1)
2)

3)

4)

VBA to VB.Net XLL add-ins with Excel-Dna
Patrick O'Beirne Mail3 at sysmod.com
Web: http://www.sysmod.com
Blog: http://sysmod.wordpress.com
LinkedIn: http://www.linkedin.com/in/patrickobeirne

When the time comes to expand your skill set beyéB4, the Microsoft path is to
DotNet, either VB.Net or C#. This describes theygasite to VB using either or both
of two open source libraries, Excel-Dna and Net@ffilOnce in DotNet, you can then
acquire C# skills for which there is more demanthamarketplace.

Excel-DNA (Excel Dot Net Assembly)

http://excel-dna.net/

Quote from the home page of this project by Govant Drimmelen:

Excel-Dna is an independent project to integrate TNnto Excel. The primary target
is the Excel user who currently writes VBA codeftimictions and macros, and would
like to start using .NET. Also, C/C++ based .xlldaih developers who want to use
the .NET framework to develop their add-ins.

The Excel-Dna Runtime is free for all use, andritisted under a permissive open-
source license that also allows commercial use.

Excel-Dna is developed using .NET, and users hauestall the freely available
NET Framework runtime. The integration is by arcéAdd-In (.xll) that exposes
.NET code to Excel. The user code can be in tes¢badna) script files (C#, Visual
Basic or F#), or compiled .NET libraries (.dll). & versions '97 through 2010 can
be targeted with a single add-in.

The latest Excel-Dna version is available on thd&Rdex site.
http://ExcelDna.codeplex.coalso has links to tutorials
http://exceldna.codeplex.com/wikipage?title=Refeeers a quick reference
http://groups.google.com/group/exceldtize discussion list for primary support

All applications use the ExcelDna.xll addin. Thagss of learning described below
successively add files:

Using only a text file (.dna) which includes theisme code text.

Add an external DLL which you create from VB.netisze code and compile using
either the vbc.exe compiler or an IDE (Integratexy&opment Environment).

Ease the transition from the VBA Excel object madeVB.Net objects using either
the MS Primary Interop Assemblies (PIA) or thirdtgdibraries such as NetOffice.

An add-in using the Excel Ribbon

If you do not already have a favourite text fileted | recommend Notepad++
http://notepad-plus-plus.org/

Example: Create a user-defined function in Visual Basic

Stage 1: using only a .DNA text file

Getting Started with Excel-Dna — extracted fromled page:
http://ExcelDna.codeplex.com/wikipage?title=Get¥sZDStarted

Do this first:
Install the Microsoft .NET Framework Version 4.0d#sributable Package.
Install the most recent release of ExcelDna, umezgconvenient directory.

Make a copy of ExcelDna.xll in a convenient diregie@alling the copy TestDna.xll.
Create a new text file, called TestDna.dna (theesprafix as the .xll file), with
contents:

<DnalLibrary>
<![CDATA[
Public Module MyFunctions
Function AddThem(x, y)
AddThem =x +y
End Function
End Module

1>

</DnaLibrary>

Load TestDna.xll in Excel (either File->Open or T@oAdd-Ins and Browse...).
You should be prompted whether to Enable Macrask &nable. There should be an
entry for AddThem in the function wizard, under taegory TestDna.

Enter=AddThem(4,2) into a cell - you should get 6.
Enter=AddThem("a","b") into a cell - you should get ab.

Troubleshooting

If you are not prompted to Enable Macros and ngtlelise happens, your security
level is probably on High. Set it to Medium.

If you get a message indicating the .Net runtiméataot be loaded, you might not
have the .NET Framework installed. Install it.

If a window appears with the title 'ExcelDna ErBsplay' then there were some
errors trying to compile the code in the .dna fd#eck that you have put the right
code into the .dna file. Eg,"error BC30001: Statetm® not valid in a namespace"
could mean you omitted the Public Module / End Medu

If Excel prompts for Enabling Macros, and thenfinection does not appear to be
available, you might not have the right filenametfee .dna file. The name should be
the same as the .xll file and it should be in e directory. Or, you may have
omitted to declare the module as Public.

Otherwise, post on the discussion higip://groups.google.com/group/exceldna

You can call a UDF in an XLL from VBA by using Apgation.Run.
= Application.Run("MyFunc", paraml, param2)
| have not yet seen any significant overhead imgldinis.
You could also use the Evaluate function or itsasgubracket equivalent, but these

require the parameters to be passed as Ilteraisemple
Function MyFunc2(s As String, d As Double) As Doubl

You could call it from VBA as

X = Application.Run("MyFunc2", "test", 3)
= [MyFunc2("test",3)]

X = Evaluate("MyFunc2(""test™,3)")

This gives a simple way to migrate a UDF from VBAExcel-Dna for a quick and
easy performance improvement. How much of an imgmmant depends on how
efficient the code is. Avoid many thousands ofsctdl Excel worksheet functions,
such as ExcelDnautil.Application.WorksheetFuncfibiN(). Look for a native
VB.Net equivalent, or it may be faster to rewriterge functions in inline logic. Write
timing tests to verify whether there is any spaedrovement.

Stage 2: Compiling a.DLL

2.1 Compiling without an IDE

You can skip to the IDE example, as I'll only shomce this bit of a throwback to the
old command line days, but it does reduce thingsstentials. Create a text file
‘TestDIl.vb' containing this code:

' Simple test of ExcelDna
Public Module MyFunctions
Function AddThem(x, y)
AddThem =x +y
End Function
End Module

Change directory to where the Visual Basic compfgand use the vbc.exe compiler
to compile the .vb file to a DLL (Dynamic Link Liary) file to be included in the
ExcelDna project.

CD C:\Windows\Microsoft. NET\Framework\v4.0.30319
vbc FADOCS\SCC3\ExcelDna\TestDI\TestDIl.vb /targe t:library

This creates a file: \Docs\SCC3\ExcelDna\TestD11\TestD11l.d11

You can now refer to this external library fromDma file as follows:

<DnaLibrary Language="VB" Name="MyFunctions" Runtim eVersion="v4.0">
<ExternalLibrary Path="TestDIl.dIl" />
</DnaLibrary>

Copy the file ExcelDna.xll from the ExcelDna dibtition folder to this project's
folder and rename it TestDIl.xIl. You should noawk four files:

TestDIl.vb
TestDIl.dll
TestDIl.dna
TestDIl.xll

Now, double-click on TestDII.xll to load it. TestiDdll will on loading read the
TestDIl.dna file and load the code from the Testlllispecified in the .dna file.
Enable macros, and test the function.

Troubleshooting

Error: Could not load file or assembly ‘... TestDII.dir one of its dependencies. This
assembly is built by a runtime newer than the auitydoaded runtime and cannot be
loaded.RuntimeVersion="v4.0" was not specified so by default .Net runtime
version 2 was loaded.

Do not put spaces around the equals signs in tmakibDrary...> line.

If you enclosed the function in a Public Class eatihan a Public Module, and the
function is not visible in Excel, add the keyworda®ed to its declaration.

2.2 Using an IDE

If you have the budget, go for the Pro editionthefVisual Studio IDE with all the
professional plugins. | shall use Microsoft Vis8asic 2010 Express which is free.
An alternative is SharpDevelop, also free, whidlersfintegration with third party
plugins such as refactoring tools.
http://www.icsharpcode.net/OpenSource/SD/Defayikas

Ross McLean uses the SharpDevelop IDE in this el@mp
http://www.blog.methodsinexcel.co.uk/2010/09/22timg-an-Excel-Dna-function-

using-an-ide/

Download and install Visual Basic 2010 Express free
http://www.microsoft.com/visualstudio/en-us/prod/2010-editions/express
| recommend you read the Getting Started projects.

By the time you read this, Visual Studio 2012 mayabailable.

Start MS VS 2010 Visual Basic. You are going taateea new project. When | have
re-used existing directories for VB.Net projecented up with a mess of duplicate
files, so I'll start from scratch and copy in caonttas required.

In Tools > Options > Projects and Solutions > ch&tow Output window when
Build starts”

New Project > Class library, enter TestFuncs inNaene box.

New Project

D |

Recent Templates Sort by: |Defau|t | Search Installed Templates 2 |
Installed Templates T Visual Basi
§ X E'VB Windows Forms Application Visual Basic gt s
4 Visual Basic = A project for creating a VB class library
MetOffice Vg (.dll)
@ WPF Application Visual Basic
Online Templates
ﬂ Consele Application Visual Basic
=
jm;“'ﬂ Class Library Visual Basic
o 2 .
vg| WPF Browser Application Visual Basic
Generic ExcelDna project Visual Basic

TestFuncs

MName:

F Cancel

In the Solution Explorer pane, right-click Clasgiand delete it.
Project > Add New Item, Module, name it TestFuniss.v

Enter the following code. It is very similar to vihau would have in VBA except

that in VBA the function declaration would be

Public Function SumNValues(Values As Variant) As Do uble

'Sum all numeric values in a 2-D array, excluding n umbers formatted as dates

Public Module MyFunctions
Public Function SumNValues(ByVal Values(,) As O
Dim value As Object
SumNValues =0
For Each value In Values
Select Case VarType(value)
Case vbDouble, vbCurrency, vbDecima |
SumNValues = SumNValues + value
End Select
Next
End Function
End Module

bject) As Double

" exclude vbDate

Next, you want the compiler to have a referendabéoExcelDna Integration library
So it can resolve references to it. But you doahtito include the library as a file in
the project, because it is also embedded in teeefiicelDna.xIl which you will
include as a file with the name changed to thegatapame.

Project > Add Reference > Browse tab, to ExcelDniedration.dll eg
...ExcelDna-0.30\Distribution\ExcelDna.Integratior.dl

In subsequent projects, you can use Recent taheoAdd Reference dialog to revisit
that location.

Project > Show All Files and expand the Refereitcaach,

Select ExcelDna.Integration, make prope&py Local=False

Solution Explorer

=EE
] TestFuncs -
- [=d My Project E
4 | References

43 ExcelDnalntegration

{3 System

Properties

ExcelDnalIntegration Reference Properties -
B 2|
(Marne) ExcelDnalntegration &
Copy Local Falze EE_E__;
Culture
Description Integration library for Exce
Embed Interop Types False -
Copy Local

Indicates whether the reference will be copied to the
output directory.

Project > Add New Item > Text File > and name isfFeincs.Dna
Set in its File Properties the prope@gpy to Output Directoryo Copy if newer

Enter the following content:

<DnalLibrary Language="VB" RuntimeVersion="v4.0">
<ExternallLibrary Path="TestFuncs.dll" />
</DnalLibrary>

File > Save All, leave the name as TestFuncs, e@dlirectory for the solution.

You can leave the output directory as the defauldldcuments\visual studio
2010\Projects) or change it to the same path agrtheous example
F\ADOCS\SCC3\ExcelDna\. If the folder name alreaxiigts, it will simply create
another directory with a 1 added to the name, egjFimcs1. That could be a source
of confusion.

Save Project LI_J@ e
MName: TestFuncs
Location: FADOCS\SCC3\ExcelDna, -
Solution Mame: TestFuncs [¥]iCreate directory for solution:
[Save l [Cancel]

The folder has two files with extensions .sIn, ,sasubfoldei estFuncswith .vbproj
and .vbproj.user, the .dna and .vb files you hasegreated, and subfolddys, My
Project andobj. Thebin folder has subfoldefl®ebugandReleaseYou don’t need to
copy any files into Debug or Release, @&y fileproperties you set above in the
IDE will determine that.

Outside the IDE, copy the file Excel-Dna-0.29\Dtwtition\ExcelDna.xll to the
subfolder containing TestFuncs.dna and renamesitFGecs.xll. To add it to the
project do:

Project > Add Existing Item > TestFuncs.xll andisdts File Properties the property
Copy to Output Directoryo Copy if newer.

All you need to do now is click Build and check thatput window for any errors:

—————— Build started: Project: TestFuncs, Configuration: Debug Any CPU ------
TestFuncs -> F:\DOCS\SCC3\ExcelDna\TestFuncs\TestFuncs\bin\Debug\TestFuncs.dll

========== Build: 1 succeeded or up-to-date, @ failed, 0 skipped ==========

Finally, double-click TestFuncs.xll in the outpotder (Debug or Release) and test
the function in Excel. Here is some test data:

Al: "1 apostrophe prefix

A2: 1 number

A3: =1 formula evaluating to 1

A4: 100% 1 formatted as percent

A5: $1.00 1 formatted as currency (your localeedaines the symbol)
A6: 01/01/1900 1 formatted as date

=SumNValues(A1:A6) Should return 4 the same as the VBA version @ dauld
exclude Al and A6), but it returns 5. Why? Let'ssdmne debugging to find out.

Compiler Options

Visual Studio automatically chooses the Debug guméition when you choose Start
from the Debug menu and the Release configuratidmen you use the Build menu.
You can tailor this from the menu Build > Configuioa Manager. See
http://msdn.microsoft.com/en-us/library/wx0123spxas

P I’Oj ect > TestFuncs - Microsoft Visual Basic 2010 Express
File Edit View Project Buld Debug Dats Tools Window Help
TestFuncs e e R e I LRI E T T ==
Properties > PINTHRMN Testfuncsdna TestFuncsvb Object Browser
Compiler st JE— E—
Configuration: | Active (Debug) ~| Platform: [Active (Any CPU) -
shows the s - -
B . Debug Build output path:
Optlons in bir\Debugh T
References .
effect |f you - Compile Options:
- Option explicit: Option strict:
want a really S ks 7 o =
nit- p i Ckl ng Sgning Intian carracs ernier
h t My Extensions [Bmm 'HQ" .]
approacn to e
pOSS|bIe Condition Notification
T . |-
pr0b|emS, Late binding; call could fail at run time | None -
H Tmplicit type; object assumed None -
choose Option s jone
Use of variable prior to assignment |Warning -
Strict On in the B hcstiuning ebisee lpi b nebisnsalioe |Warning -
. i Function returning intrinsic value type without return value Warning -
dial 0g: Unused local variable Waring |+
Instance variable accesses shared member Warning -
Recursive operator or property access |Warning -
Duplicate or overlapping catch blocks | Warning -
[7] Disable all wamings
Lt

2.3 Debugging
Debugging is easy in VBA, it takes a little moréoefin VB.Net but still doable.

VB Express does not show the option in its usarfate (Ul) to debug an addin
executing inside Excel but you can do it yoursglediting the MyApp.vbproj.user
file as follows, substituting MyApp with the XLL nze.

<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0"
xmlns="http://schemas.microsoft.com/developer/msbui 1d/2003">
<PropertyGroup Condition=""$(Configuration)|$(PI atform)' ==
'Debug|AnyCPU" ">
<StartAction>Program</StartAction>
<StartProgram>C:\Program Files\Microsoft
Office\Office14\EXCEL.EXE</StartProgram>
<StartArguments>MyApp.xlI</StartArguments>
</PropertyGroup>
<PropertyGroup>
<ProjectView>ShowAllFiles</ProjectView>
</PropertyGroup>
</Project>

Close the project and edit TestFuncs.vbproj.usabase, changing MyApp to
TestFuncs. Then re-open the project and choosedoabpress F5. Excel will launch,
you enable macros as normal. In the IDE, set a&pmaat on line 7:

SumNValues = ©

F9 sets a breakpoint same as VBA. Enter the funati@a cell

=SumNValues(Al:A6)

The code stops with the familiar yellow line in tiidE, you can inspect the variables,
use the immediate window, and do pretty well amghiou can do in VBA except
edit the code on the run.

Hover the mouse over the Values(,) parameter e3iand expand the tree to see
what its items are:

Mailings Review Misw

TestFuncs {Debugging) - Microsoft Visual Basic 2010 Express

Eile Edit View Project Build Debug Data Tools Window Help
PG - BRI E2(9-0-8-5 b 0 @ EEEFERAE

Object Browser TestFuncs.dna TestFuncs TestFuncsvb X
¢ MyFunctions -! “ SumNValues
Imports ExcelDna.Integration ' for ExcelDnaUtil, X1Call, etc

C1Public Module MyFunctions
'Sum all numeric values in a 2-D array, excluding numbers formatted as dates
= Public Function SumNValues(ByVal Values(,) As Object) As Double

Dim value As Object = « Values {Length=6})
(=] @ (0,0} % = "1"{String}
For Each value In Values [@ (1,0) 1.0{Double}
select Case VarType(value) @ @ 20 1.0{Double}
Case vbDouble, wbCurrency, (@ @ (3.0) 1.0 {Double} pate
SumivValues = SumNValues @ o (4,0) 1.0 {Double}
End Select & @ (50 1.0 {Double}

Next
End Function

= ' Ewamnla nf Ewvrallna arra ce #n Fural ahdarcts

As you can see the last item, from A6, is passeatl@gsuble rather than as a Date as is
the case in VBA. This is another catch to be awdren passing values to VB.Net.

To know what the original cell type is, we neeg&ss a reference to the range A1:A6
to the function, not the values of the range ti‘ee to learn how to receive Excel
references.

2.4 Getting to the Excel object model

The alternatives for interacting with Excel are lekped by Govert van Drimmelen in
a post tahttp://groups.google.com/group/Excel-Diggroduced in the background
reading later.

Example: Excel object model via COM, late bound

Here is a VBA function that returns the sum of numealues in a range excluding
formula values and date constants. It uses pr@sestich as .HasFormula and .Value.

Public Function SumNConstants(RangeToSum As Range) As Double
Dim cell As Range
For Each cell In RangeToSum.Cells
If Not cell.HasFormula Then
Select Case VarType(cell.Value)

Case vbDouble, vbCurrency, vbDecima | " exclude vbDate
SumNConstants = SumNConstants + cell.Value
End Select
End If

Next
End Function

For simplicity, let's add this function to the Tesihcs you already have. Later, you'll
be starting a new project with more functionality.

TestFuncs - Microsoft Visual Basic 2010 Express

File Edit Miew Project Build Debug Data Tools Window Help
S - B R =29 -0 -8

Object Browser TestFuncs.dna

__‘>| T | &= [;E == | Oyl - E

TestFuncs TestFuncs.wb® X

#% MyFunctions +|] (Dedlarations)
- Public Function SumNConstants(ByVal RangeToSum As Range) As Double
Dim cell As Range
For Each cell In RangeToSum.Cells
If Not cell.HasFormula Then
Select Case VarType(cell.Value)

Case wvbDouble, vbCurrency, vbDecimal ' exclude vbDate
sumNConstants = SumNConstants + cell.Value
End Select
End If
Next

End Function

The type Range is flagged with green squigglesusecd belongs to
System.Data.Range which is a completely differeBiNét class which is not
referred to in this project. Without using any BEixype library you need to use the
variant Object type foRangeandcell.

When you fix that, you see a warning on the SumNs@aorts calculation:

SumNConstants = SumNConstants + cell.Value
select

| Variable 'SumNConstants' is used before it has been assigned a value. A null reference exception could result at runtime.

And on the End Function line

End Function

Function 'SumMCeonstants’ doesn't return a value on all code paths. Are you missing a 'Return’ staternent?

These can be cleaned up by initialising SumNComtstanzero at the start of the
function.

However, we are not done yet. The line

For Each cell In RangeToSum.Cells

would throw a runtime error because RangeToSum Blgect in VB.Net with no
connection to Excel. You would see #VALUE! in thddl@nd see in the IDE Output
Window:

A first chance exception of type 'System.MissingMemberException' occurred in
Microsoft.VisualBasic.dll

There are several things to add:
1) At the top of TestFuncs.vb add a lin@orts ExcelDna.Integration that

allows us to shorten references to this frequargd qualifier like
Dim App As Object = ExcelDna.Integration.ExcelDnaUt il. Application
To

Dim App As Object = ExcelDnaUtil .Application

2) The<ExcelFunction(...)> attribute in the completed code below, and the
IsMacroType:=True flag, are used to be able to handle ExcelReferences

3) TheAllowReference:=True option only affects parameters of type Object. It
changes the registration type of the function licBcel to pass an
ExcelDna.Integration.ExcelReference if the function is called with a
range reference. Otherwise the function would at\gst the values of the
range, not the cell references.

4) TheRreferenceToRange helper function converts an Excel Reference reckiv
from the UDF,; first to an address using the C ABs$sxicall, and thento a
Range using the Range method of the ExcelDna. latiegr.

ExcelDnaUtil. Application object.

In VBA you can define a function to receive a Ranfgct and work with that
directly. That is not possible with VB.Net. The s&st we can get is to use
AllowReference to tell Excel to pass a referencedwen that is not a Range object; it
is a C structure and we have to convert that tasgR by getting its address (eg
"[TestFuncs.x1sx]Sheet1!A1:$A36") and then passing that to the Excel
Application.Range method to return a Range objduthvthe function then returns as
a generic Object.

If you define a function but cannot see it from Elxas a UDF, first check that it is
markedismacroType:=True and also check that the parameters are one of Dbjec
Double, or String. A side effect to be aware ahat if the function that is registered
asisMacroType:=True has an argument markadowReference:=True , Excel will
treat the function as volatile even though you'deex it not to be.

<ExcelFunction (Category:="Test Functions", Description:="Sums num eric
constants in range", IsMacroType:=True)>

The Category and Description are used in Exceltgfian Wizard:
rFum:tflcm Arguments 7 &1

SummM

RangeToSum | AL:AS 3 1iLLL51

= 3
Sums numeric constants in range.

RangeToSum .

Formula result = 3

Help on this function [OK] | Cancel |

A

All the above looks rather more awkward compareithéoVBA version. When you
dig in to it, you recognise that the C API callsngeused here are based on the
original XLM macro language still used within defshNames for certain legacy
purposes. For example, GET.CELL is representedf@exCell. These macro-sheet
functions and commands are documented in the HelXIEMacr8.hlp (formerly
named Macrofun.hlp). That should be available from
http://support.microsoft.com/kb/143466

You can learn more by downloading the Microsoft &x010 XLL Software
Development Kit from
http://msdn.microsoft.com/en-us/library/office/bli@B3(v=office.14).aspx

The complete code of the function is now:

Imports ExcelDna.Integration ' for ExcelDnauUtil, XICall, etc

Public Module MyFunctions

‘Sum all numeric values in a 2-D array, exclude numbers formatted as
dates
Public Function SumNValues(ByVal Values(,) As O bject) As Double

Dim value As Object
SumNValues = 0
For Each value In Values
Select Case VarType(value)
Case vbDouble, vbCurrency, vbDecima | " exclude vbDate
SumNValues = SumNValues + value
End Select
Next
End Function

< ExcelFunction (Category:= "Test Functions" , Description:= "Sums numeric
constants in range" , IsMacroType:=True)> _
Public Function SumNConstants(< ExcelArgument (AllowReference:=True)>

ByVal RangeToSum As Object) As Double
Dim cell As Object, rgToSum As Object
SumNConstants = 0
rgToSum = ReferenceToRange(RangeToSum)
For Each cell In rgToSum.Cells
If Not cell. HasFormula Then
Select Case VarType(cell.value)

Case vbDouble, vbCurrency, vbDe cimal ' exclude vbDate

SumNConstants = SumNConstan ts + cell.value
End Select
End If
Next
End Function
Private Function ReferenceToRange(ByVal xIRef A s ExcelReference) As
Object
Dim strAddress As String = XlCall .Excel(XlICall .xIfReftext, xIRef,
True)
ReferenceToRange = ExcelDnaUtil .Application.Range(strAddress)
End Function
End Module

You can now press F5 to launch and test this smlutSumNConstants(A1:A6)
returns 3 because it sums A3,A4,A5, excluding &ktjt A2 (formula), A6 (date).

By the way, we can enhance th&erenceTorange function to handle ranges with
several areas. A singlecall.x1fReftext is limited to 255 characters, so the
following concatenates the addresses from the itidal areas of the reference:

Private Function ReferenceToRange(ByVal xIRef As ExcelReference) As Object
Dim cntRef As Long, strText As String, strAddres s As String
strAddress = XlCall .Excel(XlCall .xIfReftext, xIRef.InnerReferences(0),
True)
For cntRef = 1 To xIRef.InnerReferences.Count - 1
strText = XlCall .Excel(XlCall .xIfReftext,
xIRef.InnerReferences(cntRef), True)
strAddress = strAddress & " & Mid(strText, strText.LastindexOf(")+
2)
' +2 because IndexOf starts at 0
Next
ReferenceToRange = ExcelDnaUtil .Application.Range(strAddress)

End Function

The drawback of late binding is that there is nellisense and no checking for
mistakes at compile time. So you could have a reitiag like this that would only
fail at runtime:

Dim myRange
myRange = Application.ActiveSheet.Ragne("Al1")

We'll show how to add Intellisense in the next isect

Before we leave this example, let's look at anotie@sequence of not having the
Excel types available in DotNet.

In VBA we are used to types like Range, Workshé&irkbook, and global objects
like ActiveCell, ActiveSheet, ActiveChart, ActiveWdow, ActiveWorkbook, and the
Workbooks collection; and global constants likehd8tVisible. These are not
provided in VB.Net, so we have to use As Objectiiertypes, qualify all the global
objects back to the Application object, and debie own constants.

To illustrate some of these concepts, let's addlat& the TestFuncs project to do
some operations on an Excel sheet.

Public Sub TestXL() ' test access to the Excel Object Model

Dim ws As Object ' not As Worksheet

ws = ExcelDnaUtil .Application.activesheet
MsgBox(ws.name)
End Sub

You can run this using Alt+F8 and typing in the moagame TestXL.
Assuming Excel starts with the default Book1, ibsld show a message "Sheetl".

To add it as a menu button for simpler testing; use

<ExcelCommand (MenuName:="Test&XL" , MenuText:= "Run Test&XL")>

This is the old Excel 2003-style menu that appeatise Addins tab of the Ribbon.
The shortcut key to that is X, and we have speatifieas the menu accelerator and the
button shortcut. So now you can run it just by gphAlt, X, X, X.

By default the name is the method name, but yowearride with an attribute:

<ExcelCommand (Name:="MyMacro", MenuName:= "Test&XL" , MenuText:= "Run
Test&XL")>

When you go to the Macros dialog box and type iryMAcro", the Run button
should become available and then run your magyoufclick it.

To save having to type ExcelDnaUtil before Applicat we can import that at the
top. The code now reads

Imports ExcelDna.Integration ' for ExcelDnaUltil, XICall, etc
Imports ExcelDna.Integration. ExcelDnautil ' for Application

Public Module MyFunctions

' we use ExcelCommand to attach this macro to a menu button in Excel
< ExcelCommand (MenuName:="Test&XL" , MenuText:= "Run Test&XL")> _
Public Sub TestXL() ' test access to the Excel Object Model

Dim ws As Object ' not As Worksheet
ws = Application.activesheet
MsgBox(ws.name)

End Sub

You can now extend that to try other globals suigh a

MsgBox(Application.activeworkbook.name & vb Lf _
& Application.activesheet.name & vbL f_
& Application.activecell.address _
, VbOK, "Test XL")

But if you try to specify
Application.activecell.address(ReferenceStyle:=xIR1 Cl)

The compiler outputs:
Error 1 'xIR1C1'is not declared. It may be inacces sible due to its
protection level.

You would have to either specify the numeric vadfi@ or add the line
Const x1R1C1 As Integer = 2

If you are pasting in code from VBA you either ediferences to globals like
"Workbooks" to prefix them with "Application.” odd helper properties to return a

reference to them like this:
ReadOnly Property Workbooks As Object

Get
Return Application.Workbooks
End Get
End Property

So the code now looks like:

Imports ExcelDna.Integration ' for ExcelDnauUltil, XICall, etc
Imports ExcelDna.Integration. ExcelDnautil ' for Application

Public Module MyFunctions
Const xIR1C1 As Integer = 2

' we use ExcelCommand to attach this macro to a menu button in Excel
< ExcelCommand (MenuName:="Test&XL" , MenuText:= "Run Test&XL")> _
Public Sub TestXL() ' test access to the Excel Object Model

Dim ws As Object " not As Worksheet

ws = Application.activesheet

MsgBox("Number of Workbooks open: " & Workbooks.count & vbLf _

& Application.ActiveWorkbook.name & vbLf
& Application.activesheet.name & vbLf _
& Application.activecell.address(Referen ceStyle:=xIR1C1) _
, VbOK, "Active info")
End Sub

ReadOnly Property Workbooks As Object
Get
Return Application.Workbooks
End Get
End Property

At this stage you might be wondering how much adits involved to migrate from
ExcelDna, especially with all the xI* constants téally, the constants are easily
done; just include in your project a copy of thems downloaded from Mike
Alexander's site. You'll have to change the secd@dlorindex to say xICI.
http://www.datapigtechnologies.com/downloads/ExE@umerations.txt

You can also use my contribution of the free adgliralifyVBACode. It takes the
VBProject in a workbook and qualifies the x| comgsawith their enum types, and
prefixes ones like ActiveSheet with Application.eléearch/replace strings are in a
XML keyl/value config file that you can edit. Of ase, please read the ReadMe.txt
file first after unzipping this (XLL, DNA, DLL, CORIG) :

http://www.sysmod.com/QualifyVBAcode.zip

Because all the variables have to be Object, tbedbd Intellisense is a risk when
typing new code rather than simply copying workifi§A code. So, let's tackle that
problem next.

Boilerplate steps for creating a project in VB Express

The following projects start in the same way, B@ive the generic steps here using
the term "MyProject” which you can substitute wythur own solution name. In the
subsequent projects, | refer to these steps aat€tiee standard ExcelDna project
with the name"

New Project > Class library, enter MyProject in Neme box.

Project > Add Reference > Recent tab, to ExcelDwegration.dll

Project > Show All Files and expand the Refereicasach,

Select ExcelDna.Integration, make prope&ppy Local=False

Project > Add New Item > Text File > and name itRMgject.dna

Set in its File Properties the prope@gpy to Output Directoryo Copy if newer

Enter the following content:

<DnalLibrary Language="VB" RuntimeVersion="v4.0">
<ExternalLibrary Path="MyProject.dll" />
</DnaLibrary>

In the Solution Explorer pane, right-click Clasgiand delete it. Or, you can simply
rename this later.

File > Save All, leave the name as MyProject, @eadlirectory for the solution.
Close the project and outside the IDE edit MyPrioyproj.user to add the Debug
functionality:

<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0"
xmlns="http://schemas.microsoft.com/developer/msbui 1d/2003">
<PropertyGroup Condition=""$(Configuration)|$(PI atform)' ==
'Debug|AnyCPU" ">
<StartAction>Program</StartAction>
<StartProgram>C:\Program Files\Microsoft
Office\Office14\EXCEL.EXE</StartProgram>
<StartArguments>MyProject.xlI</StartArguments>
</PropertyGroup>
<PropertyGroup>
<ProjectView>ShowAllFiles</ProjectView>
</PropertyGroup>
</Project>

Outside the IDE, copy the file Excel-Dna-0.29\Dlsation\ExcelDna.xll to the
subfolder containing MyProject.dna and rename iPkbyect.xll. To add it to the
project, re-open the project and do:

Project > Add Existing Item, Show All Files (*.*) MyProject.xll and set in its File
Properties the propertyopy to Output Directoryo Copy if newer

You could also do File > Export Template > projeehplate > type a description and
click Finish. This creates a file Myproject.zipthre folder Documents\Visual Studio
2010\My Exported Templates. You can then seetéimglate when creating projects
in the future.

Stage 3: Adding Intellisense to a EXCELDNA solution

As explained in the background reading at the dridi®, there are two methods: the
Microsoft Primary Interop Assembly (PIA) or a thipdrty library like NetOffice.

The simplest use of PIA is described at Ross M&dalng
http://www.blog.methodsinexcel.co.uk/2010/10/28#adintellisense-to-a-dna-solution/
He provides all the PIAs in this zip:
http://www.blog.methodsinexcel.co.uk/wp-contentbgals/PIA-Excel.zip
Project > Add reference > .Net assembly Browsend the PIA folder you just

extracted, and pick the right version for your reeéithen in your module use
Imports Microsoft.Office.Interop.Excel

He says'Otherwise, the drawback with the MS PIA is thdtas to be installed on the
client machine, and there is a different versiongfach version of Office. This also
means you need admin rights to deploy your add-Hhowever, that is overcome in
.Net version 4.

http://blogs.msdn.com/b/vsto/archive/2008/05/20/cuwm-pitfalls- during-pia-
deployment-and-installation.aspx

Example of using the Excel Primary Interop Assembly (PIA)
| shall target Excel 2007 in this example and ttes it in 2003 (for historical
interest) and 2010.

Create the standard ExcelDna project with the naestPIA.
For debugging, specify Excel 2007 in TestPIA.vbursgr :

<StartProgram>C:\Program Files\Microsoft
Office\Office12\EXCEL.EXE</StartProgram>

Project > Add Reference > navigate to the Excelr2@frsion of the PIA, in this case
Microsoft.Office.Interop.Excel.12.dll

In the properties, check "Embed Interop Types"riset

We can now use Excel types in Dim statements ssi¢taage, Workbook, etc.

Project > Add New Item, Module, name it TestPIA.vb.
Copy in the following code, similar to that in thestFuncs example.
Because 'Application’ is ambiguous between Excelldtegration.ExcelDnaUtil and

Microsoft.Office.Interop.Excel, create a globalesi to point to the current Excel
instance via ExcelDna. If you're preparing an addinmigration, changing

! As of Visual Studio 2010, C#/VB projects that ®rgNET 4 can now use the embedded interop types
feature to get around the limitation of having &plby the PIA on the target PC. When the Embed
Interop Types property of a PIA reference is Tthen any PIA types used by the application are
embedded in the built assembly, so that the Pi#otsmeeded at run time. In this scenario, an
application that references an Office 2010 PIA @etually run on a computer with an earlier version

of Office installed, provided that it does not ass APIs that are new in Office 2010. For a related
walkthrough, seéttp://msdn.microsoft.com/en-us/library/ee317478a3 his will only work under

.NET 4, and won't work with the NetOffice assemblénce they are not 'Primary" interop assemblies.

"ActiveWorkbook" to "Application.ActiveWorkbook" etcan be done in VBA and it
works just as well.

The ExcelApi.Enums need their prefix so you havese

XIReferenceStyle.xIR1C1 ; Or create your own enums module from the text
file on the datapigtechnologies web site as desdrhiefore.

However although Intellisense is fine for suggegtmethods and properties as you
type, it does not detect invalid methods pastddoim other code.

ws.UsedRagne will not get flagged as an error until runtime.

Imports ExcelDna.Integration ' for ExcelDnaUtil , ExcelCommand,
XICall, etc
Imports Microsoft.Office.Interop.Excel ' Interface types from PIA eg

Workbook, Range

'instead of Imports ExcelDna.Integration.ExcelDnaUt il create this global
helper
' because 'Application’ is ambiguous between ExcelD nauUtil and Interop.Excel
Module Globals
' connect the global Application to the Excel i nstance via ExcelDna
Public ReadOnly Property Application As Application
Get
Application = ExcelDnaUtll .Application
End Get
End Property
End Module

Public Module TestPIA

' we use ExcelCommand to attach this macro to a menu button in Excel
< ExcelCommand (MenuName:="Test &XL" , MenuText:= "Test &XL PIA")> _
Public Sub TestPIA() ' test access to Excel via PIA
Dimwb As Workbook ,ws As Worksheet ,rg As Range, cell As Range
wb = Application.ActiveWorkbook
ws = Application.ActiveSheet
cell = Application.ActiveCell
' start with activecell Al in Sheetl
With cell.Offset(1, 1) ' B2
.Value = .Address(True, True,
ReferenceStyle:= XIReferenceStyle XIR1C1)
.Select()
End With

cell = Application.ActiveCell
rg = Application.ActiveSheet.range("B3:C5")
rg.Formula = "=Row()"

MsgBox("Number of Workbooks open: " & Application.Workbooks.Count &
vbLf _
& wb.Name & vbLf _
& ws.Name & vbLf _

& cell.Address(True , True,
ReferenceStyle:= XIReferenceStyle XIR1C1) _
, VbOK, Application.Name & " " & Appli cation.Version)
End Sub
End Module

Test the project with VB Express with F5. Excel 2@bould launch and the menu
should be visible. Quit Excel 2007.

Start Excel 2003, double-click \TestPIA\TestPIA\bin\Debug\TestPIA.xIl and the
menu "Test XL' should appear with the item "TextRIA' and it runs.
Start Excel 2010, do the same, and it should atst.w

Obviously, you can't access parts of the objectehodt present in the version of
Excel running. If you need to handle this condiiltyy then in the code test for the
value of Application.Version.

| have Excel 2013 on another PC, so to test thikardate a single XLL with the
components so | have only one file to deploy.

Simplify deployment by packing the components into one .XLL file.

ExcelDnaPack is a command-line utility to pack Bx2ea add-ins into a single .xll
file.

Example: ExcelDnaPack.exe MyAddins\FirstAddin.dna
The packed add-in file will be created as MyAddinstaddin-packed.xlI.

To pack additional assemblies, you add Pack="tfnete lowercase "true") to the

references in the .dna file, eg
<ExternalLibrary Path="TestPIA.dIl" Pack="true" />
<Reference Path="any other references" Pack="true" />

So in the command window it will appear as (warrnigffom second time output)

...\exceldna-0.29\distribution\exceldnapack bin\deb ug\testpia.dna
Output .xlI file bin\debug\testpia-packed.xIl alrea dy exists. Overwrite?
[Y/N]y
Using base add-in bin\debug\testpia.xl|
-> Updating resource: Type: ASSEMBLY_LZMA, Name: EXCELDNA.INTEGRATION,
Length: 43546
~~> ExternalLibrary path TestPIA.dll resolved to bin\debug\TestPIA.dIl.
-> Updating resource: Type: ASSEMBLY_LZMA, Name: TESTPIA, Length: 7078
-> Updating resource: Type: DNA, Name: _ MAIN__, Length: 377

Completed Packing bin\debug\testpia-packed.xll.

To test, | copied testpia-packed.xll to the oth€r Btarted Excel 2013, double clicked
the xll, enable the addin, and the Alt-X,X,X teaspes.

Example of using NetOffice

NetOffice is a version-independent set of Officeetop assemblies put together by
Sebastian Lange.
http://netoffice.codeplex.com/

Unzip the distribution zip file into a convenientettory.
When you have time, read the files in the Examalet Tutorials directories.
Create the standard ExcelDna project with the naestNetOffice.

Project > Add Reference > navigate to the correcsion of Netoffice.dll eg

" NetOffice 1.5.1\NET 4.0\Assemblies\Any CPU\NetiO#.dII"

Set in its File Properties the propeBEsnbed Interop types=FalssmdCopy
Local=True We can't use the embedding feature, intendethéoMS PIAs, in
NetOffice. Do the same two things for ExcelApi.dll

Depending on the features you use you may also need
OfficeApi.dll
VBIDEApi.dIl

Project > Add New Item, Module, name it TestNetCHfvb.

Copy in this code, similar to that in the TestFuexample, but instead of the generic
Object type for the variables, we'll use types figgtOffice.ExcelApi. For
convenience and compatibility with VBA we shall rathe ExcelAPI as Excel in the
Imports clause. This should look familiar enouglatéBA developer. If you're
preparing an addin for migration, changing "As R&ng "As Excel.Range" can be
done in VBA and it works just as well.

There are some awkward syntax changes; for exa@plé\ddress methods change
to .get_Address. Be careful to change .Offsetf) .&esize() to .get_Offset and
.get_Resize; the first version will not be flaggedan error but has no effect, it
returns the original range, so it's an easy mistakeake.

The extra line

New Excel. Application (Nothing, ExcelDnaUtil .Application)

is needed to initialise the NetOffice globals socaa now simply use
ActiveWorkbook etc as in VBA.

You will also notice that the imported ExcelApi.Ensi need their prefix so you have
to usexXIReferenceStylxIR1C1; or create your own enums module from éx¢ file
on the datapigtechnologies web site as describienlebe

Finally, | have added a Try...Catch block to illustréhe error handling in VB.Net. If
you want to use Resume Next, that is only availahile the On Error style of error
handling.

Imports ExcelDna.Integration ' for ExcelDnauUltil, XICall, etc
'Imports ExcelDna.Integration.ExcelDnaUtil ' not n eeded for Application now
we have NetOffice

Imports Excel = NetOffice.ExcelApi ' For Excel. types

Imports NetOffice.ExcelApi.GlobalHelperModules. GlobalModule ' for Workbooks
collection

Imports NetOffice.ExcelApi.Enums ' for xIConstants

Public Module MyFunctions

' we use ExcelCommand to attach this macro to an Add-Ins menu button in
Excel
< ExcelCommand (MenuName:="Test&XL" , MenuText:= "Run Test&XL")> _
Public Sub TestXL() ' test access to the Excel Ob ject Model
Dim wb As Excel. Workbook , ws As Excel. Worksheet , rg As Excel. Range, cell
As Excel. Range
Dim dummy As Excel. Application ' need this to initialise NetOffice
Globals
Try
dummy = New Excel. Application (Nothing, ExcelDnaUtil .Application)

wb = ActiveWorkbook

ws = ActiveSheet

cell = ActiveCell

' start with activecell Al in Sheetl

With cell.get_Offset(1, 1) 'B2
.Value = .get_Address(True, True,
referenceStyle:= XIReferenceStyle XIR1C1)
.Select()
End With
cell = ActiveCell
rg = ActiveSheet.range("B3:C5")
rg.Formula = "=Row()"
MsgBox("Number of Workbooks open: " & Workbooks.Count & vbLf _

& wb.Name & vbLf _
& ws.Name & vbLf _
& cell.get_Address(True, True,
referenceStyle:= XIReferenceStyle XIR1C1) _
, VbOK, Application.Name)

Catch ex As Exception
Dim Message As String = ex.Message
If StrComp(Message, "See inner exception(s) for details." ,

vbTextCompare) = 0 Then
Message = ex.InnerException.Message
End If
Message = Message & vbLf & ex.StackTrace
Debug.Print(Message)
MsgBox(Message, MsgBoxStyle .Exclamation, ex.Source)
End Try
End Sub

End Module

NetOffice allows version independence with .Netsi@n 2. As | shall be targeting
version 4, | shall use the PIA and embed the Ipti¢oaobtain the same result.

Specific NetOffice notes

Range, Offset, Resize

(This may change with Netoffice libraries)

You can use Application.Range(strAddress) to genge from any qualified address.
Be aware that with the ExcelApi.Range type, you MWBange all occurrences of
.Offset to .get_Offset and .Resize to .get_Resize.

Dim xCell As NetOffice.ExcelApi.Range, oCell As Obj ect
ws.Range("B2:D4").Select() ' 3 rows, 2 columns

xCell = Selection

oCell = Selection

'‘Object references work like in VBA

oCell: Range B2:D4

oCell.offset(1, 1): Range C3:E5 as expected
oCell.get_offset(1,1): Range C3:E5 as expected

'ExcelApi references are different

xCell: Range B2:D4

xCell.offset(1, 1): Range B2 ' cell in row 1, col 1 of B2:D4
xCell.get_offset(1,1): Range C3:E5 as expected

Explanation:
xCell.offset(1, 1) is evaluated like this in NetOff ice
rg=xcell 'B2:D4

rg=rg.Offset 'B2:D4
rg=rg(1,1) 'B2

Enumerations and .x1* Constants

With NetOffice, first import the NetOffice.ExcelAfinums module. Then prefix
enumerated constants with their type, eg XIDirgtitip rather than simply xIUp.
The prefix can be added in VBA as well which magidvambiguities like xIVisible
and xISheetVisible.

Change all occurrences of "As Range" in your VBAAS Excel.Range" and this will
work the same in both VBA and VB.Net

.Characters property gives an error

"Error 16 Class 'NetOffice.ExcelApi.Characters' cannot be indexed because
it has no default property.

.Characters(Start:=1, Length:=1Pos).Font.ColorIndex = 38

This is a byproduct of the way the default prosrire accessed in Netoffice. As of
1.5.1, there is no workaround yet.

To use the global Application object
1) Do this in a Public Module GlobalHelper
Property Application As Netoffice.ExcelApi.Applicah

2) Do this in a Public module

Public Module Globals
' connect the global Application to the Excel instance via ExcelDna
ReadOnly Property Application As Application

Get
Application = ExcelDnaUtil.Application
End Get
End Property
End Module

| need Netoffice.ExcelApi. or | get
‘error BC30561: 'Application’ is ambiguous, impdrfeom the namespaces or types
'System.Windows.Forms, NetOffice.ExcelApi'.

DrawingObjects
In VBA, drawing objects are a collection but in Niéice they are a COMODbject

' For Each obj In ws.DrawingObjects gives Error 155 Expression is of type
'LateBindingApi.Core.COMObject', which is not a collection type.
' instead use:

For Each obj In CType(ws, Object).DrawingObjects

For Netoffice it is also necessary to change sorapepties to the Excel-Dna get_
names:

.Range - .get Range

Address—> .get_Address

.Offset > .get_Offset

.Resize-> .get_Resize

.End-> .get_End

.Characters> .get_Characters

There may be more.

VBA accepts a variable number of parameters, egdiset you can specify only a
row offset and the column offset defaults to 0. yhrust be specified in Excel-Dna
so after the search/replace for the .get_ namesg parameters may have to be
completed. The only one | found irritating was .geddress which needs five
parameters so | decided to create a function Rakagress which handles the
optional parameters and will also convert 0/1 ts&/drue as required when that kind
of lazy shortcut was taken when writing the VBA eod

To do a search and replace of <expression>.Address(
Visual Studio regular expressions: Find and Replace
{:a+}\.address

'range_address(\1)

Notepad++ regular expressions: Search for anyfedieived by a space or bracket
then any text followed by .address(and replabg the first two subexpressions then
Range_Address(then the text just before .addwdssh should be the range object
reference:

(MT\D(*?)(\.address\()

Replace with:

\1\2 Range_Address(\3,

Names
To index into the wb.Names collection, use .get_Bi@maex)

Range.Sort
.Sort via the PIA needs at least the first key Bjgel; and orientation if you want it
sorted top to bottom, eg

rg.currentregion.sort(Keyl:=rg,
Orientation:=xISortOrientation.xISortColumns)

The .Sort method in NetOffice was a headache becawery possible parameter must

be specified, unlike VBA where they can be omittedlate this into its own sub:

ws.Cells(1l, 2).CurrentRegion.Sort(header:=XlYesNoGuess.xlYes, _
keyl:=ws.Cells(1, 3), orderl:=X1SortOrder.xlDescending, _
key2:=ws.Cells(1, 2), order2:=X1SortOrder.xlDescending, _
key3:=ws.Cells(1, 1), order3:=X1SortOrder.xlAscending, _
dataOptionl:=X1SortDataOption.x1SortNormal, _
dataOption2:=X1SortDataOption.x1SortNormal, _
dataOption3:=X1SortDataOption.x1SortNormal, _
matchCase:=False, orderCustom:=Nothing, _
orientation:=X1SortOrientation.x1SortColumns, _
sortMethod:=X1SortMethod.x1PinYin, type:=Nothing)

Workbooks.Open()

This has seventeen parameters. If you want to fypaee near the end of the list, like
AddToMRU, in VBA you can simply use named paramgter VB.Net you must
specify them all up to that point. You cannot othém by using two commas in
succession. You can pass Nothing for all valueggixXéormat' and 'origin' which

must have some real value, eg
Workbooks.Open(filename:=strFilename, updatelLinks:=False, readOnly:=False, _
format:=5, password:=Nothing, writeResPassword:=Nothing, _
ignoreReadOnlyRecommended:=Nothing, origin:=2, addToMru:=False, _
converter:=Nothing, corruptLoad:=Nothing, delimiter:=Nothing, _
editable:=False, local:=Nothing, notify:=Nothing)
"http://msdn.microsoft.com/en-
us/library/microsoft.office.interop.excel.workbooks.open(v=office.11).aspx
'format:=5 any value from 1-6 will do if it's not a text file
'origin:=Enums.X1Platform.x1lWindows=2
You cannot specify Format:=Nothing or origin:=Nat$j get:
System.Runtime.InteropServices.COMException (Ox8IBEC): Unable to get the Open
property of the Workbooks class

Application.GetOpenFilename()

The FileFilter argument consists of pairs of fileef strings followed by the MS-DOS
wildcard file filter specification, eg "All Files*(*),*.*". If you omit the comma,

Excel silently errors and the ExcelDna app hangs.

Stage 4: Creating an add-in with Ribbon commands
The above examples show an old Excel 2003 styleurbatton. It's time to create an
addin with a Ribbon button that does more work \kixtel.

We shall create an add-in to list the names oftshteea worksheet named $TOC
Create the standard ExcelDna project with the ndfaekbookTOC.

Project > Add Reference > navigate to the ExceD2@rsion of the PIA, in this case
Microsoft.Office.Interop.Excel.14.dll

Project > Add New Item, Module, name it Workbook T@i¢C

Enter the following test code; we will replace itlhweal code later.

Public Module WorkbookTOC
Sub CreateTableOfContents()
MsgBox("CreateTableOfContents™)
End Sub
End Module

Edit the standard .dna text file you created naWedkbookTOC.Dna and copy in
the text below. The ExternalLibrary WorkbookTOCMll be created when you
build the project. The CustomUI contains the Ribbwarkup which adds a group to
the Excel Ribbon with one button with a standarddviBiage and an onAction that
calls a standard ExcelDna method that in turn ¢alith no parameter) the macro
named in the tag.

<DnaLibrary Language="VB" Name="Table of Contents A dd-in"
RuntimeVersion="v4.0">
<ExternalLibrary Path="WorkbookTOC.dllI" />
<CustomUI>
<l--Note the <CustomUI> with a capital ‘C’ tag th at encloses the
<customUI>
with a small ‘c’ tag that saved in the .xll. -->
<customUI xmIns="http://schemas.microsoft.com/off ice/2006/01/customui">
<ribbon startFromScratch="false">
<tabs>
<tab idMso="TabReview">
<group id="WorkbookTOC" label="TOC" insertAfte rMso="GroupEditingExcel">
<button id="CreateTableOfContents" tag="Creat eTableOfContents”
onAction="RunTagMacro" label="&Table of Contents"
screentip="Insert Table of Contents workshe et" size="large"
imageMso="TableOfFiguresinsert" />
</group>
</tab>
</tabs>
</ribbon>
</customUI>
</CustomUI>
</DnaLibrary>

To support the Excel 2007/2010 ribbon, add a Qfasdule Ribbon.vb with a Public
class for the Ribbon handler.

The ExcelRibbon-derived class must also be marke@amVisible(True), or in the
project properties, advanced options, the Com\asigtion must be checked. This is
not the ‘Register for COM Interop’ option, which stnever be used with ExcelDna.

Imports ExcelDna.Integration
Imports System.Runtime.InteropServices ' for <ComVisible(True)>

<ComVisible(True)> _

Public Class Ribbon ' must be Public
Inherits CustomUlI. ExcelRibbon

End Class

If you use any other onAction procedure than "RigMacro”, put it inside the
Ribbon class because only subs in this class afl@eito the Ribbon onAction. It is
also the only way to pass the calling Ribbon cdnitrdhe sub, for example:

< ComVisible (True)> _
Public Class Ribbon
Inherits ExcelRibbon
Sub RunControlID(ByVal ctl As IRibbonControl)
ExcelDnaUtil. Application.Run(ctl.ld)
End Sub
Sub RunControlIDWithTag(ByVal ctl As IRibbonControl)
ExcelDnaUtil. Application.Run(ctl.ld, ct |.Tag)
End Sub
End Class

Test the project with F5. After enabling the macsasi should see a button to the
right of the Review group that displays the tesssage. If you don't, look at the
Ribbon troubleshooting guide

Microsoft Excel

Review XL Test View Developer Add-Ins Top Tasks Tasks Analyzer Sparklines
v/Hide Comment ﬁ LLL% | 3 Protect and Share Workbook
w All Comments a @Allow Users to Edit Ranges
1 Protect Protect Share) Table of
aw Ink Sheet Workbook Workbook _g# Track Changes ~ Contents
Changes Workbook TOC

= WarkbookTOC [

CreateTableOfContents

Having got the skeleton right, now we'll add theledo create the TOC.
It should look like this:

| A B C D E B G H

1 Sheet Type Sheet Tab Name Visibility Contents Sum Total Rows Columns
2 1 Worksheet $TOC Visible (This sheet)
3 2 Worksheet Surveys Visible SurveylD 6699208159 2 34
- 3 Worksheet Questions Visible QuestionlD 9376506357 15 17
5 4 Worksheet Category tables Visible Analysis 254316712 83 7
6 5 Worksheet QuestionOptions Visible OptionlD 866680 186 17
7 6 Worksheet Respondents Visible RespondentlD 9.32365E+20 1470 28
8 21 Chart Visible Mo Chart Title, 20 Series

Ll 220Worksheet Tasks PctCum Visible OptionText 2878123.549 80 80

Imports ExcelDna.Integration ' for ExcelDnaUtil, ExcelCommand, X1Call, etc
Imports Microsoft.Office.Interop.Excel ' Interface types from PIA eg Workbook, Range

‘instead of Imports ExcelDna.Integration.ExcelDnaUtil create this global helper
' because 'Application' is ambiguous between ExcelDnaUtil and Interop.Excel
Public Module Globals
' connect the global Application to the Excel instance via ExcelDna
ReadOnly Property Application As Application
Get
Application = ExcelDnaUtil.Application
End Get
End Property
End Module

Public Module WorkbookTOC
Const WS_TOC_NAME = "$TOC"

Sub CreateTableOfContents()
Dim wsDoc As Worksheet = Nothing
'Structured Error Handling (SEH):
Try

If Application.ActiveWorkbook Is Nothing Then
Exit Sub
End If

If SheetExists(WS_TOC_NAME) Then
Application.Worksheets(WS_TOC_NAME).delete()
End If

wsDoc = Application.Worksheets.Add()
wsDoc.Name = WS_TOC_NAME
CreateTableOfSheetsInfo(wsDoc)

Catch ex As Exception
Dim Message As String = ex.Message
If StrComp(Message, "See inner exception(s) for details.", vbTextCompare) = @ Then
Message = ex.InnerException.Message

End If
Message = Message & vbLf & ex.StackTrace
Debug.Print(Message)
MsgBox(Message, MsgBoxStyle.Exclamation, ex.Source)
End Try
End Sub

Sub CreateTableOfSheetsInfo(ByVal wsDoc As Worksheet)
Dim wbCheck As Workbook
Dim ws As Worksheet, 1lRow As Long
Dim 1Sheet As Long, 1Col As Long, rgFound As Range, sTemp As String
wbCheck = wsDoc.Parent

On Error GoTo OnError

Application.EnableCancelKey = XlEnableCancelKey.x1lErrorHandler
Application.Calculation = XlCalculation.xlCalculationManual
Application.Cursor = X1MousePointer.xlWait
Application.ScreenUpdating = False

Simplified version of columns, add CodeName or other stats if you like

If SheetIsEmpty(wsDoc) Then

1Row = 1
Else

1Row = wsDoc.Cells.SpecialCells(X1CellType.x1CellTypeLastCell).Row + 1
End If
1Col =1

using Array() UDF for VBA compatibility
WriteHeadings(wsDoc.Cells(1lRow, 1Col), _

Array("Sheet", "Type", "Sheet Tab Name", "Visibility", "Contents", "Sum Total",
"Rows", "Columns"))

wsDoc.Cells(1Row, 1Col).AddComment(CStr(Now()))

For 1Sheet = 1 To wbCheck.Sheets.Count

1Row = 1Row + 1
1Col =0
'Sheet#

1Col = 1Col + 1
wsDoc.Cells(1lRow, 1lCol).Value = 1Sheet

'Type
1Col = 1Col + 1
wsDoc.Cells(1lRow, 1Col).Value = TypeName(wbCheck.Sheets(1lSheet))

'Tab name with hyperlink to ws
1Col = 1Col + 1

'ActiveSheet.Hyperlinks.Add Anchor:=ActiveCell, Address:= "F:\DOCS\TEST\exlu.x1ls", _

SubAddress:=""'Budget 08'1C69", TextToDisplay:="C69"
must specify all named parameters up to last one used, unlike VBA
If TypeName(wbCheck.Sheets(1Sheet)) = "Worksheet" Then
wsDoc.Hyperlinks.Add(anchor:=wsDoc.Cells(1Row, 1Col), _
address:=wbCheck.FullName, _
subAddress:=QuotedName (wbCheck.Sheets(1Sheet).name) & "!A1", _
screenTip:=wbCheck.Sheets(1Sheet).Name,

textToDisplay:=""'" & wbCheck.Sheets(1Sheet).Name)
End If
'Visibility
Select Case wbCheck.Sheets(1Sheet).Visible
Case Xl1SheetVisibility.x1SheetHidden ' was .x1lHidden

sTemp = "Hidden"
Case Xl1SheetVisibility.x1SheetVeryHidden ' was . x1lVeryHidden
sTemp = "Very Hidden"
Case Else
sTemp = "Visible"
End Select
1Col = 1Col + 1
wsDoc.Cells(1lRow, 1lCol).Value = sTemp

1Col = 1Col + 1
' this section only for worksheets
If TypeName(wbCheck.Sheets(1Sheet)) = "Worksheet" Then
ws = wbCheck.Sheets(1Sheet) 'WS is type Worksheet
If (ws Is wsDoc) Then ' skip THIS sheet being created
wsDoc.Cells(1lRow, 1Col).Value = "(This sheet)"
Else

'Contents of first occupied cell
If Not SheetIsEmpty(ws) Then ' ws.UsedRange.Cells.Count > @ Then
protect against empty sheet giving nonsense usedrange U1:T58
rgFound = ws.Cells(1, 1)
sTemp = CStr(rgFound.Value)
' .text may show #### if narrow column and .value of date>2M may give
overflow err 6
If Len(sTemp) = @ Then
' don't use not IsEmpty(rgFound.Value) because single apostrophe
' or ="" return false, we want some text
rgFound = FindFirst(ws.UsedRange, "*", X1FindLookIn.xlFormulas,
X1LookAt.x1Part)
' find anything starting top left used range
If Not rgFound Is Nothing Then
sTemp = CStr(rgFound.Value)
End If
End If
wsDoc.Cells(1lRow, 1Col).Value = "'" & sTemp
End If

'Sum Total
1Col = 1Col + 1
With wsDoc.Cells(1lRow, 1Col)

.Formula = ("=sum(" & QuotedName(ws.Name) & "!" & ws.UsedRange.Address(True,

True) & ")")
.Value = .Value ' convert to values; remove this if you want it to recalc
.NumberFormat = "General"” ' in case dates in source
End With

' #Rows, #Cols in used range (may not be real last occupied cell)
rgFound = ws.Cells.SpecialCells(X1CellType.x1lCellTypelLastCell)
If Not SheetIsEmpty(ws) Then ' show blanks if empty sheet
1Col = 1Col + 1
wsDoc.Cells(1Row, 1Col).Value = rgFound.Row
1Col = 1Col + 1
wsDoc.Cells(1Row, 1Col).Value = rgFound.Column
End If
End If ' being checked

ElseIf TypeName(wbCheck.Sheets(1Sheet)) = "Chart" Then
With wbCheck.Sheets(1Sheet)
If .HasTitle Then

sTemp = "Chart Title:" & "'" & .ChartTitle.Text & "'"
Else
sTemp = "No Chart Title"
End If
sTemp = sTemp & ", " & .SeriesCollection.Count & " Series"
End With
wsDoc.Cells(1lRow, 1Col).Value = "'" & sTemp
Else
' not a worksheet, or Chart, what is it? Dialog? Macro?
End If

Next 1Sheet
wsDoc.Columns.AutoFit()

GoTo Exitproc

OnError:
Select Case ErrorHandler()

Case vbYes, vbRetry : Stop : Resume

Case vbNo, vbIgnore : Resume Next

Case Else : Resume Exitproc ' vbCancel
End Select

Exitproc:
On Error GoTo © ' restore any screenupdating etc
Application.Calculation = XlCalculation.xlCalculationAutomatic
Application.Cursor = X1MousePointer.x1lDefault
Application.ScreenUpdating = True

End Sub

Function SheetExists(ByvVal sName As String) As Boolean ' check for any type of sheet -
worksheet, chart
On Error Resume Next
SheetExists = (StrComp(sName, Application.ActiveWorkbook.Sheets(sName).Name,
vbTextCompare) = @) ' ©=matches
End Function

Function SheetIsEmpty(ByVal ws As Worksheet) As Boolean '-As Worksheet
Dim rg As Range
rg = ws.UsedRange
If rg.CountLarge() = 1 Then ' only 1 cell, probably Al
SheetIsEmpty = IsEmpty(CStr(rg.Value))
Else
SheetIsEmpty = False
End If
End Function

Function Array(ByVal ParamArray items() As Object) As Array
Return items
End Function

Sub WriteHeadings(ByVal StartCell As Range, ByVal aHeadings As Object)

With StartCell.Resize(1, UBound(aHeadings) - LBound(aHeadings) + 1)
.Value = aHeadings
.Font.Bold = True
End With
End Sub

Private Function IsEmpty(ByVal pl As String) As Boolean ' for VBA compatibility
Return String.IsNullOrEmpty(pl)
End Function

Function FindFirst(ByVal rgSearch As Range, ByVal vWhat As Object, ByVal lLookIn As Long,
ByVal 1lLookAt As Long) As Range
On Error Resume Next ' should check for err=0 or err=1004 being only two expected
' After:=rg.SpecialCells(x1CellTypelLastCell) means the first found could be first cell
in range
FindFirst = rgSearch.Find(What:=vWhat,
After:=rgSearch.SpecialCells(X1CellType.x1CellTypelLastCell), _
LookIn:=1LookIn, LookAt:=1LookAt, _
SearchOrder:=xX1SearchOrder.x1ByRows, SearchDirection:=X1SearchDirection.x1Next,
MatchCase:=False) ', SearchFormat:=False)
Debug.Assert(Err.Number = @ Or Err.Number = 1004 Or Application.ThisWorkbook.IsAddin)
End Function

Function ErrorHandler()
Dim sErrMsg As String

sErrMsg = "Error " & Err.Number & IIf(Erl() =0, "", " at line " & Erl()) & " " &
Err.Description
Debug.Print(sErrMsg)

ErrorHandler = MsgBox(sErrMsg, vbAbortRetryIgnore, "Error")
End Function
Function QuotedName(ByVal sName As String) As String ' return a name properly quoted
QuotedName = "'" & Replace(sName, "'", "'" & "'") & "'" ' Dec'@8 --> 'Dec''@8', My
Budget --> 'My Budget'
End Function

End Module

Tips and workarounds

One of my Excel VBA add-ins had 13,000 lines ofeaad took about two weeks
(full-time equivalent) to convert to VB.Net usingsdal Studio 2010, Excel-Dna 0.29
and NetOffice 1.50. Bear in mind that the suppgrtibraries are being constantly
updated so check for changes in more recent veddigricel-Dna and NetOffice. The
following list of tips and gotchas was built upringhat experience.

Fix these first in VBA before doing the migration
The first group are changes that are safe to mak@A but will make the transition
to VB.Net much safer. Fix any issues with Optiors®&4 and ByRef first.

Option Base and Array()

In VBA, the default lower bound of an array dimamsis O (zero). Using Option
Base, you can change this to 1. In Visual BasicT.NEe Option Base statement is
not supported, and the lower bound of every arrayedsion must be 0. Additionally,
you cannot use ReDim as an array declaration. Qing to keep in mind when
working with Office collections from Visual BasiNET is that the lower array
bounds of most Office collections begin with 1.

When | was converting some old code with Optioreldh$ found it easy to make
mistakes when converting to the 0-based array® ofet so | replaced the array by a
class that contained the properties | had beemgtor an array. The VBA function
Array() can be replicated by defining an Array(h¢tion in a GlobalHelpers.vb

module:
Function Array(ByVal ParamArray items() As Object) As Array
Return items
End Function

Or by using literal array syntax
Dim aHeadings() As String = {"Sheet", "Type", " Sheet Tab Name”}

When returning variant arrays from ranges, the typgs you will get are String,
Boolean, Number, or Error. Dates are returned asoeus.

ByVal and ByRef

VBA defaults to ByRef; VB.Net to ByVal. When pasgiparameters in VBA, be sure
to explicitly specify ByRef so this can be preservehen the module is imported into
VS2010. | used to do that for primitive type vatesh(String, Long, etc) but found |
had omitted to do it for Object and Array typesislleads to bugs that can only be
detected by executing test cases and comparingtowtih the VBA output. It would
be nice if VS2010 Express could warn us of varigipl@ssed byref but changed in the
sub. Is this done by tools like Migration Partned &ivosto Project Analyzer?

‘Variant’ is no longer a supported type: use thej&at’ type instead. Or simply Dim
with no type, which is ugly but compatible with hdfBA and VB.NET. If there are
multiple parameters to a function, and some aréadst eg As String, then all must
be declared, so use As Object where you had nothiN@A.

There is no Range type in Excel-Dna so if you arteusing NetOffice or the PIA use
Dim rg As Object.

Fill in default values for Optional parameters umétion headers.

Enumerations and .x1* Constants
In VBA, you can simply assign the constant becdaliseenumeration is global to your
project:

Set rhs = rg.End(xIToRight)

In Visual Basic .NET, you could either use the namequivalent

Set rhs = rg.End(-4161)

Or prefix enumerated constants with their typeX#gjrection.xlUp rather than
simply xlUp. The prefix can be added in VBA as welich may avoid ambiguities
like xIVisible and xISheetVisible.

To get VB IDE constants from vbext_ProjectProtatijeg vbext _pp_locked) and
vbext_ComponentType (eg vbext_ct_StdModule) use

Imports Microsoft.Vbe.Interop

.Cells reference
Explicitly specify .Cells in lines like
For Each cell In ActiveSheet.UsedRange.Columns(2).Cells

Use of Parentheses with Method Calls

In VBA, parentheses are omitted when you call sutines and only required when
you wish to catch the return value of a functionVisual Basic .NET, parentheses
are required when passing parameters in a methbd ca

Default Properties
In Visual Basic .NET, default properties are onlpgorted if the properties take
arguments. In VBA, you can use shortcuts when typimde by omitting the default

properties like .Value. in VBA you can write
myValue = Application.Range("A1")

which returns the .value but in VB.Net you neetacexplicit:
myValue = Application.Range("Al1").Value

This is one of the most common incompatibilitiesA®en quick & dirty VBA and
VB.NET.

Assigning to cell values

Similarly to the above, be explicit about the .\&afuroperty, ie not cell = xyz but
cell.value = xyz. This avoids bugs when the lefidvaariable is an Object where you
want a variant array of values from the range.

Set Keyword

In VBA, the Set keyword is necessary to distinguishween assignment of an object
and assignment of the default property of the dbfgince default properties are not
supported in Visual Basic .NET, the Set keywordasneeded and is no longer

supported. The IDE automatically removes the Setraand from object references
in code pasted in from VBA.

Erase

In VBA, the Erase statement clears the value ottaments. The VB.Net Erase
statement destroys the elements of an array, dadrgearray variable to Nothing.

If you add an array as an item to a collectiomiit point to the same array every time
unless you re-create the array for each additigheaollection.

You can clear the contents of an array in .Netgisin
System.Array.Clear(arr, arr.GetLowerBound(®), arr.Length)

However, any existing pointers to that array (eigjlilas been added to a dictionary
collection) will now point to the cleared conteriffie nearest equivalent to creating a
new array is to simply ReDim the array without Rres.

ReDim

In VBA you can write
Dim distance() as Long
ReDim distance(1,2)

But in VB.Net 'ReDim' cannot change the numberiofehsions of an array. So

declare the array with a comma inside the bradkegsve it two dimensions:
Dim distance(,) As Long

Byte arrays
Byte arrays are a faster way to iterate througtcharacters of a string than MID$.

In VBA you can write
Dim bs1() As Byte, stringl as String
bsl = stringl

But in VB.Net a value of type 'String' cannot b&eerted to '1-dimensional array of
Byte'. So use either UTF8 encoding to get the sihgte values for each character or

Unicode to get two bytes per character:
bsl = System.Text.Encoding.Unicode.getBytes(stringl)

Join() function

| had used Join() on an array loaded from a rangemcatenate the values into one
string. VBA ignored blank cells but vb.net threwexteption because some of the

variant array values were Nothing for blank cefls.| created a routine to join only

non-blank values.

IsDate()
This is the same trap as in VBA — it returns Troied string value that looks like a
date, so use TypeName(var)="Date" if you want &b fer a Date type.

Evaluate function
This is also a function in .Net which evaluateshmatpressions, so change all
occurrences to Application.Evaluate to get the Exgection.

Square bracket cell references
The square bracket operators evaluate the Excedesipn inside and can be used to
get references or range names. Instead of [C2]Gais(2,3)

CutCopyMode
The definition is Public Enum XICutCopyMode As Igt so the old code
Application.CutCopyMode = False should now be Apgiion.CutCopyMode = 0

Initialising variables

There were lots of compiler warnings " Warning Siglble 'xx' is used before it has
been assigned a value. A null reference excepbtatdaesult at runtime." The
solution is to initialize it eg Dim str as Stringsmwllstring

Ensure a function return is defined for paths akén, rather than relying on the
default value for an uninitialized function variabl

On Error Resume Next
This practice is known to be error-prone becaugmires all errors after that line,
including ones you did not expect, until reseshould only be used in one-line
functions that are intended to wrap an expecteat,ezg
' does a sheet of any type exist with this name?

Function SheetExists(ByVal wb As Workbook, ByVal sName As String) As Boolean
Dim oSheet As Object

On Error Resume Next

oSheet = wb.Sheets(sName)

Return Err.Number = 0
End Function

Don't use default property of Err, that would geinislated to Err(), specify
Err.Number. For a better approach see
http://msdn.microsoft.com/en-us/library/ms973848xas

Error Handling in Visual Basic .NET

Connection objects

The old .Connection object in Excel pre-2007 has heen replaced by two specific
connections: WorkbookConnection and ODBCConneciitve. connection string is
obtained by either

oConn.0ODBCConnection.Connection.ToString
oConn.OLEDBConnection.Connection.ToString

For web queries, get the connection from the Qabtgtin the Ranges (if any):
oConn.Ranges.Item(1).QueryTable.Connection

Shell & Unzip

Add a reference to Windows\System32\Shell32.dIl asel this code

Dim oShell As Shell32.Shell

oShell = New Shell32.Shell ' CreateObject("Shell.Application™)
oShell.NameSpace((sFolder)).CopyHere oShell.NameSpace((sZipName)), 16
'16=Respond with "Yes to All"

Accessing the Windows API

In VBA:

Public Declare Function GetTickCount Lib "kernel32" () As Long

In ExcelDna:
<System.Runtime.InteropServices.D11Import("kernel32")> _
Public Function GetTickCount() As Long
End Function

Or, use the equivalent DotNet function

Function GetTickCount() as Long
GetTickCount=Environment.TickCount
End Function

The following changes are specific to DotNet

String$() function
Use StrDup(number,character)

Format$()

Format$(0.5, "###%") works, "50%"
Format$(1234.5, "###,##0.00") also, "1,234.50"
Format$(Now, "yyyy-mm-dd hh:mm:ss ")

But for time intervals, where in VBA you would use
Format$(Now() - tStart, "nn:ss")

In VB.Net you have to use .ToString
tStart = Now()
(Now - tStart). ToString("hh\:mm\:ss")

To convert a time interval to seconds, use CLng{NdoStart). TotalSeconds)

Class definitions
The VBA Get and Let methods are replaced by Get/laetses in the properties.

Public Property Item(ByVal Key As String) As Object
Get
Return KeyValuePairs.Item(Key).value
End Get
' update a scalar value for an existing key
Set(ByVal value As Object)
KeyValuePairs.Item(Key).value = value
End Set
End Property

For more examples, see the GlobalHelper class below

Dictionary Class
The Scripting.Dictionary object can be replacedbiet Dictionary, using the syntax
dicWords = New Dictionary(Of String, WordCountItem)
and .Exists becomes .ContainsKey.
VBA: For Each aWordCount In dicWords.Items
Vb.net: For Each pair In dicWords
aWordCount = pair.Value

1)

2)

AutoFilter
Similarly.Autofilter must be fully specified:

ActiveSheet.UsedRange.AutoFilter(field:=1, criterial:=sCriterion,
_operator:=X1AutoFilterOperator.xlAnd, criteria2:=Nothing,
visibleDropDown:=True)

Named Parameters

Error 9 (Invalid index. (Exception from HRESULT: x02000B
(DISP_E_BADINDEX)))

That error could be caused by supplying a valudaihing for a parameter that needs
to have a specific value. For example, in the R&dg@lace method, the SearchOrder
needs to be xIRows or xIColumns.

Workbook_Open
This is how you implemented a workbook_open handler

Imports ExcelDna.Integration ' needed for IExcelAddIn
Imports ExcelDna.Integration.ExcelDnaUtil ' for Application object

Class AutoOpen
Implements IExcelAddIn
Public Sub Start() Implements IExcelAddIn.AutoOpen
Application.Statusbar = "Starting . . ."
End Sub
Public Sub Close() Implements IExcelAddIn.AutoClose
'"Fires when addin is removed from the addins list but not when Excel closes
'This is to avoid issues caused by the Excel option
'to cancel out of the close after the event has fired.
' whatever you want here
End Sub
End Class

Workbooks.Open() error
error BC30469: Reference to a non-shared membairesgan object reference.
This means that you need to qualify 'WorkbooksaregHare two ways:

ExcelDnaUtil. Application.Workbooks.Open(). This spges the Workbooks
collection completely.

Define a global Application object which you iniige in AutoOpen, and a global
Workbooks property (see the GlobalHelpers.vb el then you can use simply
Workbooks.Open same as in VBA.

Document Properties

Cast the workbook properties to Office Documenpprties like this:
Imports Microsoft.Office.Core
Dim cdp As DocumentProperties
cdp = CType(wb.CustomDocumentProperties, DocumentProperties)

Getting an Object's Property by Name
As well as CallByName you have Invoker.Property@etkBook, "FileFormat")

Mixed .Font.Color returns DBNull
When there is more than one font colour in a 88JA returns 0, VB.Net returns
DBNull, which can cause an error comparing DBNuthva number.

Decimal cell value type
In VBA the possible return values for VarType(callue) are 5,6,7,8,10,11. VB.Net
adds type 14 (vbDecimal) which is what the Curretype (6) is returned as.

Controls
Dim ctl as Control requires Imports System.Winddwsms and a reference to it.

Names index by Name

To get a Name from the string name of the Namethesdtem method
wb.Names.ltem(strName)

That works in VBA too.
http://msdn.microsoft.com/en-
us/library/office/microsoft.office.interop.excel.names.aspx

says "Use Names(index), where index is the namexindmber or defined name, to
return a single Name object.” However, it throwmsearor if you pass a string name.
The index number is 0-based. To get by name, #skdn method:
Function Item(Optional ByVal Index As Object = Noth, Optional ByVal
IndexLocal As Object = Nothing, Optional ByVal Ref€éo As Object = Nothing) As
Microsoft.Office.Interop.Excel.Name
http://msdn.microsoft.com/en-
us/library/microsoft.office.interop.excel.namesni@ffice.14).aspx
Parameters
Index

Optional Object. The name or number of the deffim@me to be returned.
IndexLocal

Optional Object. The name of the defined nanteerlanguage of the user. No
names will be translated if you use this argument.
RefersTo

Optional Object. What the name refers to. Youthseargument to identify a name
by what it refers to.
You must specify one, and only one, of these Higpaments.

VBComponents index by Name

To get a Name from the string name of the Namethesdtem method
wb.VBProject.VBComponents.Item(strName)

That works in VBA too.
Shapes index by Name
To get a Shape from the string name of the Shageethe .Item method

ws.Shapes.ltem(strName)

That works in VBA too.

Replace DataObject by Clipboard Class
VB.Net has a Clipboard object with .GetText andT8&t methods which replace the
VBA Dataobject.

SendKeys
Use System.Windows.Forms.SendKeys.Send("{TAB 3}")

#Error values, CVErr(), IsError()

This seems to have become a mess in .Net. ExcehBsiane set of coding to handle
ExcelDna.Integration.ExcelError values passed iotogturned from, UDFs:
http://groups.google.com/group/Excel-Dna/browseesdbrthread/31e62ad3e2e218b3
But there are different codes when accessing oell galues in code:
http://xldennis.wordpress.com/2006/11/29/dealinthveverr-values-in-net-part-ii-
solutions/

The CVErr function is gone, the link above has ditla by Mike Rosenblum which
provides alternatives. The IsError function in VBiNs nothing to do with the VBA
IsError, so again a workaround is needed. In VBéeasing a cell value with an error
display of ###### could cause an overflow erran ¥ BA, eg a negative date; this
does not happen in VB.Net, it returns the dateneef®00, or a Double. | will try the
workaroundstrbup(Len(cell.Text), "#") = cell.Text

Restore Excel Status
Place the main code in a Try/Catch that resetstédwadling, screen updating, etc.

Unable to get the Paste property of the Worksheet class
This may be caused by a second instance of Exoring.

Debugging strategies

In VBA Debug.Print is a command that can take mpildtarguments with comma and
semi-colon separators. In VB.Net Debug.Print(stkes only one string argument
which must be enclosed in parentheses. An alte&iDebug.Write(str) and
Debug.WriteLine(str)

Resume or GoTo labels cannot be within a With staté: " Error 69 'GoTo Retry' is
not valid because 'Retry' is inside a 'With' staehthat does not contain this
statement.”

With the use of On Error there will be many occooes of 'first chance' errors, ie
those which are trapped by the On Error statenegnt,

A first chance exception of type 'System.RuntimeropServices. COMException’
Therefore there is no need to worry about ‘firgtrade’ exceptions.

You can catch other ones (eg InvalidCastExceptiReferenceException) which
should be preventable by enabling debugging oretbgseptions but turning off the
COMException. In VS2010, click Debug > Exceptiodseck 'Thrown' for Common

Language Runtime Exceptions, (User-unhandled sHmeilchecked too), expand the
tree and Uncheck 'System.Runtime.InteropServiceSlEX2eption’

See the example GlobalHelper to illustrate theaigbe DebugConsole class.

VS2010 has support for breakpoints etc. If you steipugging (Ctrl+Alt+Break) the
Excel instance will be closed and the next time restarted it will warn:

Excel experienced a serious problem with the 'té#dBon helper)' add-in. If you

have seen this message multiple times, you shaadbld this add-in and check to see
if an update is available. Do you want to disalhles add-in?

Be sure to click No, otherwise the Ribbon handldrlve disabled in all Excel-Dna
add-ins from that point on.

In VS Express you include this in the .vbproj 8le F5 will launch the debugger:

<?xml version="1.0" encoding="utf-8"?>

<Project ToolsVersion="4.0"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup Condition=" '$(Configuration)|$(Platform)' ==
<StartAction>Program</StartAction>

<StartProgram>C:\Program Files\Microsoft Office\Officel4\EXCEL.EXE</StartProgram>
<StartArguments>MY_ADDIN_GOES_HERE.XLL</StartArguments>

</PropertyGroup>

'Debug|AnyCPU' ">

<PropertyGroup>
<ProjectView>ShowAllFiles</ProjectView>
</PropertyGroup>

</Project>

XML Documents
In VBA you could use oXDoc.SelectSingleNode("//bddkut in .Net you need to

specify the namespace:

oXDoc = New Xml.XmlDocument

oXDoc.Load(sXMLFileName)

Dim root As XmlElement = oXDoc.DocumentElement

Dim nsmgr As XmlNamespaceManager = New XmlNamespaceManager (oXDoc.NameTable)
nsmgr.AddNamespace("x", root.NamespaceURI) ' x is our temp alias
sNode = "//x:books" ' XPath

oXSectionNode = oXDoc.SelectSingleNode(sNode, nsmgr)

sNode = "//x:books"

oXSectionNodes = oXDoc.SelectNodes(sNode, nsmgr)

'or could do oXDoc.GetElementsByTagName("books")

UserForms

These had to be redrawn from scratch, there daeseem to be a way to import
them. In one case | renamed a form and starteshgeth error

The class frmOptions can be designed, but is meofitst class in the file.

| could not fix that so simply deleted and re-ceglatthe form again.

In VBA the forms can be referred to by name, egdptions. In VB.Net they have to
be instantiated, otherwise you get an error

Reference to a non-shared member requires an otgéarence
http://msdn.microsoft.com/en-us/library/zwwhc0d0{g:80).aspx

says: Avoid adding the Shared keyword

My solution is to name the Class FormCount, ingtae®im frmCount as
FormCount, so the same variable name frmCount earséd in the code.

The controls have different properties and methoma VBA.

In VBA | could add listbox or combobox items bystLE array, in vb.net it is
frmOptions.cboClass.Items.AddRange(ary)

The VB.Net ListBox is limited to ONE column of stgs, no MultiColumn property.

| could use a ListView but that's more complex thamant. So | created a sub to load
the items from a range, concatenating the two cotumto one string. On the code
that used the listbox | then had to parse the baok into its elements, so there is no
escaping some added complexity.

VBA .Value of a listbox becomes .SelectedValue

The click event of a listbox Bxwords_selectedIndexChanged

VBA .Value of a checkbox becomes .Checked.

VBA .Caption of a control becomes .Text.

VBA has a .ShowModal property; in vb.net use either.Show method for non-
modal or .ShowDialog for modal.

The events have to have a “handles” clause addiént tdeclaration:

Private Sub cmdOK_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles cmdOK.Click

The parameters can be omitted for simplicity:
Private Sub cmdOK_Click() Handles cmdOK.Click

In VBA you can access the .Designer property tdiges of controls, that does not
seem to be available in .Net.

b)

Troubleshooting Ribbon Interface complications

The following reference document shows both the \é@W the VB.NET (they call it
Visual Basic) signatures for all the callbacks:
http://msdn.microsoft.com/en-us/library/aa722528ffrce.12).aspx

Customizing the 2007 Office Fluent Ribbon for Dears (Part 3 of 3)

The ribbon XML is stored in the ProjectName.dna.fffor some reason to do with
the Ribbon context, it can only see procedureberRibbon handling class. If you
give it any other sub to call, it will not find ithe only ways to connect them are
either:

A button onAction with the special value of "Run™agcro" which is an Excel-Dna

procedure that calls Application.Run(Tag).
onAction="RunTagMacro" tag="MySub"

It does not pass any parameter to the macro. Beeahat if the tag name already
exists in any other VBA addin loaded before thedbiana XLL addin, that sub will
be run instead. You have to be sure that the Tagigue.

Or, a button has an onAction with a sub name thpteésent in the Ribbon handler
class. This is the only way of passing the corttydhe sub which can then examine
the ID and Tag if desired.

Here is some code that illustrates both of those:
<DnaLibrary Name="TasksAnalyzer Add-in" RuntimeVersion="v4.0">
<ExternallLibrary Path="TasksAnalyzer.dll" />
<CustomUI>
<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui”>
<ribbon startFromScratch="false">
<tabs>
<tab id="Tab_CCTWAVB" label="Tasks Analyzer" keytip="Q" insertAfterMso="TabAddIns">
<group id="CCTWAVBgroup" label="Task Analyzer (VB)">
<button id="CCTWAVBButtonl" onAction="RunTagMacro" tag="TA_CountInSelection"
label="Analyze Task" screentip="Analyze Tasks Frequency "
size="normal" imageMso="WordCountList" />
<button id="CCTWAVBButton2" onAction="CCTWAVBButton2" tag="TA_ ShowFrmCount"
label="Filter Form" screentip="Show Form to filter analyzed data" size="normal"
imageMso="FilterAdvancedByForm" />
</group>
</tab>
</tabs>
</ribbon>
</customUI>
</CustomUI>

</DnaLibrary>

The Ribbon class is

Imports ExcelDna.Integration.CustomUI ' needed for IRibbonControl
Imports ExcelDna.Integration.ExcelDnaUtil ' for Application object
Imports System.Runtime.InteropServices ' needed for <ComVisible(True)>
<ComVisible(True)>

Public Class Ribbon

' implement ExcelDna.Integration.CustomUI.ExcelRibbon to get full Ribbon access.

Inherits ExcelRibbon

' Regular Macros can be called from the Ribbon using the onAction='RunTagMacro' helper,

' which calls a macro named in the tag attribute of a button.

' Under the covers, RunTagMacro just calls ExcelDnaUtil.Application.Run(tagName).

"the onAction="MyMacro" attribute will only run methods on the ExcelRibbon-derived class.
"http://groups.google.com/group/Excel-Dna/browse_thread/thread/60b7fac567c17505

'IDs have to be unique, can’t use same ID for something like "RunIDMacro" more than once.

' This is another way I can think of to pass a parameter from the Ribbon into a macro
Sub RunTagMacroWithID(ByVal ctl As IRibbonControl)
Application.Run(ctl.Tag, ctl.Id)
" If I try to pass ctl as an object I get
"Cannot run the macro 'TestRibbon'. The macro may not be available in this workbook or
all macros may be disabled.
End Sub

Sub CCTWAVBButton2(ByVal ctl As IRibbonControl)
Try
TA_ShowFrmCount ()
Catch ex As Exception
MsgBox(ex.Message, MsgBoxStyle.Exclamation, ex.Source)
End Try
End Sub

End Class

The available keytip letters in Excel are B, CKGQ, S; others are already used by
Excel builtin ribbon commands, eg H for Home.

If the addin menu does not appear in the Ribbon

First paste the XML into the Custom Ul Editor (omary document in the editor first)
and click Validate, to check for bad XML syntaxduplicate control or group IDs.

Ensure you have <ComVisible(True)> in the Ribbassl(and therefore Imports
System.Runtime.InteropServices)

In your .dll you need to be sure that the clagauislic and ComVisible.

You can do this by marking the class as <ComVigiblge)> or by setting COM-
Visible for the assembly:

Go to the project properties, and select the Apgihe tab. Then click on Assembly
Information and set the "Make assembly COM-Visildbéckbox. (This sets the
assembly-wide [assembly:ComVisible(true)] attributgour Assemblyinfo.cs file.)

By default (if there is no assembly-wide attribudasyemblies are ComVisible, which
is why the code in the .dna file works. But thedakStudio library template sets the
assembly attribute to false by default. The assgmwide attribute can always be
overridden by an attribute on the particular class.

(Note that COM-Visible is a different setting toéglister for COM Interop" which
you should never set for an Excel-Dna library.)

If a Ribbon at some point causes Excel to craslcuatom Ribbons will be disabled
in the future. To re-enable custom ribbons, gixoel Options => Add-Ins =>
Manage: Disabled Items Go... => Click on the diedl#xcel-Dna addin and click
Enable.

Global Helper Functions

Prefix enumerated constants with their type, egidd@ion.xlUp rather than simply
xIUp (which is Global in VBA). This can be donethe VBA as well, so it is
compatible both ways. In the absence of that, tl@mge has to be done in the VB.Net
IDE after copying the code from the VBA addin. Quay of simplifying the amount

of editing is to define a GlobalHelper.vb modulattprovides some compatibility
code for constants and properties like Applicatsahection.

The code is in the GlobalHelper.vb file on the vgéb:
http://www.sysmod.com/GlobalHelper.vb

It defines functions and properties to supportMB& Array(), ISEmpty(), IsNull(),
IsObject(), Round(), Selection, ActiveCell, Activest, ActiveChart, ActiveWindow,
ActiveWorkbook, and the Workbooks collection.

"Reference to a non-shared member requires an object reference"

This error from "Workbooks.Open(..." illustrates @ital need for the helpers such
as Workbooks. Firstly | must create an OBJECT dalhgpplication” Then EITHER |
change all "Workbooks" in the VBA code to an exiplieference to
Application.Workbooks which requires editing thaleo

OR I create a public module with a Property Worktsod hat is Govert's solution,
and results in a Global Helper with lots of ReadCpioperties like:

Public Module GlobalHelper

ReadOnly Property Application As Application
Get
Return ExcelDnaUtil.Application
End Get
End Property

ReadOnly Property ActiveWorkbook As Workbook
Get
Return Application.ActiveWorkbook
End Get
End Property

ReadOnly Property Workbooks As Workbooks
Get
Return Application.Workbooks
End Get
End Property

End Module

Compatibility with VBA code that references ThisWorkbook

| typically store some setup parameters in properind worksheets in the xlam file.
Instead of worksheets, you can use configuraties,fsee the following section.
Config file Appsettings can only be simple key/\aktring pairs. For complex
structures, it may be simpler to distribute a sgsbeet file that contains the setup
worksheets, as long as that is always installed th .XLL file.

As an exercise | defined a ThisWorkbook class émAlddInMain.vb module and
created properties as follows:

'Create an ExcelAddIn-derived class with AutoOpen and AutoClose,
‘and add a module called AddInMain to hold the Application object reference:
Imports LateBindingApi.Core
Imports NetOffice.ExcelApi
Imports ExcelDna.Integration
' This class is implemented only to allow us to initialize NetOffice
' We hook up a public field in the Module AddInMain
! that will be usable anywhere in the project.
Public Class AddIn
Implements IExcelAddIn

Public Sub AutoOpen() Implements IExcelAddIn.AutoOpen
' must initialise here because X1Call cannot be used from Ribbon context, only in a
macro context
ThisWorkbook.Name
ThisWorkbook.Path

System.IO.Path.GetFileName(X1Call.Excel(X1Call.x1lGetName))
System.IO.Path.GetDirectoryName(X1Call.Excel(X1Call.x1GetName))

Factory.Initialize()
' Set a public field in a module, so that Application will be available everywhere.
Application = New Application(Nothing, ExcelDnaUtil.Application)

End Sub

Public Sub AutoClose() Implements IExcelAddIn.AutoClose

End Sub
End Class

Public Class ThisWorkbook
'Shared means we don't need to instantiate ThisWorkbook to call these

Shared Property Title As String = Dnalibrary.CurrentLibrary.Name
Shared Property Name As String = "ThisWorkbook"

Shared Property Path As String

Shared ReadOnly Property Worksheets As Object
Get
MsgBox("“No Worksheets in ThisWorkbook™")
Return Nothing
End Get
End Property

Shared Function IsAddin() As Boolean
Return True ' for debugging
End Function

End Class

Using .config files

You need to:
1) Create a text file Myaddinname.xll.config and spekey & value pairs
2) Inthe VB code, add a reference to System.Conftgurand import it so that
the code need only refer to ConfigurationManagep2gitings('keyname”)

ExcelDna will include the .config file if you crestt a packed .xll, thereby simplifying
deployment.

Myaddinname.x1ll.config
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="DatabasePath" value="%USERPROFILE%\Database" />
<add key="SupportEmail" value="me@sysmod.com" />
</appSettings>
</configuration>

' MyAddinname.vb
Imports System.Configuration ' Add Reference: System.Configuration

Dim dbPath As String = ConfigurationManager.AppSettings("DatabasePath")
Dim email As String = ConfigurationManager.AppSettings("SupportEmail™)

To iterate all elements:
Dim appSettings As Specialized.NameValueCollection = ConfigurationManager.AppSettings
For i As Integer = © To appSettings.Count - 1

Debug.Print("Key : {@} Value: {1}", appSettings.GetKey(i), appSettings.get(i))
Next i

See also:

http://msdn.microsoft.com/en-
us/library/system.configuration.configurationmanage r.appsettings(v=vs.80).aspx

Unit Testing using NotePad++ as the code editor
To simplify testing isolated pieces of code, | ubklePad++ to edit a .Dna file and
copied ExcelDna.xll to the test filename.xll. ThHerrun the test, | saved a command

in Notepad++ assigned to Ctrl+F5:
"C:\Program Files\Microsoft Office\Officel4\EXCEL.EXE" "$(CURRENT_DIRECTORY)\$(NAME_PART).XLL"

Here is a sample test .Dna file:

<DnalLibrary Language="VB" RuntimeVersion="v4.0" > <Reference
Path="F:\Programs_PIA Excel\Microsoft.Office.Inter op.Excel.14.dII"
/><I[CDATA[
' lines above CDATA are not counted in the compil er error messages
Add 1 to reported error line number to get line in this file

Imports Microsoft.Office.Interop.Excel

Public Module MainProcs

Sub TestASub()

try
' this works thanks to the Global Helper class Pro perty "Workbooks"
dim wb as Workbook=Workbooks.Add()

dim ws as Worksheet=wb.worksheets(1)

' use Application.Range for refs to other workbook s or sheets
msgbox(Application.range("Sheet2!A2:C3").Address(false,false,
xIReferenceStyle.xIAl,true) _
& vbcrlf &
ws.range(ws.cells(2,1),ws.cells(3,3)).address(false Jfalse,

xIReferenceStyle.xIAl,true))
wh.Close(SaveChanges:=False)

catch Ex as Exception
msgbox(Ex.toString ,vbExclamation,"Error")

Console.WriteLine(Ex.toString)
end try

Application.Quit
End Sub
End Module
Public Class DnaAddIn
Implements IExcelAddIn * ExcelDna.Integration incl uded implicitly from
ExcelDna.xll copied to $(NAME_PART).xll
Public Sub AutoOpen() Implements IExcelAddIn.Au toOpen
TestASub()
End Sub
Public Sub AutoClose() Implements IExcelAddIn.A utoClose ' Must be
declared even if not used
End Sub
End Class

' This module contains <global> shortcuts to the Ap plication members.
Public Module GlobalHelper

ReadOnly Property Application As Application

Get
Return ExcelDnaUtil.Application
End Get
End Property

ReadOnly Property ActiveWorkbook As Workbook
Get
Return Application.ActiveWorkbook
End Get
End Property

ReadOnly Property Workbooks As Workbooks
Get
Return Application.Workbooks
End Get
End Property

End Module

1>
</DnalLibrary>

<l-- Notepad++ Ctrl+F5

Run "C:\Program Files\Microsoft Office\Office 14\EX
"$(CURRENT_DIRECTORY)\$(NAME_PART).XLL"
-—->

CEL.EXE"

Performance Testing

As an example, | tested the Levenshtein distaneetion with two 100 character
strings. This does 100x100 or 10,000 MID$() operatito compare those two
strings. This was in turn called 100 times. Therigs are:

3900 ms for 100 iterations of the function usingA/&nd MID$() operations and
WorksheetFunction.MIN().

234 ms for 100 iterations of the function using VBAd Byte arrays and in-line logic
for MIN().

2886 ms for only one iteration of the XLL functiasing WorksheetFunction.MIN().
156 ms for 100 iterations of the XLL function usingline logic for MIN(), and the
MIDS() operations.

63 ms for 100 iterations of the function using ¥id. and Byte arrays.

Bear in mind that performance optimisation appliss as much to VBA as VB.Net.
For example, a test of 1 million iterations of #reersions of a Minimum function in
pure VBA performed as follows:

The longest time was Application.Min at 7862 ms

A UDF took 889 ms

In-line logic took 62 ms

Sub testmin()
Dim m As Long, minl As Long, min2 As Long, min3 As Long
Dim i As Long, 1Time As Long

minl = 3
min2 = 2
min3 = 1

1Time = GetTickCount()
For i = 1 To 1000000

m = Application.WorksheetFunction.Min(minl, min2, min3)
Next
Debug.Print GetTickCount - 1Time; " ms
'"Application.Min 7862 ms
'Application.WorksheetFunction.Min 3292 ms
'"WorksheetFunction.Min 3166 ms

'Since Min() function is not a part of VBA, use UDF

1Time = GetTickCount
For i 1 To 1000000
m = Min(minl, min2, min3)
Next
Debug.Print GetTickCount - 1Time; " ms" ' 889 ms/million

'Finally test using inline logic for min of 3
1Time = GetTickCount
For i = 1 To 1000000
If minl <= min2 And minl <= min3 Then
m = minl
ElseIf min2 <= minl And min2 <= min3 Then
m = min2
Else
m = min3
End If
Next

Debug.Print GetTickCount - 1Time; " ms" ' 62 ms/million
End Sub

Function Min(ParamArray values()) As Double 'VBA ParamArray must be Variant
Dim i As Long
Min = values(@) 'always Base © for Paramarray
For i = 1 To UBound(values)
If values(i) < Min Then Min = values(i)
Next
End Function

Background reading

Going further to C#, C++

Charles Williams recommends this automatic codevedar to ease the transition
from VB to C# and C++:

http://tangiblesoftwaresolutions.com/

http://smurfonspreadsheets.wordpress.com/2010/02/
Simon Murphy reviews ExcelDna, XLL+

Currently (August 2012) the only documentation owdt-Dna is effectively the
Google group.http://ExcelDna.typepad.cors old, not updated since 2006.

The following is extracted from http://groups.gaagbm/group/Excel-Dna

On Feb 2, 11:36 pm, Govert van Drimmelen <gov..@®ico.za> wrote:

With Excel-Dna you can talk to Excel using either

1. using the C API or

2. using the COM object model.

If you're coming from VBA, the COM automation ifaee will be more familiar. So I'll focus on
option 2.

Excel-Dna has no built-in definitions for the COMject model types like 'Range' and "Worksheet'.
However, Excel-Dna gives you a way to get to thet"rApplication object that you need for any other
access to the COM object model - just call ExcelliigApplication and you'll get an Application
object that refers to the instance of Excel hostiagr add-in. (Something like
CreateObject("Excel.Application") may or may notegiyou the right Excel instance.)

From your VB.NET add-in you can now talk to the C&Momation types either:
2(a) Late-bound. Your variables are types as 'Obj#ite .NET equivalent of Variant), either exglici
or implicitly by not giving a type. Then code likés will work:

Dim xIApp

Dim myRange

xIApp = ExcelDnaUtil. Application
myRange = xIApp.Range("Al1")

The disadvantage is that you have no intellisemskerep checking at compile time.

2(b) Early-bound using an interop assembly. In ttase you reference a .NET assembly that contains
definitions for the COM object model. This inteagsembly defines the types like 'Range' and
'Worksheet' to your .NET code.

There are two options for the interop assembly:

2(b)(i) Use the official version-specific Primamytérop Assembly (PIA). This is where the namespace
Microsoft.Office.Interop.Excel comes from. You dawnload and install the Office 2010 versions
here:http://www.microsoft.com/download/en/detadpx?id=3508. Once installed, you'll be able to
add references to the assembly called 'Microsdit@interop.Excel', where the '‘Range' and
'Worksheet' types are defined.

2(b)(ii) Use a version-independent interop assertiké/the NetOffice assemblies.

In both cases you need to make sure that you esexttelDnaUtil. Application object as the root of
your access to the object model.

The type ExcelDna.Integration.ExcelReference imddfby Excel-Dna as a thin wrapper around the C
API datatype used to indicate a sheet referencthdrsense that it denotes a part of a sheet, it is
similar to the COM Range type, but to actually tieeExcelReference type you would typically pass it
as an argument to some other C API calls. The belger methods currently there are methods to to
get and set data in the referenced area.

On Feb 3, 11:50 am, Govert van Drimmelen <gov..@®ico.za> wrote:

If you use any of the interop assembly options@fiete or PIA) you can say:
Dim ws As Worksheet

Then you have to have some definition of that &gpantime too, so you need to have the interop
assembly at the client too (however, see the 'Erhitietbp Types' option below).

Otherwise, if you have no interop assembly refezdngou can say
Dim ws As Object

or equivalently (and also compatible with VBA, as understand)
Dim ws

Not having an interop assembly means no intellisemsl no checking for mistakes at compile time. So
you could have a mistake like:

Dim myRange
myRange = Application.ActiveSheet.Ragne("Al")

and the error would only appear at runtime.

The performance of the late-binding (particulangrh VB.NET) is very good, so not really an issue.
And there is no deployment issue since you aregfietencing additional libraries.

The PIA assemblies are installed in the Global Agsg Cache (GAC) so you should reference then
from the .NET tab of the Add Reference dialog,lanH for "Microsoft.Office.Interop.Excel" and
"Office" -so do not browse to them explicitly. Tisbpuld not be copied to your output directory eith
since they live in the .NET GAC. To deploy to aeothachine, you need to run the downloaded
installer for the Office Primary Interop Assembliagich puts the PIA assemblies in the GAC and
does some registration in the registry.

For the NetOffice assemblies you can just copy themewhere, Add Reference and Browse there and
Copy to Output. Then with the packing you can peirt inside the .xll, so no other files or registrat
would be needed.

Actually if you are using .NET 4 (Visual Studio @Dand targeting a single Excel version, say Excel
2010, there is another option | have not mentioyetd The option was added in .NET 4 to embed some
interop information in the assembly that you complilhave not tried this myself, but it might work

well for you. To do this you reference the PIA (hia .NET tab on Add References, not browsing) and
then in the Reference properties you set "EmbestdptType: True". That should put the required
information in your compiled assembly, and then gon't have to distribute the interop assemblies to
other users. This will only work under .NET 4, gndbably won't work with the NetOffice assemblies
since they are not 'Primary' interop assemblies.

Microsoft and other sources

http://blogs.msdn.com/b/pstubbs/archive/2004/053849.aspx
Convert VBA to VB .Net and C#

http://msdn.microsoft.com/en-us/vstudio/ms788236
Free Book - Upgrading Microsoft Visual Basic 6.0Marosoft Visual Basic .NET

http://www.upsizing.co.uk/Art52_VBAToNet2.aspx
Converting Access VBA to VB.NET — General Princgal

http://msdn.microsoft.com/en-us/library/aal92490¥%28fice.11%29.aspx
Converting Code from VBA to Visual Basic .NET

Office 2003

For more information, see Introduction to VisuasBaNET for Visual Basic
Veterans.

http://msdn.microsoft.com/library/default.asp?Uibzary/en-
us/vbcon/html/vboriintroductiontovisualbasic70f@walbasicveterans.asp

Data Access: see Comparison of ADO.NET and ADO.

Conversion of UserForms to Windows Forms. VBA tFsems cannot be copied or
imported into Visual Studio .NET. In most cases) yall need to recreate your forms
as Windows Forms. Many new form controls are alsolable in Visual Basic .NET,
such as data-entry validators, common dialog bdxgserlinked labels, system tray
icons, panels, numeric-up/downs, on-the-fly dediimé&ree views, Help file linkers,
ToolTip extenders, and more.

http://msdn.microsoft.com/en-us/library/aal68292fice.11).aspx
Understanding the Excel Object Model from a .NE'V&eper's Perspective

http://msdn.microsoft.com/en-us/library/kehz1dz173.aspx
Introduction to Visual Basic .NET for Visual Basieterans

http://msdn.microsoft.com/en-us/library/kehz1dzMs:90).aspx
Help for Visual Basic 6.0 Users

http://msdn.microsoft.com/en-us/library/office/bla@B3(v=office.14).aspx
Microsoft Excel 2010 XLL Software Development Kit

http://oreilly.com/catalog/vbdotnetnut/chapter/ajmbal

DEBUGGING notes

http://social.msdn.microsoft.com/forums/en-US/netikthread/25fd387a-ca88-4ac6-
8aee-8e208a4e66cd/

The Debug class only uses those listeners thatssigned to it. By default that is the
output window. You can programmatically add mastehers to it. However the
Debug class is only available in debug builds $® limited in use for production
tracing. The Trace class is for tracing in eitmerde and happens to share the same
listeners. You can assign additional listenerthéoDebug/Trace classes either
programmatically or through the config file. Irethonfig file you do so using the
<system.diagnostics>\<trace>\<listeners> elem&hese listeners have no impact on
trace sources.

So, in a nutshell, create a trace source for estimct area that you want to trace.
Use the trace source to log information. In yoamfgy file define each source and
associate it with one or more listeners. This alkmws you to specify the level of
tracing. For example you might want to see allsagss from the data layer but only
the errors from the business layer.

If you just want to have your Trace statementsedpo a log file, you don't need to
use FileLogTraceListener directly. Just add thiewang to your app.config
system.diagnostics section:

<trace autoflush="true">
<listeners>
<add name="myListener"
type="System.Diagnostics.TextWriterTraceListeneitializeData="trace.log"/>
</listeners>
</trace>

For an example in ExcelDna, see the sample in
\Distribution\Samples\Packing\PackConfig\

Name the file as MyAddInName.xll.config and set €d Output to If Newer.

Define a <trace....> section as shown above. Yot deed the <sources...> stuff that
VS automatically adds if you add an Application figfile rather than a simple text
file.

In VB.Net, TRACE and DEBUG are automatically definen VS it's in Project >
Properties > Compile > Advanced

#END# version 6-Nov-12

Patrick O'Beirne

Mail3 at sysmod.com

Web: http://www.sysmod.com

Blog: http://sysmod.wordpress.com

LinkedIn: http://www.linkedin.com/in/patrickobeirne
Skype: sysmodltd

