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Abstract

FreeBSD has gained fine grained locking in the
network stack throughout the 5.x-RELEASE
series cumulating in FreeBSD 6.0-RELEASE
[1][2]. Hardware architecture and performance
characteristics have evolved significantly since
various BSD networking subsystems have been
designed and implemented. This paper gives a
detailed look into the implementation and design
changes in FreeBSD 7-CURRENT to extract the
maximum network performance from the
underlying hardware.

General

Performance is a very flexible term describing
many different aspects on many different layers
of a system. Performance can be measured and
presented in many different ways. Some are
meaningful and realistic, some are nice but
unimportant in the big picture. Without focusing
on the right metrics and overall goals one may
spend a lot of time and effort optimizing one
little aspect of a system without much helping
the overall cause. It is just as important to find a
good trade-off between short-cut optimizations
and sound design with future proof system
architecture. Often it is more beneficial in the
mid to long run to properly analyze the big
picture and then to decide how to re-implement
a particular part of the system. Many times some

micro optimizations should not be done to avoid
architecture and layering violations preventing
future changes or portability to other – newer –
platforms. Not everything that is true today will
be true in a few years. The same holds for
optimizations that were made years ago – not
every computer is a VAX. However sound
system and sub-system design is very likely to
be still relevant and appropriate in years to come
[3].

Defining Performance

Two primary performance measures exist:
Throughput and Transaction performance.
Throughput is about how much of raw work can
be processed in a given time interval.
Transaction performance is about how many
times an action can be performed in a given time
interval. Most of the time these two are directly
related to each other. When I’m able to perform
more actions in the same amount of time I get
more work done if the work size stays the same.
Or the other way around when I’m able to
increase the size of each work item while
performing the same amount of actions the
overall performance increases. What is
important to note is that both of these properties
have different limitations and scaling behavior.
Many workloads are limited by either
throughput or transactions, not both. If we can
find a way to increase the limiting factor by



taking a different programmatic approach we
have succeeded. It is the goal and purpose of an
operating system to provide its services to the
application as fast and as close to the raw
underlying hardware performance as possible.

This paper examines the issues and (proposed)
solutions in FreeBSD 7-CURRENT according to
the layers of the OSI layered network model [4]
from bottom to the top.

Physical Layer

On this layer the operating system guys have
very little influence. What we can predict is that
the hardware engineers are pushing the envelope
on how many bits per second we can transfer
over various metallic copper pairs, optical fibers
and over the air. In the copper and optically
wired world we are approaching 10 gigabits per
second speeds as a commodity in a single
stream. 40 gigabits per second is available in
some high end routers already but not yet on
machines FreeBSD is capable of running on [5].
However it is only a matter of time until it will
arrive there too.

Data Link Layer

On the data link the world has pretty much
consolidated itself to Ethernet everywhere [6].
Ethernet is packet format (called frame on this
layer) with a frame payload size from 64 bytes to
1500 bytes [7]. From Gigabit Ethernet on larger
frame sizes – called jumbo frames – of up to 16
kilobytes have been specified [8].

When a frame is received by a network interface
it has to be transferred into the main memory of
the system. Only there the CPU may access and

further process it. This process is called DMA
(direct memory access) where the network
adapter writes the received frame into a
predetermined location in the system memory.
The first bottleneck encountered is the bus
between network adapter and system memory.
Network adapters almost universally use the PCI
bus in its various incarnations [9]. Some
manufacturers like Intel have created a direct bus
between the network chip and the northbridge
(memory controller) of the system to avoid PCI
bus overheads.   The PCI and PCI-X bus are

designed for concurrent access by multiple
devices and splits large data transfers into
smaller chunks of a lower number of bytes each.
This limits the maximum practically reachable
throughput. For 100 Mbit Ethernet the 32 bit
wide and 33MHz fast original PCI bus is
sufficient even in the presence of other data

Figure 1 Maximal packet and payload rate at
various Ethernet speeds (Source: Author)

Figure 3 PCI vs. PCI-X overhead and useable
bandwidth (Source: PCISIG)

Figure 2 Today’s PC architecture (Source:
PCISIG)



Figure 4 PCI Bandwidth comparison (Source:
PCISIG)

Figure 7 PCI-Express parallel lane
multiplexing (Source: PCISIG)

Figure 5 PCI-Express based networking
communication system (Source: PCISIG)

Figure 6 PCI-Express LVDS link (Source:
PCISIG)

transfers (hard disk access, etc). To achieve full
throughput for Gigabit ethernet the extended 64
bit wide and 66-133MHz fast PCI-X is
necessary. For 10 Gigabit ethernet either 64 bit
and 133MHz fast PCI-X or the new point-to-
point packet oriented PCI-Express bus is
required. PCI-Express has many advantages
compared to PCI and PCI-X. All devices have
an exclusive direct connection to either the
northbridge or a high speed switching fabric.
The electrical connections are high speed LVDS
links [10]. A number of these links can be
bundled together. On the protocol level the PCIe
bus works in a packet oriented mode and can
transfer large chunks of data consecutively.
These properties mesh ideally with the packet
oriented nature of ethernet network connections.

From the operating system point of view
network adapters have a number of good and
bad properties. On the good side they support
full wire speed on the ethernet and on the system
interface side. Advanced features include IP,
TCP and UDP checksum offloading and
interrupt moderation. Unfortunately many
ethernet chips have a number of bugs and
restrictions which limit them often in very
serious ways. Common problems are DMA
alignment restrictions where the beginning of a
frame must fall on some specific address
granularity which is coarser than the general
CPU platform alignment. In these cases the
network driver has to copy the frame – by using
the CPU – into another place to guarantee proper
alignment. Obviously this doubles the workload
per frame and must be avoided for high network

performance. Very often network chips have
other implementation bugs that make the
advanced features unuseable. IP, TCP and UDP
checksumming is often not correctly
implemented and gives wrong results for certain
bit pattern in frames. Here the only option is to



disable that feature and continue to calculate
checksums with the CPU. Recently another
advances feature called TCP segmentation
offloading has been implemented in a couple of
high end network cards. This feature is generally
only useful when the machine is a sender of bulk
TCP transfers. The net performance benefit of
this offloading remain dubious and many of the
implementations are again plagued by subtle
bugs rendering the feature worthless. More on
this in the transport layer chapter.

Cache Prefetch

Once the packet is in system memory the CPU
has to start looking at the headers to determine
what kind of packet it is and what to do with it.
Modern CPU’s run internally at many times the
speed of their external system memory and
employ fast cache memories close to the CPU to
mitigate the effect of slow main memory
accesses. Since the packet came freshly from the
network it doesn’t have a chance to be in the
cache memories. On the first access to the
packet header the CPU has to access slow
system memory and to wait for a cache line to be
transferred. This time is entirely lost time and
occurs for every packet that enters the system at
least once. Depending on the cache line size it
may occur a second time when further TCP and
UDP header are examined. Aware of this
situation CPU designers have introduced a
feature called cache prefetching whereby the
programmer signals the CPU that it will access

a certain memory region very soon [11][12][13].
The CPU can then pre-load one or more cache
line sizes worth of data into the fast caches
before they are actually accessed and thus avoids
a full execution stall waiting for system memory.
FreeBSD 7-CURRENT is gaining generic kernel
infrastructure to support these cache prefetch
instructions in a first implementation for Intel’s
Pentium 3, Pentium 4, Pentium M and AMD’s
Athlon, Athlon64 and Opteron series of CPUs.
This prefetch command is then executed on the
packet headers the very moment the network
stack becomes aware of the new packet avoiding
a cache stall.

Network Layer

With the packet in system memory the network
hardware doesn’t play a role anymore and we are
squarely in the domain of the operating system
network stack.

Integrity Checks

At first the network code does basic IP header
integrity checks rejecting all packets with
inconsistent information. Packet rejections at
this stage are very seldom because a broken
packet normally gets rejected by the first hop it
makes.

Figure 8 Main memory access latency on
cache miss (Source: Techreport)

Figure 9 Execution stall due to cache miss and
memory access latency (Source: Intel)

Figure 10 Memory access latency and
execution stall masked by prefetch (Source:
Intel)



Firewalling

After the basic integrity checks the packet is run
through the firewall code. FreeBSD has three
different firewall packages – ipfw2, pf (from
OpenBSD) and ipf. All three firewall packages,
when enabled, insert themself into the packet
flow through a generic mechanism called PFIL
hooks. PFIL hooks can accommodate an
arbitrary number of consecutively run packet
filters. To protect the integrity of the TAILQ
implemented packet filter list a global, multi
reader / single writer lock is asserted. Locks are
expensive operations on SMP systems because
they perform a synchronous write to a certain
memory location. Any change to that location
causes that cached information on all other
CPU’s to be declared invalid. Any new lock
access has to obtain this memory location from
slow system memory again causing an execution
stall. In FreeBSD 7-CURRENT this per packet
overhead is getting replaced with a lock-free but
SMP safe function pointer list featuring atomic
writes for changes making read locks
unnecessary. Currently two implementations are
proposed and performance tests will determine
which one will be used.

Local or non-Local

The next step in packet processing is to
determine whether the packet is for this host or
if it has to be forwarded (routed) to some other
system. The determination is made by
comparing the destination address of the packet
to all IP addresses configured on the system. If
one of them matches, the packet is scheduled for
further local processing. If not – and the system
is acting as a router – it is scheduled for a
routing table lookup. Otherwise it gets dropped
and an ICMP error message is sent back to the
packets source IP address. The destination
address comparison used to loop through all
interfaces structures and all configured IP
address on them. This became very inefficient
for larger number of interfaces and addresses.
Already in FreeBSD 4 a hash table with all local
IP addresses has been introduced for faster

address compares. The probability that the hash
table is permanently in cache memory is very
high. Nonetheless this issue has to be further
examined in detail for FreeBSD 7-CURRENT
and further optimizations may be made.

Packets for a local IP addresses are discussed in
the next chapter.

Routing Packets

For packets that have to be forwarded to another
system, a routing table lookup on the destination
address has to be performed. The routing table
contains a list of all known networks and a
corresponding next hop address to reach them.
This table is managed by a routing daemon
application implementing a routing protocol like
OSPF or BGP. At the core of the Internet is a
zone called DFZ (default free zone) where all
globally reachable IPv4 networks are listed. At
the time of writing the DFZ has a size of
173,000 network entries [14][15]. IP routing

uses a system of longest prefix match called
CIDR (classless inter-domain routing)
[16][17][18]. Each network is represented by a
prefix and a mask expressed in consecutive
enabled bits showing the number of relevant bits
for a routing decision. Such a prefix looks like
this: 62.48.0.0/19 whereas 62.48.0.0 is the base
aligned network address and /19 is how many

Figure 11 IPv4 Internet DFZ topology map
(Source: CAIDA)



bits from the MSB are to be examined. In this
case 19 bits making a netmask of 255.255.224.0.
This entry spans 8,192 consecutive IP addresses
from 62.48.0.0 to 62.48.31.255.  Any prefix may
have a more specific prefix covering only a part
of its range or it may be a more specific prefix to
an even larger, less specific one. The rule is that
the most specific entry in the routing table for a
destination address must win.

The CIDR system makes a routing table lookup
more complicated as not only the prefix has to
be looked up but also the mask has to be
compared for a match. So a simple hash table
approach is ruled out. Instead a trie (retrieval
algorithm) with mask support must be used. The
authors of the BSD IP stack opted for a generic
and well understood PATRICIA (Practical
Algorithm to Retrieve Information Coded in
Alphanumeric) trie algorithm [19][20][21]. The
advantage of the PATRICIA trie is its depth
compression where it may skip a number of bits
in depth when there is not branch in them. Thus
it is able to keep the number of internal nodes
very low and doesn’t waste space for
unnecessary ones. When a lookup is done on this
tree it travels along the prefix bits as deep as
possible into the tree and then compares the
mask and checks if it covers the destination IP
address of the packet. If not, it has to do
backtracking whereas it goes one step back and
compares again. This may happen until the root
node of the tree is reached again and it is
determined that no suitable route for this packet
exists. If a match is found along the way the next
hop IP address and the egress interface are
looked up and the packet is forwarded to it. 

With an entry count of 173,000 and backtracking
the PATRICIA trie gets very inefficient on
modern CPU’s and SMP. For a lookup the entire
tree has to be locked, plus when a matching
entry was found it has to be locked too to
increment its reference count when its pointer
gets passed on to IP output function processing.
On top of it the size of a routing entry is very
large and doesn’t fit into a single cache line. For
a full DFZ view the BSD routing table consumes
almost 50MBytes of kernel memory. It is
obvious that this doesn’t fit into the CPU caches
and execution stalls due to slow system memory
accesses happen multiple times per lookup. The
larger the table gets the worse the already steep
performance penalty. The worst case is a stall for
every bit, 32 for IPv4.

The research literature suggest a number of
different trie approaches for the longest prefix
match problem [22]. A novel algorithm called
LC-Trie has achieved a certain notoriety for
extreme space efficiency [23][24]. It is able to
represent the entire DFZ table in approximately
only 3MBytes of memory on 32bit architectures.
It does this by path, mask and level compression
bundled with heavy pre-computation of the
entire table. This algorithm is very efficient and
lends itself pretty well to CPU caching. However

Figure 12 CIDR Address (Source: Wikipedia)

Figure 13 IP Address Match to CIDR Prefix
(Source: Wikipedia)



because it jumps around in the table it suffers
from a number of execution stalls too.
Nonetheless it is an order of magnitude faster
than the traditional BSD trie but with one major
drawback. For every change in the routing table
the entire LC tree has to be re-computed,
although some optimization in this area has been
done [25]. This rules it out for use in an Internet
environment where the constant ebb and flow of
prefixes is high [26][27].

FreeBSD 7-CURRENT will implement a
different but very simple, yet very efficient
routing table algorithm. First it shadows the
normal BSD tree and will be used only by
FreeBSD’s IP fast forwarding path which does
direct processing to completion. Later it may
become the main IPv4 routing table for the
normal IP input path too. The new algorithm
exploits all the positive features of modern
CPU’s, very fast integer computations and high
memory bandwidth, while avoiding the negative
cache miss execution stalls. It is very simple and
it may be non-intuitive to many people
accustomed to common wisdom’s in computing.
The algorithm splits the 32 bit IPv4 addresses
into four 8 bit strides in which it has a very
dense linear array containing the stride part of
the prefix and its mask. It has to do at most four
lookup’s into four strides. The key to efficiency

is cache prefetching, high memory bandwidth
and fast computations. For a lookup it prefetches
the first stride and linearly steps through all
array entries at the level computing the match
for each of them. On modern CPUs this is
extremely fast as it can run in parallel in the
multiple integer execution cores and all data is
in the fast caches [28][29][30]. When a true
match is found it is stored in a local variable.
When a more specific stride match is found it
prefetches that entire stride and does the same
computation again for this level. Once no further
strides are found the most specific match is used
to forward the packet. If no match was ever
found it is clear there is no routing table entry
and the packet gets rejected. No backtracking
has to occur. At most four, one for each stride
and masked by the prefetch, execution stalls can
happen. The footprint of each entry is very small
and the entire table fits into approximately the
same amount of space as the LC tree. It has a
few important advantages however. It doesn’t
need any locking for lookup. Lookups can
happen in parallel on any number of CPUs and
it allows for very easy and efficient table
updates. For writes to the tables a write lock is
required to serialize all changes and prevent
multiple CPUs from updating entries at the same
time. While a change is made lookups can still
continue. All changes are done with atomic
writes in the correct order. This gives a coherent
view of the table at any given point in time.
Many changes – next hop, invalidation of prefix,
addition of a prefix when there is space left in a
stride bucket – are done with just one atomic
operation. All other changes prepare a new,
modified stride bucket and then swap the parents

Figure 14 AMD Athlon64/Opteron
architecture (Source: Ars Technica)

Figure 15 Stride bucket size distribution
(Source: Author)



stride pointer to it. The orphaned stride bucket
gets garbage collected after a few milliseconds
to guarantee that any readers have left it by then.
This routing table design has been inspired by
the rationale behind [31].

Transport Layer

Protocol Control Block Lookup

Packets for a local IP addresses get delivered to
the socket selection of their respective protocol
type – commonly TCP or UDP. The protocol
specific headers are checked first for integrity
and then it gets determined if a matching socket
exists. If not the packet gets dropped and an
ICMP error message is sent back. For TCP
packets, now called segments, the socket lookup
is complicated. The host may have a number of
active TCP connections and a number of
listening sockets. To make a determination
where to deliver the packet a hash table is
employed again. Before the hash table lookup
can be made the entire TCP control block list
including the hash table has to be locked to
prevent modifications while the current segment
is processed. The global TCP lock stretches over
the entire time the segment is worked on.
Obviously this locks out any concurrent TCP
segment processing on SMP as only one CPU
may handle a segment at any give point in time.
On one hand this is bad because it limits
parallelism but on the other hand it maintains
serialization for TCP segments and avoids
spurious out of order arrivals due to internal
locking races between CPUs handling different
segments for the same session. How to approach
this problem in FreeBSD 7-CURRENT is still
debated. One proposed solution is a trie
approach similar the new routing table coupled
with a lockless queue in each TCP control block.
When a CPU is processing one segment and has
locked the TCPCB while another CPU has
already received the next segment it simply gets
attached to the lockless queue for that socket.
The other CPU then doesn’t has to spin on the
TCPCB lock and wait for it to get unlocked. The
first CPU already has the entire TCPCB

structure and segment processing code in the
cache and before it exits the lock it checks the
queue for further segments. Some safeguards
have to be employed to prevent the first CPU
from looping for too long in the same TCPCB.
It may have to give up further processing after a
number of segments to avoid lifelock. The final
approach for FreeBSD 7-CURRENT is still
under discussion in the FreeBSD developer
community and extensive performance
evaluations will be done before settling to one
implementation.

TCP Reassembly

TCP guarantees a reliable, in-sequence data
transport. To transport data over an IP network
it chops up the data stream into segments and
puts them into IP packets. The network does its
best effort to deliver all these packets. However
occasionally it happens that packets get lost due
to overloaded links or other trouble. Sometimes
packets even get reordered and a packet that was
sent later may arrive before an earlier one. TCP
has to deal with all these problems and it must
shield the application from them by handling
and resolving the errors internally. In the packet
loss case only a few packets may be lost and
everything after it may have arrived intact. TCP
must not present this data to the application until
the missing segments are recovered. It asks the
sender to retransmit the missing segments using
either duplicate-ACK’s or SACK (selective
acknowledges) [32]. In the meantime it holds on
to the already received segments in the TCP
reassembly queue to speed up transmission
recovery and to avoid re-sending the perfectly

Figure 16 Bandwidth * delay product in
kbytes at various RTT and speeds, 300ms is
Europe - Japan (Source: Author)



received later segments. The same applies for
the reordering case where usually only a small
number of packets is held onto until the missing
segment arrives. With today’s network speeds
and long distances the importance of an efficient
TCP reassembly queue becomes evident as the
bandwidth-delay product becomes ever larger. A
TCP socket may have to hold to as many data in
the reassembly queue as the socket buffer limit
provides. Generally the socket buffers over-
commit memory – they don’t have enough
physical memory to fulfill all obligations
simultaneously – they may have on all sockets
together. In addition all network data arrives in
mbufs and mbuf clusters (2kbytes in size), no
matter how much actual payload is within such
a buffer. The current FreeBSD TCP reassembly
code is still mostly the same as in 4.4BSD Net/2.
It simply creates a linked list of all received
segments and holds on to every mbuf it got data
in. Obviously this is no longer efficient with
large socket buffers and provides some attack
vectors as well as for memory exhaustion by
deliberately sending many small packets while
forgetting the first one. All the memory and
mbufs are then tied up in the reassembly queue
and not available for legitimate data. Replicate
this for a couple of connections and the entire
server runs out of available memory. In
FreeBSD 7-CURRENT the entire TCP
reassembly queue gets rewritten and replaced
with an adequate system. The new code
coalesces all continues segments together and
stores them as only one block in the segment
list. This way only a few entries have to be
searched in worst case if a new segments arrives.
The author has provided a proof of concept for
this part which was demonstrated to have
significant benefits over the previous code on
large buffers and a 4Gbps Myrinet link with
constant packet reordering due to a firmware
bug [33]. The proof of concept code is currently
developed further to merge mbufs in the
reassembly queue when either the previous or
following mbuf has enough free space to store
the data portion of the current one. This way a
large part of the malicious attack scenarios is
covered. Then to thwart all other attacks

described in research papers only the number of
missing segments (holes) has to be limited [34].

TCP segmentation offloading is a controversial
topic and has been hyped a lot with the
introduction of iSCSI and TOE (TCP Offload
Engines). TOE do the entire TCP processing in
dedicated processors on the network card [35].
The clear disadvantage of TOE is the operating
system has no longer any control over the TCP
session, its implementation and advanced
features. FreeBSD has a very good TCP and IP
stack and we most likely will not support full
TCP offloading. In addition the benefits are
limited even with TOE as the operation system
still has to copy all data from and to the
application from kernel space. TCP
segmentation offloading (TSO) is more
interesting and to some extent supported on
most gigabit ethernet network cards.
Unfortunately often bugs in edge cases or with
certain bit patterns make this feature useless.
Complicating the matter is the functioning of the
general network stack in FreeBSD where every
data stream is stored on mbuf clusters. The mbuf
clusters are a little bit larger than the normal
ethernet MTU of 1500 bytes. Thus we already
have a direct natural fit which lessens the need
and benefit of TSO. There are cases where TSO
may be beneficial nonetheless. For example high
speed single TCP connection transfers may
receive a boost from lesser CPU processing
load. Current experience with existing
implementations is inconclusive and for
FreeBSD 7-CURRENT we will do further
research to judge the possible advantages against
the complications of implementing support for
TSO [36][37]. An implementation of TSO for
FreeBSD’s network stack is a non-trivial
endeavor.

Session Layer

T/TCP Version 2

T/TCP stands for transactional TCP. This name
however is misleading as it doesn’t have
anything to do with transactions commonly



understood from databases, file systems or other
applications. Rather it tries to provide reliable
transport that is faster than normal TCP for short
connections found in many applications, most
notably HTTP. It does this by modifying certain
aspects and behaviors of TCP [38]. It was
observed early on that the single largest latency
block in short TCP connections comes from the
three way handshake.  T/TCP optimizes this by
doing a three way handshake only the first time
any two hosts communicate with each other. All

following connections send their data/request
segment directly with the first SYN packet. The
receiving side then directly converts this one
packet into a full socket and hands it over to the
application for processing of the contained data
or request instead of replying with SYN-ACK.
T/TCP waits until the applications answers the
request to piggyback the response with the first
packet sent back. This approach is clearly very
efficient and fast. Unfortunately the specification
is very weak on security and the TCP part of the
implementation complicated [39]. On the
application side TCP connections can be opened
without calling connect(2) on a socket by using
send*(2) doing an implicit and automatic
connect like UDP [40]. The host authentication
for single packet connects uses a count of the
connections between two hosts since the last
three way handshake. This is very easy to spoof
and to launch SYN attacks with. Thus T/TCP
never gained any meaningful traction in the
market as it was unfit for any use on the open

Internet. The only niche it was able to establish
itself to some extent is the satellite gateway
market where the RTT is in the range of 500ms
and everything cutting connection latency is very
valuable. With partly rewriting T/TCP avoiding
the weaknesses the Author tries to bring back
the clear benefits it can provide. The rewrite is
dubbed T/TCPv2 and will be first implemented
in FreeBSD 7-CURRENT as an experimental
feature. The original connection count is
replaced with two 48bit random values (cookies)
exchanged between the hosts. One cookie, the
client cookie, is initialized by the client for all
connections anew when it issues the SYN
packet. This cookie is then transmitted with
every segment from the client to the server and
from the server to client. It adds 48bits of further
true entropy to the 32bit minus window size to
protect the TCP connection from any spoofing
or interference attempts. This comes at very little
cost with only 8 bytes overhead per segment and
a single compare upon reception of a segment. It
is not restricted to T/TCPv2 and can be used
with any TCP session as a very light-weight
alternative to TCP-MD5 [41]. The other cookie
is a server cookie which is transmitted from the
server to the client in the SYN-ACK response to
the first connection. The first connection is
required to go through the three way handshake
too. This cookie value is remembered by the
client and server and must be unique plus
random for every client host. The client then
sends it together with the SYN packet already
containing data on subsequent connections to
qualify for a direct socket like in original T/TCP.
Unlike the previous implementation it will not
wait for the application to respond but send a
SYN-ACK right away to notify the client of
successful reception of the packet. These two
random value cookies make T/TCPv2 (and TCP
with the client cookie) extremely resistant
against all spoofing attacks. The only way to
trick a T/TCPv2 server is by malicious and
cooperating clients where the master client
obtains a legitimate server cookie and then
distributes it to a number of other clients which
then issue spoofed SYN request under the
identity of the master client.

Figure 17 Comparison between a TCP (a) and
T/TCP+T/TCPv2 (b) connection setup
(Source: Vrije Universiteit)



Presentation Layer

Skipped in this paper. TCP/IP does not have a
presentation layer.

Application Layer

In the application space HTTP web servers are a
prime example of being very dependent on the
underlying operating system and exercising the
network stack to its fullest extent. A HTTP
server serving static objects – web pages, images
and other files – is entirely dominated by
operating system overhead and efficiency [42].
A HTTP request comes in from a client as TCP
session starting with a SYN packet entering the
SYN cache. The network stack responds with
SYN-ACK and then the client sends a request
for an object. When the first part of the request
is received the SYN cache expands the
connection into a full socket and signals the web
server the availability of a request by waking it
up from listen(2). The server then accepts the
request, parses it and locates the file in the file
system. When it is located and the server has
sufficient permissions to access it, it opens the
file for reading and sends the file content to the
client via the socket and closes the file again.
Once the client network stack has acknowledged
all packets the socket is closed on the server.
The HTTP request is fulfilled. Along this path a
number of potentially latency inducing steps
occur. First in line are the listen(2) and accept(2)
system calls dealing with all incoming
connections. FreeBSD implements an extension
to a socket in listen state called accept filter
which may be enabled with a setsockopt(2) call.
The accf_http(9) filter accepts incoming
connections but waits until a full HTTP request
has been received by the server until it signals
the new connection to the application. Normally
this would happen right after the ACK to the
SYN-ACK has been received by the server. In
the average case this saves a round-trip between
kernel and application. All new incoming
connections receive their own socket file
descriptor and the application has to select(2) or
poll(2) on them to check for either more request

data to read or more space in the socket to send.
Both calls use arrays of sockets which have to be
re-initialized every time a call to these function
is made. With large numbers of connections this
causes a lot of overhead in processing and
becomes very inefficient. FreeBSD has
introduced an event driven mechanism called
kqueue(2) to overcome this limitation [43]. With
kqueue the application registers a kernel event
on the socket file descriptor and specifies which
events it is interested in. The registered event is
active until it is cancelled. Whenever a specified
event is triggered on any registered event, the
event is added to an aggregated event queue for
this application from which it can read the
events one after the other.  This programming
model is not only highly efficient but also very
convenient for server application programmers
and is made easily available in a portable library
called libevent [44]. Once the request has been

fully received the HTTP server parses it for the
requested file name and starts a lookup in the
file system with stat(2). It is an often overlooked
point of undesired blocking and latency when
the file path and directory entry are not already
in the file system or buffer cache. Reads from
the disk may have to be initiated and during that
time the application will block in the kernel and
can’t perform any other work as the stat(2)
system call can’t be performed in a non-blocking
way. To avoid this stall in the main loop of the
application it is beneficial to perform the stat(2)

Figure 18 Response time poll(2) vs. kqueue(2)
from httperf (Source: Jonathan Lemon)
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outside of the main loop and distribute it among
a number of pthread(2)s or pre-fork(3)ed process
children. Thus the application can accept and
process further incoming connections as well as
quickly answer those which are already in any of
the operating systems caches. After the stat(2)
has determined that the file is available and the
application has sufficient rights to read it, it is
open(2)ed for reading. Normally the file content
is read into the application and then written out
on the socket again. This however causes the file
content to be copied two times between the
kernel and application. The sendfile(2) system
call offers a direct path from the file system to
the network socket. With sendfile(2) the
application specifies an optional header and
footer which is sent with the file, the file
descriptor of the opened file, the length and the
offset in the file to be sent. This approach
completely eliminates any file content copies
between kernel and application and it allows the
kernel to coalesce header, footer and file content
together into fewer, larger packets sent over the
network. Here again the sendfile(2) system call
may block if not all file content is in the file
system or buffer cache causing the application to
block until all data is fetched from the physical
disk. Sendfile(2) offers an option to immediately
return with an EWOULDBLOCK error message
signaling the direct unavailability of the file
content. The application then may use the same
approach as with stat(2) and distribute it to
either a pthread or pre-forked process child for
further processing keeping the main loop going.
FreeBSD 7-CURRENT will continue to improve
the internal efficiency of the existing
optimization functions and may implement
further methods as outlined in [45][46].
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