarded with a prefix mask. 

• EXPLICIT_ROUTE object
An explicit route object is encoded as a series of nodes to be traversed. In the cur-
rent implementation, the hops must form a strict explicit route. 

• PLUGIN object
The plugin object describes one or multiple plugins that need to be deployed on
a node. It contains the address of the target node, followed by the plugin name and
an initial configuration parameters.

The RELEASE_PATH message removes a previously established path. The PBR proto-
col also supports the STATUS message for the retrieval of path state from remote nodes. 

3.4 Forwarding Mechanisms for Explicit Path
In the following we describe how we can override Linux’s conventional destination-
based forwarding and perform our own explicit path routing, that is, move packets along
a predefined set of nodes. For each flow that requires flow-specific forwarding, we add
a filter entry into netfilter. Incoming packets are classified by the netfilter framework
and if a flow-specific filter matches, they are marked with a next-hop neighbor tag. For
each adjacent neighbor, there is a special routing table containing a single default route
entry pointing to the corresponding neighbor. Packets that have been marked with the
next-hop tag then use the corresponding routing table and are sent to the appropriate
neighbor. To establish a complete path, filter entries are added to all nodes along the
path. 

As discussed above, when considering processing sites the path from the source to the
destination does not need to be a straight IP path anymore, where all of the nodes are
distinct and no duplicated nodes exist. To support such paths, the forwarding mecha-
nism must consider the incoming port from where the packet has been received. For that
reason, flow filters consist of a six tuple, including the incoming interface for the for-
warding decision as well. 

Note however that the current implementation is restricted to paths that enter a node via
the same interface only once, since a node cannot distinguish if a packet has previously
traversed the node. This limitation could be overturned if incoming packets would be
marked with a tag to be used for subsequent forwarding decisions. 



3.5 Example Use of Path-Based Routing
In the scenario as illustrated in Figure 2 we want to install an encryption and decryption
plugin on selected nodes. When considering processing costs, the optimal solution for
such a path is non-simple. The following command establishes a path which routes all
traffic matching the filter along the path: 

# pbr create R1:R4:R3:R4:R7:R8:R7 --dport 6060 --plugin R3:ENCRYPT:init 
--plugin R8:DECRYPT:init

4 Related Work

In this section we look at related work, both at active network architectures and mech-
anisms for explicit routing and remote code deployment. 

4.1 Programmable Network Architectures
In the context of programmable networks, several node architectures have been pro-
posed allowing to dynamically extend the networking subsystem of a router with addi-
tional functionality.

The Active Network Node [13] is a NetBSD-based architecture that allows code mod-
ules called router plugins to be dynamically downloaded and installed into the OS ker-
nel and binding plugin instances to flows. PromethOS's plugin concept has been in-
spired mostly from this project. While ANN provides many of the concepts implement-
ed, PromethOS requires less modification of the original network stack. 

Scout [19] proposes a path-based approach where the functionality of a standard IP-
compliant router is decomposed into a sequence of a interconnected components form-
ing a path. Recently, Scout has been ported to Linux [4], however requiring to replace
most of the Linux network stack with the Scout implementation.

NetGraph [11] is a the network stack filtering mechanisms for FreeBSD similar to net-
filter. The concept is based on hooks offering bidirectional communication for compo-
nents attached to the network stack. These hooks are freely interconnectable to form a
network graph. 

Click [18] is an architecture for assembling a router from packet processing modules
called elements. Individual elements implement router functions like packet classifica-
tion, queuing, scheduling, and interfacing with network devices. A router configuration
is a directed graph describing the required components and how packets flow through
the router. Click configurations are later compiled to machine code, providing very
good performance. Once defined configurations are static and cannot be tailored at run-
time (unlike PromethOS plugins). The static approach of Click is overcome by the Open
Kernel Environment Corral [5] which makes use of the type-safe C programming lan-
guage Cyclone [12] that is extended by authentication mechanisms for accessing re-
sources. 

4.2 Explicit Path Routing and Service Deployment 
Several resource allocation protocols capable of supporting applications that request
per-flow routing and allow functions to be deployed in the network core have been de-
veloped. This section briefly describes a few of these protocols. 



The IP source routing option [20] provides a means for the source of an IP datagram to
supply routing information to be used by intermediate routers. The route data are com-
posed of a series of Internet addresses present in the IP option header. Since there is an
upper limit of the option header length, only 8 hosts can be explicitly routed. 

The Private Network-to-Network Interface [1] is a signaling and routing protocol be-
tween ATM switches with the purpose of setting up Virtual Connections (VCs). PNNI
determines an optimal path satisfying QoS constraints and reroutes connections (crank-
back) when VC establishment fails. PNNI performs explicit source routing, in which
the ingress switch determines the entire path to the destination. Setting up explicit paths
is seen as an attractive feature of ATM since each application can have its own specific
path requirements. Nevertheless, ATM does not support the concept of processing re-
sources as introduced by active networks. 

The Multiprotocol Label Switching [22] approach is based on a label-swapping para-
digm implemented in the networking layer. MPLS defines two label distribution proto-
cols that support explicitly routed paths. CR-LDP [16], which is an extension of LDP
[3], is peer-to-peer protocol where messages are reliably delivered using TCP and state
information associated with explicitly routed LSPs does not require periodic refresh. An
explicit route can be strict, where all nodes are explicitly listed, or loose, allowing to
define paths through portions of the network with partial knowledge of the topology.
RSVP-TE [2] extends the original RSVP [6] protocol by setting up explicit label
switched paths and to allocate network resources (e.g., bandwidth). The explicit route
object encapsulated in a Path message includes a concatenation of hops, describing a
strict or loose route. RSVP-TE is based on soft state, where the state of each LSP must
periodically be refreshed (typically every 30 seconds). CR-LDP and RSVP-TE are sig-

Table 1: Comparison of signaling protocols supporting explicit paths

Source 
Routing

ATM/
PNNI

MPLS Beagle PBR

Plugin deployment no no no yes yes

Explicit routing strict or 
loose

strict or 
loosea

strict or 
loose

strict or 
loose

strictb

Looping paths noc no no no yes

Router state noned VCI/VPI 
entry

MPLS tag 
entry

RSVP
filter entry

netfilter
filter

a. PNNI supports hierarchical routing where the source can address the logical group
leader, representing an aggregation of nodes. 
b. PBR currently supports only strict routes but loose routes could be easily imple-
mented. 
c. May be possible but not intended by IP protocol.
d. Hop addresses are stored directly in the IP option header. However, due to the op-
tion header length limit, the number of hops is restricted to eight. 



naling protocols that perform similar functions but currently no consensus exists on
which protocol is technically superior. 

Beagle [8] is a signaling protocol for the setup of structured multi-party, multi-flow ap-
plications described by an application mesh. The mesh formulates the resources to be
allocated as a network graph. The Beagle protocol is based on RSVP and introduces a
new route constraint object carrying explicit routing information. In contrast to signal-
ing protocols like MPLS and PNNI, Beagle allows applications to allocate computation
and storage resources required for delegates, which are application-specific code seg-
ments that execute on routers. 

The PBR protocol has specifically been designed for active networks. It allows the de-
ployment of new code on routers and the setup of explicitly routed paths, supporting
also looping paths such that the same processing site can be visited multiple times. 

5 Conclusions

In this paper we have presented PromethOS, an extensible and modular architecture for
integrated services routers. PromethOS allows to dynamically load plugins at runtime
into the kernel, to create instances of plugins, and to bind plugin instances to individual
flows. The path-based routing protocol establishes explicitly routed paths and installs
plugins on selected nodes. We freely distribute our source code with the intent of pro-
viding the research community with a services platform to build upon. 

Currently, PromethOS is being extended to provide resource control mechanisms for
plugins in kernel space. We focus on aspects of memory consumption, processor cycles
and bandwidth on both general purpose and network processors. 
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