
Participatory Patterns in an International Air Quality Monitoring
Initiative
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Abstract

The issue of sustainability is at the top of the political and societal agenda, being considered of
extreme importance and urgency. Human individual action impacts the environment both locally
(e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use).
Urban environments represent a crucial example, with an increasing realization that the most
effective way of producing a change is involving the citizens themselves in monitoring campaigns
(a citizen science bottom-up approach). This is possible by developing novel technologies and IT
infrastructures enabling large citizen participation. Here, in the wider framework of one of the first
such projects, we show results from an international competition where citizens were involved in
mobile air pollution monitoring using low cost sensing devices, combined with a web-based game
to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the
campaign are provided, together with insights into participatory patterns emerging from this study.
Interesting effects related to inertia and to direct involvement in measurement activities rather than
indirect information exposure are also highlighted, indicating that direct involvement can enhance
learning and environmental awareness. In the future, this could result in better adoption of policies
towards decreasing pollution.
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Introduction

Air pollution has an important effect on our health, with an increasing number of studies showing
higher risk of respiratory and cardiovascular diseases for people exposed to higher pollution levels[19,
15]. In this context, keeping air pollution at bay has been a major priority for policy makers in
the past decades. A lot of effort has been put into monitoring and controlling air pollution. Large
scale monitoring networks routinely monitor target pollutants. They allow for temporal trends in
air pollution to be tracked. Significant effort has also been made to make information accessible
to the wider public. However, several papers indicate that official monitoring networks do not
have sufficient spatial coverage to provide detailed information on personal exposure of people, as
for some pollutants, this may vary substantially among micro-environments[7, 14], i.e., in urban,
traffic-prone areas spatial variability is very high[18, 17, 21]. Several pollution sources have been
addressed with success. However, persistent problems remain in urban areas, where traffic and
domestic heating are important sources[9]. Next to the technical solutions (e.g., electrical mobility),
people’s personal perceptions, behavior and choices play a major role in addressing these issues and
facilitating change in a bottom-up manner.

Participatory sensing, involving citizens in environmental monitoring, can have multiple poten-
tial benefits. Firstly, it can increase coverage of monitored areas, both in time and space, due to the
ability to distribute the monitoring activities to multiple individuals[13]. Secondly, the act of mon-
itoring pollution by citizens could facilitate learning and increase their awareness of environmental
issues[1]. A recent report on environmental citizen science concludes that few studies on public
participation in science and environmental education have rigorously assessed changes in attitudes
towards science and the environment, and environmental behaviors. There appear to be relatively
few examples of participatory citizen science having a tangible impact on decision making, although
the potential is often noted[20].

One element to foster large scale participation in participatory monitoring campaigns is the
availability of low-cost wearable sensing devices. These will give intrinsically lower quality data,
so the trade-off is between the social benefits and the quality of the data[6]. Several efforts have
been made to develop such low-cost wearable sensing devices, integrating low-cost gas sensors, GPS
and mobile phones. The CommonSense project[8] built hand-held devices containing CO, NOx and
ozone sensors. Another example, which was quite successful in raising funds through crowdfunding,
is the Air Quality Egg[22], designed for static measurements and containing NO2 and CO sensors.

However, many of these projects focus mainly on the electronics and systems integration, power
issues, wireless data transfer, data storage and visualization and pay little attention to the limita-
tions and quality issues of the gas sensors adopted. Very few tests or validation results have been
published in publicly available reports or peer reviewed literature. Examples are Hasenfratz et al.
and Mead et al.. Hasenfratz et al.[13] introduce GasMobile, a platform measuring ozone concen-
tration, which is connected to a smartphone by USB. They take into account important issues such
as sensor quality, calibration, and effect of mobility on sensor readings. Mead et al.[16] developed
sensor boxes with electrochemical sensors, which entailed changes in the sensor technology itself,
in the electronics and complex data analysis. The CitiSense[5] project is currently building an
infrastructure for citizen engagement in environmental monitoring.

Another issue is the collection of a representative data set using mobile air quality sensing
technologies. To be representative and useful for personal or community decision making, mobile
measurements have to be repeated regularly, data have to be aggregated over relevant time frames
and locations, and carefully interpreted using data handling and expert knowledge to filter out
inaccuracies[17, 24].The supplementary material S1 discusses the challenges involved in using low-
cost sensors for air quality monitoring and describes the approach used by our project to address
quality issues.

An important issue concerns the technological versus social aspect of such projects. Most of the
existing projects concentrate mainly on the sensor side of participatory air quality sensing, i.e., how
to build the sensing devices and map pollution. However, participant engagement, participatory
patterns, learning and awareness are equally important aspects, and feed back into the quality of
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the data collection, as we have also shown in a parallel project concerned with noise pollution[2].
By collecting subjective data as well, monitoring campaigns can enable not only air quality data
collection, but also analysis of volunteer behavior, strategies and a possible increase in awareness.

In this paper, we discuss the behavior and perceptions of citizens involved in monitoring, during
a large scale international test case: the AirProbe International Challenge (APIC)[11]. This was
organized simultaneously in four cities: Antwerp (Belgium), Kassel (Germany), London (UK) and
Turin (Italy). In this test case a web-based game, air quality sensing devices and a competition-
based incentive scheme were combined to collect both objective air quality data and data on per-
ceived air quality, to analyze participation patterns and (changes in) perception and behavior of
the participants. The test case was organized as a competition between the cities, to enhance par-
ticipation. For the first time to our knowledge, an end-to-end scientific platform for participatory
air pollution sensing, developed as part of the EveryAware project[10], was used. This platform is
described briefly in the Methods section, with more details included in the supplementary material
S1. The quality and representativeness of the collected air quality data are also discussed in S1.

During this test case, volunteer participants were asked to get involved in two activity types.
The first one consisted in using a sensing device (Sensor Box), to measure air pollution (black
carbon (BC) concentrations) in their daily life, generating what we call objective data. The second
activity was playing a web game (AirProbe), where volunteers were asked to estimate the pollution
level in their cities by placing flags (so called AirPins) on a map and tagging them with estimated
black carbon (BC) concentrations on a scale from 0 to 10 µg/m3, resulting in subjective data on
air pollution (perception). Volunteers involved in the measuring activities were encouraged to play
the game and bring other players as well (create a team).

The two data types allow for an analysis of user behavior and perception throughout the chal-
lenge. To enable this, the test case was composed of three phases. In phase 1, only the online
game was available, so we could obtain an initial map of the perceived air pollution. In phase 2
the measurements started in a predefined area in each of the cities (corresponding also to the web
game area), with the web game running in parallel. Phase 3 introduced a change in the game, so
that players could acquire limited information about the real pollution in their cities in the form
of sensor box measurements averaged over small areas (so called AirSquares). At the same time,
measurements were continued, this time without a restriction of the area to be mapped. Incentives
in the form of prizes were given at the end of each phase to the best teams/players (please see
Methods and Supplementary Material S1 for more details).

The data collected during the test case are used here to analyze participation patterns, in terms
of activity and coverage, and any changes in perception. Our results indicate that better coverage
is obtained when volunteers are assigned a specific mapping area, compared to when they are asked
to select the time and location of their measurements. Additionally, when allowed to measure
freely, they seem to be attracted to places with higher pollution levels. Furthermore, while at the
beginning of the challenge the general perception was that pollution was higher than in reality,
perceptions changed in time indicating increased knowledge of real pollution levels. The amount
of data collected in the test case, together with the first insights we obtained from it, suggest that
bottom-up participatory sensing approaches are effective in attracting participants with high levels
of activity and also in enhancing citizen awareness of real pollution levels.

Results

Volunteer involvement and activity levels are among the most important elements in participatory
monitoring campaigns, since these can determine the success of the campaign. Large activity is
required for acquiring meaningful data, both objective, for analysis of the environment itself, and
subjective, for analysis of social behavior. The test case presented here has successfully involved
39 teams of volunteers in 4 European locations, gathering 6,615,409 valid geo-localized data points
during the challenge (the measuring device collects one data point per second). An additional
3,326,956 data points were uploaded to our servers in the same period, but were missing complete
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GPS information, and were not included in the analysis. Some of these measurements contained
labels (tags), with 742 geo-localized overall tags coming mostly from one location of the challenge
(London).

Additional information on perception of pollution has been extracted from the online game.
The platform had 288 users in total, over six weeks, 97 of which played the game at least ten times.
Their activity resulted in 70,758 AirPins at the end of the test case, which we will use to assess
perceived pollution levels.

Figure 1 shows general participation patterns, both for the measuring activity and for the web
game. Further details about participation, for each of the four locations of the test case, can be
found in supplementary file S1. The daily number of measurements show larger activity during the
week compared to weekends, with almost twice the activity in the peak days (Wednesday/Friday).
This indicates that the volunteers were strongly interested in monitoring their exposure in relation
to the routine activities of the week, which probably include commuting and access to highly
polluted environments. It might also mean that it was easier for participants to monitor as part
of their weekly routine whereby at the weekend monitoring would require more effort as it would
not comprise part of their commute, for example, or may have impacted on other leisure activities
that they wanted to carry out. Daily patterns (hourly measurements) indicate a peak in activity in
the afternoon, around 5 pm, again probably due to afternoon commuting. However, measurements
are performed at all hours of the day, indicating the presence of very dedicated volunteers. In
fact, the total number of measurements per team indicates several teams with very high activity
levels, with the most active team reaching almost 1 million points (equivalent to over 270 hours of
measurements). However, team activity was very heterogeneous, with some teams collecting much
less data than the others. This heterogeneity was found within the same city (e.g., the highly active
teams are spread over three of the four cities), indicating that differences in activity were in general
based on personal predisposition and not location. However, some of the heterogeneity between the
cities can also be explained by the differences in instructions, emphasis and incentives.

The web game activity follows similar heterogeneous patterns. Figure 1 also shows the distribu-
tion of the number of AirPins used to declare perceived pollution levels by game players. Some of
them got very involved in this activity, with over 2000 AirPins used, while many players had very
low activity (started the game but did not continue). The distributions appear to follow a power
law, also typical for other social activity patterns[12, 23]. It is important to mention that managing
hundreds of AirPins required a large amount of time to be spent in the game, indicating the high
involvement levels that the players reached.

Besides activity in terms of number of measurements, another important aspect is coverage,
both in space and time. As we have seen before, measurements have been performed at all hours
of the day and days of the week. However, usually not all areas are covered equally. Here we show
general information about overall coverage achieved (with more details for each location included
in the supplementary file S1).

In order to compute the coverage, the area of each of the four participating cities was divided
into 10 by 10 meter squares (tiles). One square was considered covered if at least one measurement
was performed within it. Figure 2 shows how the number of squares covered grows as users perform
more measurements, both overall and for each phase individually. The volunteers had different tasks
in the two measuring phases (phase 2 and 3 of the test case). In phase 2, they had to concentrate
on covering as much as possible of a specific area, while in phase 3 they could explore any area they
wanted.

Figure 2 indicates that space coverage grows steadily with the number of measurements, meaning
that users continue to explore new areas over the course of the challenge. However, while at the
beginning of the challenge the growth is fast, this decreases in time. This indicates less exploration
as the challenge evolves, due to the fact that volunteers measure at the same location multiple
times. When looking at individual phases, it appears that during phase 2 space coverage was much
better than in phase 3. This does indeed mean that volunteers displayed a better exploratory
behavior at the beginning and when asked to cover a specific area of the city, compared to when
they were asked to map any place they wished. In the latter case, they went for their daily routes
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Figure 1: Volunteer activity patterns. The subplots in the top row show daily (weekends shown
in red) and hourly measurements by volunteers. The distribution of the web game activity among
players is shown in the bottom-right subplot, while the distribution of the number of measurements
performed per team is depicted at the bottom-left (the distributions are displayed by ranking the
volunteers by activity and then displaying the number of measurements/AirPins in descending
order, using a rank-frequency plot) .
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Figure 2: General space coverage data. Left panel: growth of the number of squares covered
for the entire challenge. Right panel: growth of the number of squares covered per phase, in a log
- log plot.

that were not so extensive, and did not explore further. For both phases the growth of the space
coverage follows a power-law, with exponent 0.73 in phase 2 and 0.79 in phase 3. This suggests
that, although on the short term, space coverage in phase two is larger, in the long run the strategy
of phase 3 might actually produce better coverage. However, the restricted time frame of our
challenge can not provide further proof for this hypothesis. Since pollution levels vary both in
time and space, it is important to have more measurements in the same location. So, for each
tile, we also look at how measurements are spread in time, i.e., time coverage. We divided the
measurements into 8 categories based on the time of measurement: 4 working day categories and
4 weekend categories, with time thresholds at hours 08:00, 14:00, 18:00 and 23:00. Measurements
on Friday after 23:00 fall in the working day category, while those on Saturday before 08:00 in the
weekend category. The entropy of the resulting sets was computed. For each square, we obtained
the fraction fi of measurements in each category i as the ratio between measurements falling into
that category and the overall number of measurements in that square. Then the entropy for that
square is S = −∑8

i=1 fi log2 fi. A higher entropy indicates a better spread of measurements in
time. Figure 3 shows the distribution of the entropy for all squares covered, in a rank-entropy
plot (squares are sorted descending by entropy and the entropy values plotted for each square). A
few squares had a very good time coverage and they correspond, most likely, to hubs in the four
cities (e.g., popular leisure locations or transportation hubs). At the other extreme there are many
squares (more than half) that have been covered only in one time slot (entropy is 0). Between the
two extremes, time coverage is dropping fast when moving through the ranked squares.

The curves display jumps and it appears that squares can be divided into sets based on time
coverage. One first set (rightmost) includes those squares that have measurements only at one time
of the day (entropy 0), which is followed by those covered in 2 time slots, ending with those that are
covered at all times of the day (leftmost). Within each set, coverage decays differently. While for
the highly covered squares decay appears to be exponential (as plotted in the inset), this becomes
slower as the coverage decreases, with curves resembling polynomial decay.

When comparing the two phases, time coverage in phase 2 is much better overall than in phase
3. This indicates that volunteers not only explored more in space, but also in time, during phase
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2, while in phase 3 they followed their daily schedule which allowed for poor time coverage as well.
This underlines again the importance of giving volunteers a specific mapping area in order to obtain
better measurement spread.

The measured BC levels can also provide useful insight into the aims and strategies of the
volunteers during the challenge. To this end, we can examine how these change from phase 2 to
phase 3. Thus, Figure 4 shows graphs of BC levels measured in the two phases, and we can observe
larger BC values in phase 3 (the distribution is shifted to the right). A Kolmogorov-Smirnov test
was performed to test whether differences are significant and a p-value of 2.2e-16 was obtained,
confirming the difference. When volunteers can freely choose where to take measurements, it
appears that they primarily target more polluted areas. When the mapping area is restricted, they
tend to have a more systematic approach and cover lower pollution levels as well. One may argue
that pollution levels may change naturally from one day to another, so the shift we see could be do
to a higher average pollution level from phase 2 to phase 3. However, comparison with reference
data seem to suggest that this is not the case (supplementary material S1). Additional comparisons
per location are also included in S1.

The analysis of the structure and location of the collected objective data gives some insight
into volunteer behavior and interests when measuring air pollution. Subjective data, on the other
hand, can provide a stronger indication of changes in perception. For this, we look at the data
collected by the web game, which consists of perceived levels of pollution in the mapping area, the
AirPin values. In particular, to inspect awareness improvement and the learning process, we are
interested in the relation between these annotations and the ‘true’ pollution values available in the
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Figure 5: Web game data: APD distributions. APD is the deviation between the air qual-
ity level annotated (the AirPin value) and the aggregated measurements from sensor boxes (the
AirSquare). The left part shows the distributions of the deviations in each phase for Turin, Kassel
and London. An estimation of phase 3 distribution elaborated from phase 1 data with our model
is also shown (Phase 1 trans.). The right part shows the distributions for Turin in each phase for
AirAmbassadors (volunteers with sensor box that played the web game) and AirGuardians (only
web game players).

web game during phase 3 in the form of AirSquares. Thus we define the APD (AirPin difference)
as the difference between the AirPin value (perception of the volunteer) and the relative AirSquare
value (real pollution level). In other words, the APD is the amount of ‘error’ in the annotation
intended as distance from the measurement. Figure 5 shows several distributions of the APD. In
the left part we have APD distributions in each phase for Turin, Kassel and London. Antwerp did
not reach the critical mass of data required for this analysis (the number of web game volunteers
was very restricted).

In phase 1, when no volunteer had been exposed to real measurements, we observe three different
opinion structures in the three cities, representing the initial perception of volunteers. A systematic
overestimation of pollution is present, i.e., the APD has peaks at ∼ 4 µg/m3. This is likely to be
caused by a scale misunderstanding: players, which were not accustomed to the BC concentration
scale, almost ignored completely which values were to be considered reasonable and thus used the
middle of the scale (i.e., 5 µg/m3) as a ’normal’ value. This results in the observed overestimation
since the real average BC concentration measured lies between 1 and 2 µg/m3.

In phase 2 things began to change. Some volunteers (so called Air Ambassadors) were given the
sensor boxes to start performing measurements. The web game players consisted of these volunteers
plus a set of other players recruited by them (so called Air Guardians). No data, except for the
direct feedback from the boxes, was shown to the volunteers. Even so, a change is visible in the
distribution of APD reported in the left part of Figure 5. By observing the measurements from
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their sensor boxes, Volunteers learn that in general BC concentrations are lower than what they
believed, and respond by changing the values of the AirPins or taking the information into account
when placing new ones. Since the change is quite significant, we also believe that those volunteers
with the sensor boxes spread the information about what they were measuring, so that all players
changed their perception. This decrease in the pollution levels reported in the subjective data of
phase 2 is a first strong indication of learning during this phase. The right side of Figure 5 shows
APD distributions separately for AirAmbassadors (performing measurements) and AirGuardians
(who had no direct exposure to measurements until phase 3). We analyzed just the Turin dataset
because in the other cities there was no clear distinction due to Ambassadors sharing their sensor
boxes. The opinion shift in phase 2 is very strong for AirAmbassadors, but some change is also
visible for AirGuardians, at least for part of the AirPins. This indicates that there was interaction
among players, so that not only volunteers performing measurements, but some of their friends
also, changed their perceptions.

Phase 3 brought an important change in the web game. AirSquares were made available, so
players could acquire aggregated information (punctual information would have been just copied by
the users) in form of average pollution levels within the respective square measured by the sensor
boxes. There is a corresponding radical change in the subjective air pollution estimation emerging
clearly in the left part of Figure 5. In all cities, there is a peak around zero in phase 3 in the APD
distribution, meaning there were more players estimating the air quality correcly. This was in some
way expected, since we are giving strong hints about pollution levels by means of AirSquares, but
there is something more happening. In London there is another bigger peak and also in the other
cities the distributions show some asymmetry, pointing out that people are not trusting the hints
completely because in that case the distribution would have been more similar to a delta function,
i.e., narrow and symmetric.

In order to describe this phenomenon we defined a stochastic transformation to reproduce the
APD distribution for phase 3 starting from the APD distribution of phase 1. This transformation
should reproduce the effect of the hints received by our volunteers on the initial distribution of their
errors. Based on the empiric observation, the transformation takes into account two main effects:
the possibility of complete trust in the hint, so that the opinion is reset near the hint, and the pos-
sibility of incomplete trust, so that the opinion is just shifted closer to the hint. The mathematical
definition can be found in the supplementary material ( S1). The left part of Figure 5 shows, for
each location, how the transformed phase 1 data (black squares) matches phase 3 distributions,
and this has also been confirmed with statistical procedures described in Methods and in the sup-
plementary material S1. This provides an indirect proof of the assumptions of our model on the
effect of objective data (complete and incomplete trust). Also, we were able to measure the ‘trust’
in the hints for the three cities, by fitting the model to data. We obtained the lowest trust values
in London and the highest ones in Turin (full results are reported in the supplementary material
S1).

Discussion

Volunteer participation is crucial for the success of bottom-up monitoring campaigns, however
most projects concerned with air pollution monitoring concentrate only on the development of the
technical tools necessary. Here, we give a different user-centric perspective, using the experience
from the EveryAware project, through its large scale international challenge, APIC. The tools
developed by the project are described in more detail in the supplementary material S1. During the
challenge both objective and subjective data were collected, and used here to analyze participatory
patterns and possible changes in behavior or perception.

Objective measurements allowed for analysis of user interests during the challenge and activity
patterns. A large number of measurements was obtained, however, coverage varied from location
to location, with higher values when monitoring areas were restricted. Both coverage and pollu-
tion levels measured indicated a volunteer tendency to monitor familiar areas when there was no
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restriction, with a search for highly polluted spots.
Subjective data, on the other hand, allowed for analysis of perceived pollution levels and learning

mechanisms. We observed, by analyzing differences between perceived and real pollution levels, that
users are able to reduce the ‘errors’ in the annotations, by learning the true values. However, some
inertia in changing the old opinion structure was also observed, since asymmetric tails and slow
shifts of old peaks are present. We also looked at differences between AirAmbassadors (volunteers
with sensor boxes that played the web game) and AirGuardians (only web game players). In phase
1 there is no clear distinction between them, as it is expected. In phase 2 Ambassadors, who
begin to learn real pollution levels from the sensor boxes, start to shift their opinions, reducing the
errors, while Guardians change less. Finally, in phase 3 we observe Ambassadors continuing to shift
their opinions in a smooth way, with a certain inertia, while Guardians change radically showing
a prominent primary peak at zero estimation error with a secondary peak in the position of the
old peak. We can argue that the personal experience of the Ambassadors produces a smoother
transition (which begins in phase 2), while the in-game information produces radical changes. But
still both approaches shows the inertia we described earlier, even if in different forms.

In general, we can conclude that all our evidence shows that involving volunteers in monitoring
campaigns can result in large amounts of data collected. These data show that participation can
help learning, to create a more accurate perception of air quality. Thanks to our case study, it has
also been possible to outline some of the mechanisms behind the resistance of subjective opinions
to objective results.

Materials and Methods

The study presented here is based on data collected by volunteers during a large scale test case
(AirProbe International Challenge - APIC) organized in four European cities (Antwerp, Kassel,
London and Turin) in from October 2013 to November 2013. It required volunteers to measure
air quality as well as provide their opinion on air pollution, using the EveryAware platform. This
consists of a sensing device (Sensor Box), measuring air pollution, a mobile application (AirProbe),
allowing for data visualization and upload to servers, a set of web services and websites, handling
data storage and visualization and a web game developed on the XTribe platform[4], allowing to
collect individual perceptions of pollution. In the following we provide a brief description of each
of the components and of the tools used for data analysis, with further details included in the
supplementary file S1.

Ethics statement

This work is part of the European project Every Aware, contract number IST-265432. The Eu-
ropean Commission finances only those projects that comply to its ethics and privacy regulations.
Citing from the regulations of the Seventh Framework Programme, Decision No 1982/2006/EC,
Article 6: “All the research activities carried out under the Seventh Framework Programme shall
be carried out in compliance with fundamental ethical principles.” At the same time, the official
rules for participation, Article 15, mention: “A proposal which contravenes fundamental ethical
principles shall not be selected. Such a proposal may be excluded from the evaluation and selection
procedures at any time”. Hence, acceptance and funding of this work by the European Commission
implies approval of the ethics statement made in the proposal. This is why no further formal ethics
approval was required for this research to be performed.

All participants to our study had to participate in training for using the sensor box and install
our mobile application. Before admission to the test case, all volunteers were required to sign our
Terms and conditions, which represents the user’s consent to use the measurements made. These
clearly state that the data will be used for research purposes only and no personal information will
be made public or used for other purposes.

Volunteers were recruited using a range of approaches in each city. These included a designated
Facebook page, the EveryAware project website, posters, newspaper articles and either university
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mailing lists or those of local interests groups and environmental agencies (see the methods section
’Case study’ and supplementary material S1 for further details). All volunteers could leave the
study at any stage, however none chose to do so. All volunteers named in the Acknowledgements
section gave specific permission to be named.

Sensing device: the sensor box

The sensor box contains a sensor array of 8 commercially available gas sensors and two meteoro-
logical sensors (temperature and humidity). The gas sensor array consists of low-cost continuous
sensors of CO, NOx, O3 and VOC, which are important pollutants in the urban outdoor environ-
ments. These pollutants are either directly emitted by vehicles or other combustion processes, or
formed from emitted precursors in the vehicle exhaust. The main criteria for sensor selection were
the specific requirements posed by the mobile use of the sensor box for air quality monitoring as
well as the hardware compatibility with the box. The gas sensors were examined by a range of
performance tests under laboratory and outdoor conditions. These tests showed that none of the
individual sensors can be used on its own. The observed selectivity, stability and response times
of the different sensors introduced the need for a multivariate calibration procedure for the sen-
sor boxes. Performance tests and calibration are described in more detail in the Supplementary
material S1.

The sensor box electronic system has been designed with the purpose of being a low-cost, open
and scalable platform. It is composed of two main boards (Fig. 6). The first is a general purpose
one that includes basic storage (micro SD card), positioning (GPS) and communication (Bluetooth)
capabilities, while the second is a sensor shield able to host all gas sensors. The design is based on
Arduino components and it is completely open source, so that anyone can reproduce and modify
the hardware or even use the original hardware and develop different software to be run on it.

The AirProbe mobile application

AirProbe is an Android application designed to connect to the sensor box via Bluetooth, acquire
sensor readings and transit them to the EveryAware servers as soon as a working connection to
the Internet becomes available. In addition, the application allows users to visualize the data
they collect. Specifically, they can see their tracks on a map, calculate an estimated black carbon
exposure and follow sensor output in real time plots. While collecting data, users can make free
annotations (tags) that will be attached to the recordings and sent to the servers.

Web platform

The case study web platform[3] is designed for collecting, storing, retrieving, analysing and visual-
izing large amounts of data data from different data sources. It provides endpoints for application
like the AirProbe mobile application to upload data to. These data are then processed and cleaned,
with several statistics and visualizations available on a public as well as a personal level. This
facilitates further analysis and deeper understanding of the data by the user.

A collection of statistics pages provides overall information about the data, such as graphs
showing currently active sensor boxes, the overall black carbon average per day, or the overall
number of collected measurements per day. Also, information on separate sessions corresponding
to different tracks (defined both by the Sensor Box and by the user) is available. This allows
users to compare routes and locations. A world map gives a visual overview on the collected data.
This includes cluster and grid views as well as a heatmap representation of the collected data on a
personal as well as a global level providing visual information about areas with good measurement
coverage and their average pollution levels. Users also have the possibility of downloading their
own data, in case they want to compile any further personal statistics.

During the APIC challenge, the platform was specifically tuned for the needs of the game.
Even though the platform supports several statistics and visualization of the data, most of this
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Figure 6: Sensing device. The two electronics boards of the sensor box with the gas sensors
mounted on top of the sensor shield.
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functionality has been disabled during the second stage of the challenge, in order to make opinions
on air quality during the web game as unbiased as possible. The goal was for the AirAmbassadors
and their sensor boxes to be the sole source of information regarding real measurements in order
to limit information flow and facilitate a more controlled environment for the experiment. All
visualisations were back online in the third phase of the challenge.

The web platform has been also providing a ranking page for the AirAmbassadors to be mo-
tivated throughout the challenge. Points were issued for space and time coverage during each
collection phase. The ranking page showed which city and which team was ranked first globally
as well as per city. In addition, the AirAmbassadors and their teams were able to access several
statistics about their measurement behavior and the data collection process, including a coverage
heatmap, the amount of covered squares and their points.

The web game

The AirProbe web game is a simplified map management game. Players are called to fulfil their role
of Air Guardians by annotating the map with so-called AirPins: geo-localized flags tagged with an
estimated or perceived pollution level (black carbon concentration in µg/m3, on a scale from 0 to
10). The game area of each city is divided into tiles. At the beginning of the game, users are asked
to create a profile (by choosing an avatar and a name) and to choose a city and a team. Then
the volunteer starts from a given tile of the map of the chosen city. Users can interact by placing
(or editing or removing) AirPins or by expanding their territory, i.e., buying more tiles. Each day,
the AirPins placed generate a revenue based on the precision of the annotation (precision depends
on what other users think of the same area). In order to collect the revenue generated every day
by each AirPin, the user has to access the game daily, otherwise the revenue will be lost. The
collected revenue will be added to the user balance, allowing them to buy more AirPins and more
tiles. In this way, players can build their air pollution perception map. At the beginning of phase
3, a new feature was made available in the web game: the AirSquare map. This consisted in an
alternative map on which players could buy AirSquares, i.e., information about measured pollution
levels aggregated on a small area. This data spreading stimulated the learning process described
earlier.

Case study

In order to set up the APIC study, volunteers were recruited in each of the four cities and they
comprised two types of participants: Air Ambassadors, who were tasked with collecting air quality
measurements with the sensor box, playing the online game, and recruiting Air Guardians, and
Air Guardians, whose central focus was to play the online game and who were linked to a team
of Air Ambassadors. Volunteers were recruited using a range of approaches in each city. These
included a designated Facebook page, the EveryAware project website, posters, newspaper articles
and either university mailing lists or those of local interests groups and environmental agencies (see
supplementary material S1 for further details).

Incentives were offered during the initial call to participate in the study with the aim to encourage
participation and maintain engagement. Prizes were given out to the team of Air Ambassadors with
the best temporal/spatial air quality measurement coverage and the most active Air Guardians in
each city over the different phases. Various strategies were incorporated into the online game to
encourage ongoing play and the prizes related to the number of days played and the total revenue
gained for each day of play. The rewards offered varied slightly across the four cities and are detailed
in the supplement.

Data analysis

To model the evolution between the phases of the APD distribution represented in the left part of
Figure 5 (Phase 1 trans.), we implemented a simple modeling approach rearranging the opinions
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depending on their distances from the hint which is defined in the supplementary material S1. The
transformation introduces 4 parameters, quantifying the inertia effects in the opinions shift. To
check the quality of our model and to determine the values of parameters introduced we used a
Kolmogorov-Smirnov test applied to the phase 3 dataset and to the phase 1 transformed dataset.
Since it is a stochastic model, we performed several applications and found a convincing result for
the pval of 20%, which means that the hypothesis is consistent with observations. More details are
provided in the supplementary material S1.

Supporting Information

S1

Platform description and further data analysis. Details for the different platform components
and data features can be found in this file.
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1 The EveryAware sensor box

All the air quality sensors (Table 1) were subjected to laboratory and outdoor tests for further
characterization. In laboratory tests, sensors were exposed to synthetic gas mixtures (CO and
NO2) at a constant temperature of 25◦C and a relative humidity of 50%. The sensors included
in this analysis were the Alphasense CO-BF sensor, the e2v MiCS-5521 CO sensor and the e2v
MiCS-2710 NO2 sensor. The experiments were run for approximately 3 hours. The CO sensors
were exposed to a series of CO gas concentrations of 9.18, 6.89, 4.61, 2.3 and 1.15 ppm. Between
the different concentrations, a zero measurement was made. Each step of the measurement series
lasted for approximately 20 minutes. The NO2 measurements were made with concentrations of
85, 44, 24 and 0 ppb. The response times of the sensors (T90), defined as the time required for
the sensor to reach 90% of its maximal value in response to a step change from zero to a certain
concentration value, was monitored at a 30 second resolution. Average T90 response times were
150 seconds, 180 seconds and 270 seconds for the Alphasense CO-BF sensor, the e2v MiCS-5521
CO sensor and the e2v MiCS-2710 NO2 sensor, respectively. The linearity of the sensors was
high for the Alphasense CO-BF sensor in the 0 - 10 ppm CO range (R2 > 0.99), and for the
e2v MiCS-2710 NO2 sensor for NO2 concentrations between 0 and 90 ppb (R2=0.98). The e2v
MiCS-5521 CO sensor showed a non-linear relationship in the 0-10 ppm CO concentration range.

Because the controled laboratory setting is very different from outdoor conditions, the main
tests were performed outdoor. The outdoor performance tests were carried out at a station from
the Flemish air quality monitoring network. The station (Borgerhout, 42R801, see www.ircel.be)
is situated at a traffic location along a double lane main street with an average daily traffic
volume of 43,381 vehicles (42,961 cars and 420 heavy duty vehicles, data from the Traffic Centre
Flanders). We used 4 sensor boxes for the outdoor performance tests from October 2012 until
April 2013. By placing the sensor boxes at an official monitoring station we gained the advantage
of having reference data for several pollutants (CO, NO, NO2, O3 and Black Carbon (BC))
albeit at a coarser temporal resolution of 30 minutes. The average gas (CO, NO, NO2 and O3)
concentration and BC concentration during the outdoor tests are given in Table 2. A cross-
correlation analysis was performed to compare the 30 minute averaged sensor data with the
reference data for several pollutants (Table 3). Correlation between the reference data is given
in Table 4 for comparison.

Low to moderate correlations were found between the CO sensor measurements and the
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Table 1: Overview of the sensors of the sensor box.
Sensor Measured parameter Dynamic range Cost
Alphasense CO-BF CO 180 Euro
e2v MiCS-5521 CO 1 - 1000 ppm 3.4 Euro
e2v MiCS-5525 CO 1 - 1000 ppm 5 Euro
Figaro TGS 2201 (dual) CO 10 - 1000 ppm 15 Euro
Figaro TGS 2201 (dual) NOx 0.1 - 10 ppm 15 Euro
e2v MiCS-2710 NO2 0.05 - 5 ppm 3.7 Euro
e2v MiCS-2610 O3 10 - 1000 ppb 3.7 Euro
Applied Sensors AS-MLV VOC not available 5 Euro
Sensirion SHT21 temp -40 - 125 ◦ 15 Euro
Sensirion SHT21 rel. humidity 0 - 100 % 15 Euro

Table 2: Average concentration and standard deviation of CO, NO, NO2, O3 and BC by the
reference monitors during the outdoor testing period.

mean stdev.
CO 0.32 ppm 0.13 ppm
NO 32.27 ppb 35.34 ppb
NO2 26.56 ppb 11.50 ppb
O3 9.87 ppb 10.00 ppb
BC 4.03 µg/m3 2.73 µg/m3

Table 3: Cross-correlation between sensor measurements and reference gas measurements or
meteorological data measured inside the sensor box. Averages of 4 sensor boxes are shown
together with the standard deviations between brackets.

Reference monitors sensor box

Sensors CO∗ NO∗ NO2
∗ O3

∗∗ BC∗ temp (◦C)∗ % RH∗
Alphasense CO-BF 0.52 (0.16) 0.41 (0.11) 0.34 (0.11) -0.32 (0.14) 0.35 (0.13) -0.81 (0.11) 0.00 (0.16)
e2v MiCS-5521 CO 0.31 (0.04) 0.32 (0.04) 0.34 (0.04) -0.09 (0.11) 0.41 (0.02) 0.89 (0.06) -0.214 (0.06)
e2v MiCS-5525 CO 0.60 (0.02) 0.51 (0.05) 0.56 (0.05) -0.71 (0.05) 0.55 (0.06) 0.50 (0.06) 0.25 (0.03)
Figaro TGS 2201 CO 0.25 (0.02) 0.32 (0.01) 0.17 (0.00) -0.48 (0.01) 0.38 (0.01) 0.45 (0.03) 0.46 (0.07)
Figaro TGS 2201 NOx -0.78 (0.01) -0.40 (0.06) -0.24 (0.05) 0.47 (0.05) -0.47 (0.06) -0.40 (0.04) -0.21 (0.03)
e2v MiCS-2710 NO2 -0.58 (0.02) -0.40 (0.06) -0.31 (0.08) 0.64 (0.07) -0.49 (0.06) -0.40 (0.07) -0.27 (0.02)
e2v MiCS-2610 O3 -0.67 (0.06) -0.56 (0.02) -0.55 (0.05) 0.83 (0.07) -0.62 (0.03) -0.18 (0.15) -0.12 (0.19)
Applied Sensors AS-MLV VOC 0.63 (0.02) 0.43 (0.17) 0.53 (0.15) -0.44 (0.26) 0.45 (0.19) 0.23 (0.22) 0.14 (0.10)

* streetside
** backyard (30 m from street)

Table 4: Cross-correlation between reference gas measurements and meteorological data mea-
sured inside the sensor box (average of 4 sensor boxes).

Reference monitors sensor box

CO NO NO2 O3 BC temp (◦C) % RH

CO 1.00 0.77 0.62 -0.55 0.83 -0.07 -0.09
NO 0.77 1.00 0.76 -0.51 0.89 0.13 -0.06
NO2 0.62 0.76 1.00 -0.53 0.81 0.11 -0.24
O3 -0.55 -0.51 -0.53 1.00 -0.54 -0.12 -0.22
BC 0.83 0.89 0.81 -0.54 1.00 0.23 -0.08
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Figure 1: Micro-aethalometer: device used as a reference for calibration.

CO reference data. The Alphasense CO-BF and e2v MiCS-5525 CO sensors had the highest
correlations (0.52 and 0.60, respectively) of the four CO sensors, although the Alphasense CO-
BF sensor showed significant variability between sensors. The non-CO sensors showed higher
correlations with the reference CO measurements. By sharing the same sources in the urban
environment, it is logical that monitoring signals of different pollutants show high correlations
(e.g. Table 4). The high correlations between the non-CO sensors and the reference CO data
can therefore be explained. The Figaro TGS 2201 NOx and e2v MiCS-2710 NO2 sensors showed
a moderate correlation with NO and NO2. The negative sign is due to the electronics and can
be discarded in this analysis. Correlations of the NOx sensors are higher with CO and O3,
although these values stayed within the correlation range that was observed for the reference
measurements. It is not proven by this experiment that the high correlation with CO and
O3 is due to selectivity problems of the sensor. The e2v MiCS-2610 O3 sensor showed a high
correlation with the reference O3 measurements. Also the variability between the sensor boxes
was limited. Correlations with other gases are negative, which is in line with the physical reality
(see reference measurements in Table 4). The Applied Sensors AS-MLV VOC sensor shows
the highest correlations with CO and NO2, but reference VOC measurements are lacking. The
correlation with BC ranges between 0.35 and -0.62. These correlations are in the same moderate
range as the correlations that are found between the sensors and the reference measurements of
the respective gases.

Important conclusions of these laboratory and field experiments with respect to further de-
velopments and applications of the sensor box are: (i) response times of the sensors are in the
minute range rather than in the second range; (ii) correlations between sensor and reference
measurements are low to moderate for most of the sensors, for the e2v MiCS-2610 O3 sensor
the correlation is high; (iii) moderate correlations between the sensor measurements and the BC
measurements are observed.

2 Sensor box calibration

Following the analysis of sensor abilities presented in the previous section, we have proceeded
with calibration of the sensor boxes. Issues identified by our initial analysis included sensor
sensitivity to temperature and humidity, sensor drift in time and sensitivity to other gasses.
Hence, one needs to calibrate devices against a reference in order to control for this issues and
obtain a measurement meaningful for the user.

Supervised learning was employed to model an unknown concentration of a target pollutant
from sensor array measurements (based on low-cost gas sensors, temperature and relative hu-
midity sensors). The supervised learning model is parameterised by using a training dataset
consisting of sensorbox measurements and simultaneous target pollutant concentration measure-
ments. The target pollutant selected in this study was black carbon (BC). The selection of BC
as a target was motivated by following three reasons: (1) BC is a relevant pollutant in urban
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Table 5: Performance of the ANN, SVM and RF techniques to model BC from sensor box data
on independent mobile data.

R2 rmse
ANN 0.26 2.10
SVM 0.23 1.70
RF -0.13 1.72
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Figure 2: General structure of artificial neural networks.

environment by its adverse health effects [1], (2) BC is correlated with the gases that are mea-
sured by the sensor box, as seen in the previous sections, and (3) the availability of portable
BC measurement devices (micro-aethalometers, AethLabs, Figure 1) which makes it possible to
collect mobile BC data.

2.1 Calibration model

The first calibration datasets, consisting of sensor box data measured at the same time with
micro-aethalometer data, were obtained in Antwerp near an air quality monitoring station at
a traffic site and in Turin in spring 2013 from a two-week long monitoring with sensor boxes
and micro-aethalometers positioned near a busy road. These datasets were used to compare
the performance of different supervised learning techniques. We have explored four different
possible models to use for mapping of sensor output to the reference measurements. These were
Random Forests, Support Vector Machines (SVMs), a custom air quality index and Artificial
Neural Networks (ANNs). After comparing these (Table 5), SVMs and ANNs obtained a similar
behaviour, better than the other two options, but training of ANNs appeared to be faster, so we
decided to adopt them for our model.

ANNs[2] are regression models that mimic the behaviour or neuronal networks. They consist
of interconnected computing units (neurons) that can have several inputs and an output. In
each unit, two operations happen: compute a weighted sum of the inputs and apply a sigmoid
(activation) function to obtain the output. The network can have several layers feeding into one
another: one input and one output layer plus a number of hidden layers (see Figure 2).

In order to train a network, one needs to select a topology and find the values of the input
weights for each neuron. To select the topology we have performed an empirical analysis that led
to the usage of a network with one hidden layer of 10 neurons. The final topology is displayed
in Figure 3. After this, we used backpropagation, a standard algorithm for ANN training [2], to
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Figure 3: ANN topology for our calibration problem.

obtain the network weights.
The ANN model was implemented both in the AirProbe mobile application as well on the

server. This was done to give the user real time feedback from the sensor box on the one hand,
but on the other hand allow the mobile device to leave the computationally expensive calculation
of the black carbon value to the server in case the user is not using the viewing of black carbon
values in real-time.

This approach was taken due to the fact that the sensor box has two working modes, online
and offline. Computing model output for all offline records would have been too computationally
expensive for an average smartphone, while server side this was not an issue.

2.2 Preprocessing

Although initially the possibility of building one calibration model for each box was intended,
this would not have scaled very well, so we explored the possibility of building one model for all
sensor boxes. From the first calibration data sets we observed that sensor boxes behaved similarly
when exposed simultaneously. Although the absolute sensor values differ between boxes, the
fluctuations in time are similar for the same sensors. This means that sensor box rescaling (i.e.
normalisation of the sensor signals) could be used to scale the different sensor boxes within the
same range, and parameterise a model on the standardised data. This would mean obtaining a
unique model for all sensor boxes, instead of individual ones for each box. For APIC we decided
to use one calibration model for each city to account for possible differences in sensor response
between locations.

A different issue was data variability, both in BC values and sensor response. The BC values
were first processed by a noise reduction algorithm [3] to lower the high-frequency instrument
noise that is observed when measuring at high frequency. To remove sensor box fluctuations, the
sensor data was smoothed by computing averages over a moving time window of one minute. The
resulting BC values were averaged over a 5 minute window. This value was deemed suitable by
comparing outputs from two aethalometers, which become highly correlated at this resolution.
So the BC value obtained from the model represents an average over the last five minutes of
exposure.
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2.3 Model performance

For each location of the challenge, models were trained on experimental data. Three types of
data were used, to account for three possible use cases. These included stationary data where all
sensor boxes were collocated, mobile measurements performed with one or two boxes at a time,
and indoor data. Training and testing datasets were obtained by combining all these data types,
and four models were obtained, one for each location.

Figures 4, 5, 6 and 7 display the best model obtained in each city, in terms of performance on
training and test data, as well as cumulative exposure on the test data. The Turin model (Fig-
ure 7) performs best, and this is due to the increased amount of data, especially mobile, available
for this location, since preliminary calibration tests were performed there. This demonstrates
that the collection of large amounts of mobile data is crucial for boosting modelling abilities. The
Antwerp dataset also contained larger amounts of mobile data, compared to the other two, so
that a good performance was obtained as well (Figure 4). Although datasets were more restricted
for Kassel and London, indications were that models obtained were displaying good performance
(see Figures 5 and 6).

In general, calibration was successful at identifying general trends in the pollution levels.
However, sharp and short peaks are not handled well by the model, and this is due to the lower
sensitivity of the low-cost sensors and their delayed response. However, the performance obtained
was enough for the purposes of our project, i.e. participatory mapping of pollution with multiple
devices, for enhancing environmental awareness.

3 The AirProbe application

The AirProbe application is freely available for the Android platform and can be installed from
Google PlayStore. The main objective of the application is to acquire the data from the sen-
sor box and to upload it to the EveryAware server. The application also allows the user to
view/annotate data and can operate in three different modes: Live Track, Synchronization and
Browsing. Without this application, the sensor box data cannot be accessed nor uploaded to the
servers.

In order to associate the data uploaded with a specific user, the application must be activated.
This process links the application to an existing EveryAware account (which can be created inside
the application itself or on the project web site).

3.1 Live Track mode

This is the standard way to use AirProbe to collect air quality measurements. In this mode, the
application will search for Bluetooth devices nearby and present the user with a list of found
devices. EveryAware sensor boxes can be easily identified by their MAC suffix. Once the user
has selected the sensor box, AirProbe starts displaying real time data collected by the sensor
box, using the Bluetooth connection. In Live Track mode, the interface is composed of three
different views accessible from their corresponding tabs (Figure 8):

Map , where users can follow their own live track. The track is represented with different
colours, depending on real-time black carbon levels. The user can also add annotations
and share them on social networks (Facebook/Twitter), using the buttons at the top right
corner. The track length to be shown on the map can be of 5, 15, 60 minutes. Live tracking
of the current position can be switched on/off, through the top left buttons. The bar at
the top represents the black carbon value using a coloured scale (from a blue/low value to
a brown/high value).
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Figure 4: Model performance in Antwerp. The red line represents the model, while the blue line
represents the real data from the reference device.
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Figure 5: Model performance in Kassel. The red line represents the model, while the blue line
represents the real data from the reference device.
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Figure 6: Model performance in London. The red line represents the model, while the blue line
represents the real data from the reference device.
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Figure 7: Model performance in Turin. The red line represents the model, while the blue line
represents the real data from the reference device.
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Figure 8: AirProbe screenshots: Live mode. AirProbe uses the Google Maps API to display
maps ( c©2014 Google [4]).

Graph , where the user can see black carbon evolution and the raw data from pollutant sensors,
in a variable time interval ranging from 1 to 30 minutes. The user can query the value
registered by each sensor by tapping on the series. The graph is updated every two seconds.

Monitor , where users can access statistics about collected data, connection information, the
status of the sensor box and the installed sensors.

3.2 Synchronization mode

In this working mode, AirProbe downloads data from the sensor box and uploads them to the
EveryAware server (Figure 9). The sensor box in this case is used as a pure data logger, allowing
the user to send data only in suitable conditions (e.g. where battery lifetime and/or connection
billing are not a problem).

3.3 Browsing mode

This working mode does not require an active Bluetooth connection to a sensor box. It is
composed by three views, accessible from their corresponding tabs:

Map , where the user can see the black carbon levels around his current position (Figure 9), by
pressing the ”Get nearby BC levels” button. If a track from ”MyTracks” tab is selected,
this is displayed on the map. The black carbon levels and selected track can be shown
together.

Graph , where the raw pollutant and black carbon evolution, calculated for a selected track,
are shown. Only live recorded tracks have black carbon data.

My Track , where the list of tracks available on the mobile device is shown. Older tracks are
automatically deleted only once they have been uploaded to the server and a configurable
time interval since their creation has passed.
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Figure 9: AirProbe screenshots: Synchronization and Black Carbon map. AirProbe uses the
Google Maps API to display maps ( c©2014 Google [4]).

4 The web platform

The personalized air quality data is collected using the AirProbe module of the EveryAware
platform which is a social information technology system used by people to communicate and
share information. A characteristic of social information technologies is that they often involve
very large amounts of data. In fact, the collection, storage, and analysis of different kinds of data
within these systems is a crucial point and also an asset, e.g., for companies like Facebook1. As
a consequence, in order to pave the way towards analyzing and even triggering behavioral shifts
within large citizen populations, methods and techniques of acquiring and handling such data
efficiently play a central role. The design of web-based infrastructures for this purpose has a
great influence both on data quantity and quality, and hence also on the additional value which
can be generated by analyzing the resulting datasets. Typical goals during the design process
are:

• Performance: All infrastructure modules must be carefully tuned for high-performance re-
quirements of processing large amounts of data in a parallel fashion because the involvement
of large numbers of users requires responsive interfaces and efficient server backends

• Management: The setup and technical realization of experiments and studies among cit-
izens often implies strong efforts on the side of scientists and experimenters. As a con-
sequence, it is desirable to provide reusable and configurable experimentation platforms
which can easily be managed.

• Correctness: A large-scale collection of data can hardly be expected to provide only correct
and consistent results. However, the reduction of noise from the very beginning (i.e., the
concrete measurements) is desirable in order to provide a better basis for later analysis.

1http://facebook.com
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Broadly speaking, the relevant data in the context of the EveryAware project can be divided
into two classes, namely

1. objective data, which stems mainly from sensors and captures information like sound in-
tensity or air quality measurements (as analyzed in this work), and

2. subjective data, which comprises context information about the collected data including
reactions of humans faced with particular environmental conditions. This comes from
annotations that users attach to their measurements and is different from the subjective
data we collected through the web game.

The EveryAware platform has been explicitly designed to support subjective impressions in
conjunction with sensor data acquisition by introducing an extendable data concept. A central
server efficiently collects, analyzes and visualizes data sent from the arbitrary sources. The plat-
form offers a highly flexible way to store and exchange data for Internet of Things applications.
A wide variety of meta, location, and content information which can be attached to any data
point, a flexible data processor component as well as an efficient storage structure are the keys
to this task. These mechanisms provide the unique ability to enrich data with contextual in-
formation explicitly including subjective impressions. Different collection concepts like sessions
to represent time-interval-based entities and feeds to organize data points in a continuous way
allow to further introduce semantic relations. This enables the web interface to provide different
semantically enriched views on the data, aggregating data globally as well as on a personal level.
Allowing users to access this information is a crucial part of the system since it closes the loop
from data collection to analysis to pushing information back to individual users and communi-
ties which in turn triggers new collection activities. For more information about the EveryAware
platforms and its components we refer to Becker et al. [5].

4.1 Statistics and visualizations

In the case of AirProbe the visualized information is represented by several views of the data
including a map with different information layers as well as several global and personal statistics.
The OpenStreetMap-based2 map view visualizes the collected data on a map which allows for
an easy access to the data as well as for obtaining first insights. It provides a quantitative view
by aggregating samples using clusters, grids, as well as a heatmap view in order to emphasize
the covered area on a global and on a personal level (see Figure 10).

Further statistics calculated by the AirProbe application include summaries like latest overall
measurement activity or air quality averages. Also, personal user profiles are available which list
measurement sessions giving short summaries regarding those sessions and enabling the user to
view and replay them. A personal sessions overview can be seen in Figure 11(a). One view for
exploring personal sessions can be seen in Figure 11(b).

4.2 APIC rankings

Additionally, the web interface provided feedback for the users participating in the APIC game
by measuring air quality using sensorboxes. The case study was held in order to gather large
amounts of air quality samples and behavioral shift patterns using the sensorboxes in the four
cities Antwerp, Kassel, London, and Turin.

In order to keep the motivation and competitiveness as high as possible for the teams playing,
we implemented a ranking mechanism balancing repetitive sampling and coverage. The map was

2http://openstreetmap.org/
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Figure 10: A screenshot of a heatmap on the map page of AirProbe. The website
map and heatmap were generated using in-house developed tools and OpenStreetMap data
( c©OpenStreetMap contributors for map data, used and redistributed under the CC-BY-SA
licence[6]) .

divided into 10 by 10 meter grids. One point was given to a team when sampling within one
such grid cell. When a team received a point in a particular cell, the player did not receive a
point from this grid cell for half an hour. The results for each city as well as for each team
have been visualized and updated in regular intervals on the AirProbe website as can be seen in
Figure 12. Figure 12(a) shows the ranking of each city visualizing the coverage and providing
several statistics. Figure 12(b) shows a detailed view of the point-coverage of the city.

5 The APIC web game

In order to gather subjective opinions about air pollution in the four cities we decided to follow
the game with a purpose [7] approach and accomplish the task using a web game. We started
designing the game taking inspiration from the specific kind of data we wanted. Our aim was
not only to get a map of perceived air pollution but also to study how the perception is affected
by objective data. Specifically, we needed to monitor volunteer opinion before, during and after
exposure to objective air quality data, obtained by the sensing device. This meant keeping the
players engaged in the game for the longest time possible, in order to monitor the opinion shift
of each player. Beside this, opinions about air pollution had to be geo-localised so the game had
to take place on the maps of the four cities. In particular, for each city we defined a mapping
area of approximately 3 km2. The mapping areas are represented in Figure 13.
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Figure 13: In green the game areas and in blue the measurement areas for the four cities. The
grid represents the tiles division for the web game. From the top left to the bottom right:
Antwerp, Kassel, London and Turin. The images were generated using the Google Maps API -
polygons and screenshots (Kassel: c©2014 GeoBasis-DE/BKG ( c©2009) Google, other locations:
c©2014 Google [4]
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Considering all this, the most suitable type of game appeared to be a management simulation,
like the famous FarmVille or Harvest Moon. In this type of game the user has the task of
managing a given territory. By improving their management performances, the users increase
their income in the game. Thus they may access a wider set of features, for example they can
expand their territory or buy more objects, all in order to further improve their income. The
periodic rhythm of this cycle is marked (in FarmVille-like games) by the time the income is
claimable by the player: in order to generate a revenue, an action is required at a given time,
spanning from a few seconds to several hours. This mechanism is an incentive to return to the
game, in order to gather the results of one’s effort.

Figure 14: Screenshots of the game interface, with indication of the main entities and tools. The
game uses the Google Maps API to display maps ( c©2014 Google [4]).

The AirProbe web game is a simplified map management game. In Figure 14 the interface
of the game is depicted. Players are called to fulfil their role of Air Guardians by annotating
the map with AirPins: geo-localised flags tagged with an estimated or perceived pollution level
(Black Carbon concentration in µg/m3, on a scale from 0 to 10). The game area of each city is
divided into tiles as indicated in Figure 13.

At the beginning of the game, users are asked to create a profile (by choosing an avatar and
a name) and to choose a city and a team. Teams were linked to Air Ambassadors, and were an
important part of the competition. Then the volunteer starts from a given Tile of the map of the
chosen city. The user can interact by placing (or editing or removing) AirPins or by expanding
their territory by buying more Tiles. Each day the AirPins placed generate a revenue based on
the precision of the annotation (more details in the following). In order to collect the revenue
generated every day by each AirPin, the user has to access the game daily, otherwise the revenue
will be wasted. The revenue collected will be added to the user balance, and can be used to
buy more AirPins and more Tiles. In order to improve motivation and fidelity, there is a bonus
for days-in-a-row accesses and a large set of other achievements. These achievements consist of
prizes at given milestones in the game story: a certain number of AirPins or Tiles, precision in
the annotation, and so on.

In phase 3 of the case study we made available information about objective measurements
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gathered with the sensor box during phase 2. We avoided to give punctual information about
measurements, otherwise it was likely that users would simply copy the values. So we decided
to release aggregated information by introducing a new map partition named AirSquares. Each
Tile contains 12 AirSquares, that can be purchased just like AirPins or Tiles. Once users bought
an AirSquare, they can see the average pollution value in that area, so the task changes into
estimating fluctuations.

5.1 Revenue and feedback

Our case study was divided in three phases. Beside the AirSquare introduction in phase 3, the
only change between phases was in the revenue calculation algorithm. We generically said that
revenue was related to precision of the annotation. Let us now define the meaning of ‘precision’
in our context. In phase 1 there were no objective data for comparison, thus we adopted the
strategy of matching the AirPins with the estimations of other users within a certain range (30
meters).

The general algorithm of revenue calculation for a certain AirPin f0 with coordinates (lon0, lat0)
and value bc0 was chosen in order to fulfill these conditions:

No data Even if we solved the problem of the lack of data by comparing a user annotation with
other user annotations, at the beginning of phase 1 those were missing as well. So, in case
of absence of other AirPins within the range, the only choice was to trust the user and give
him an average revenue for the AirPin.

Distance In case other AirPins do exist within the range, their distance from the location of f0
had to be taken into account.

Reliability of the match If an AirPin value matched those of a large number of other AirPins,
the revenue had to be large. So the maximum possible revenue is determined by the number
of AirPins within the range.

We decided that the most simple and reasonable choice to give revenue for an AirPin f0 was
based on a comparison of the Black Carbon value bc0 associated with f0 and the average of
all the AirPins F (including f0 itself) within range of f0 weighted by their distance to f0 and
rescaled depending on the number of AirPins in range. So, let F = {f0}∪{f1, . . . , fn} be the set
of all AirPins within 30 meters from f0, including f0 itself and consider the tuples (bci, dist0(fi))
of Black Carbon estimates bci and distances dist0(fi) from f0 for all AirPins in range fi ∈ F .
Let bcF be the weighted mean of all values bci in F using a weight wi defined as

wi = 1− dist0(fi)
2

302
(1)

Let W be the sum of all wi. Now, we computed the maximum revenue for an AirPin f0 based on
this sum of weights W . We use an inverse exponential function to adjust the maximum revenue
(rmax) from 30 (when W = 1) to about 65 (when W = 10) to 75 (when W > 20):

rmax = 30 + 45(1− 2−
W−1

3 ) (2)

We now define the ‘error’ e0 = |bc0 − bcF | of the estimation for the AirPin f0 as the absolute
value of the difference between the AirPin value bc0 and the weighted average bcF of F . Finally,
we defined a critical threshold t for the error. If e0 > t then the revenue will be 0, otherwise the
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revenue is calculated using a formula taking the maximum revenue rmax, the error e0 as well as
the defnied critical threshold t into account:

r0 =

{
0, if e0 > t

rmax
1−e0
t , else

(3)

The users only had an aggregated view on their revenue, i.e., only the cumulative value for
the whole ensemble of their AirPins was shown. The only feedback regarding single flags was a
red sign for flags that were not generating any revenue.

As we said, the revenue algorithm has been different in each of the three phases:

Phase 1 The threshold for the error was very tolerant (5 µg/m3) in order to make the game
easy at the beginning.

Phase 2 The threshold was made smaller (2.5 µg/m3), in order to make the game more chal-
lenging and keep users engaged.

Phase 3 The threshold was unchanged but real measurements from sensor boxes were used
instead of other players annotation to calculate the revenues.

Users were not informed about the details of the algorithm. They were just asked to try to be
precise. Every day ranks were published. In order to boost motivation, we introduced a set of
prizes to be given at the end of each phase and in each city. We considered two main metrics for
the ranks: the total revenue of the last day of play and the number of days played in each phase
(fidelity).

6 Recruiting activities

In order to recruit participants for the study each city adopted their own recruitment strat-
egy alongside publicity via the APIC Facebook page, Twitter and the project website which
was used across all the cities. University mailing lists were used to recruit volunteers in each
location, excluding Antwerp, who alongside Kassel were the only cities to use external email
mailhosts. In Antwerp, where similar air quality monitoring activities have previously been car-
ried out, the challenge was advertised via a specific mailing list which included volunteers from
earlier monitoring campaigns, traffic organisations, environmental agencies and interest groups,
and communities working on sustainability issues. The advertisement included a link to a par-
ticipation form that included several questions which were used to gain some ideas on the degree
of interest of the participants in air quality monitoring and on the potential temporal coverage
expected from monitoring activities. Kassel was the only city to release newspaper articles as
part of their recruitment strategy; Turin and London gave talks during classes and a varying
number of posters were distributed within university campuses in Kassel, Turin and London.

Interested individuals were asked to contact the relevant project team members and following
the initial call for participation meetings were scheduled, specifically for Air Ambassadors, to
explain the study in more detail and to provide guidance on using the sensor box. A summary
of the number of Air Ambassadors recruited for each location is detailed in Table 6 below.
The results show that using existing mailing lists, whether within a university or across other
networks, was the most successful approach to securing volunteers in three of the four cities. In
Turin, however, public talks proved to be the most successful.
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Antwerp Kassel London Turin
Method Responses

received
Final
volun-
teers

Responses
received

Final
volun-
teers

Responses
received

Final
volun-
teers

Responses
received

Final
volun-
teers

Mailing
list

32 19 7 5 48 30 8 2

News
paper

- - 3 2 - - - -

Talks - - 2 1 1 1 11 8
Posters - - - - - - - -
Other - - - - - 4 - -

Table 6: APIC recruitment methods and resulting volunteer participation across the four cities.

6.1 Incentives

One of the aims of the AirProbe International Challenge (APIC) was to investigate participation
patterns of volunteers for environmental monitoring studies via a web-based game with a purpose
[7] and competition approach, combining online and offline activities. In addition, comparison
of the various incentives offered across the four Case Study areas (London, Antwerp, Kassel and
Turin) was explored.

The incentives offered to Air Guardians in each city were as follows: the player with the
highest revenue at the end of each phase received a backpack; those ranked second to fourth
t-shirts and the most active players also received a backpack. The winning metrics, as outlined
in the earlier section, were calculated based on the revenue generated by the AirPins in the last
day of play of each phase and fidelity based on the largest number of consecutive days played.
Deviations from these incentives were made in Turin where five t-shirts and one backpack were
offered for the highest revenue and three t-shirts and one backpack for fidelity. In Kassel an
additional incentive was offered to Air Guardians based on the best precision (3 x e50 Amazon
vouchers) and the largest most active team with at least three active members playing over a
minimum of 21 days (3 x e50 Amazon vouchers). In Antwerp there were no specific incentive
schemes and the only place in which prizes were mentioned was on the webpage which stated
prizes were on offer for participants taking measurements and for the most active and best
gamers.

In each of the four cities all Air Ambassadors were given solar panel backpacks for their
contributions and variations across the four cities were as follows:

In London all were given T-shirts and shared £100 Amazon vouchers between each team (a
total of 10 teams varying in size from two to six participants). The team who obtained the best
temporal/spatial coverage won a sensor box in phase 2 and the winning team overall, defined
as having the best temporal/spatial coverage and the largest number of active Air Guardians,
received £400 in Amazon vouchers.

Kassel adopted a stricter criterion which in phase 2 offered twelve lots of e50 Amazon vouchers
for those who carried out one hour of monitoring for at least seven days; twelve lots of e20
vouchers for those who carried out one hour of monitoring for at least seven days and who fell
within the top 50% best ranked Ambassadors world-wide and e250, or a sensor box, for the
best temporal/spatial coverage and at least 1.5 hours of monitoring completed for nine days. In
phase 3 e250 Amazon vouchers were offered to the Ambassador with the best temporal/spatial
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coverage and 1.5 hours of monitoring for nine days; e50 for second place and e20 for third with
the best temporal/spatial coverage and at least one hour of monitoring for seven days

Turin offered T-shirts to all Ambassadors and two sensor boxes (one for phase 2 and one for
phase 3) to those with highest coverage. In addition they gave final prizes (3 Amazon vouchers
e75, e50 and e25 ) to Ambassadors with the best performing teams, using a combined criterion
for evaluation (number of measurements, coverage and game activity for the Ambassador’s team).
These final prizes were however not advertised to the participants before the end of the challenge.

Antwerp did not specify any specific reward scheme.
The overall challenge winner across all cities was offered EveryAware T-shirts for their effort.
The influence of the different strategies regarding incentives are somewhat visible when

analysing the data in the next section.

7 Data analysis

Total geo-
localised

Additional
without
location

Antwerp Kassel London Turin

Number of
measurements

6,615,407 3,326,956 318,537 2,929,345 1,115,828 1,592,912

Number of
tags

742 16 3 32 606 11

Table 7: Number of measurements and tags during the test case. Details for each of the four
locations.

The analysis presented in this work is based on a large amount of air quality measurements
collected using the EveryAware sensorbox during four weeks (phases 2 and 3 of the AirProbe
International Challenge) in four European cities. Table 7 summarises the number of data points
and tags collected. This shows that in Europe there were over 6 million measurements performed,
with Kassel displaying the largest activity. This could be due to the fact that volunteers in
Kassel were offered significant monetary rewards for their activity, unlike the other locations.
The number of annotations is largest in London, which is due to the instructions they received
which underlined the need for subjective annotations.

For further insight into the range of measurements obtained, we show daily (Figure 15) and
hourly (Figure 16) numbers of measurements at each location. The different cities show different
behaviour. In Antwerp and London, the activity decreased significantly during phase 3 of the
challenge. This shows that users were mostly interested in mapping the main area of interest
in the challenge. In Turin, however, activity increased during phase 3, which may indicate that
volunteers were particularly interested in a different area than that chosen for phase 2, and in
monitoring their own daily exposure. In Kassel, activity is more or less stable, with a slight
decrease in the last week.

Daily patterns (activity per hour) show afternoon peaks for each location. For Kassel and
Turin there is a significant amount of data collected during the night, showing an increased
interest again in monitoring and collecting a large number of points.

Besides the general number of measurements coverage patterns are also important. The
main text discusses overall coverage, both in time and space. Here we provide more details for
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Figure 15: Number of data points per day in the four locations of the challenge.

the different locations, in Table 8, in an aggregated manner: for each location we show the total
number of 10 m ×10 m squares covered (space coverage) and the average number of measurements
(rough measure of time coverage). The table shows that coverage follows the same trend as the
number of measurements (Table 7): the highest coverage is achieved by Kassel, which also won
the challenge, and lowest by Antwerp. This applies both to the space dimension (surface covered
at least once) and time (number of repeated measurements in an area). In total, volunteers
covered over 24 km2, and each 10 m ×10 m tile contained on average 24 measurements.

Europe Antwerp Kassel London Turin
Surface cov-
ered in m2

24,330,700 1,906,500 8,373,400 6,996,000 7,054,800

Average num-
ber of mea-
surements per
100m2

24.14 17.01 34.71 15.36 22.23

Table 8: Coverage obtained in Europe and at each of the four locations.

For an improved qualitative image of the type of coverage patterns in the different weeks of the
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Figure 16: Number of data points per hour of the day at the four locations of the challenge.

challenge, we provide two examples from two different teams in Turin (Figures 17 and 18). These
validate the observations made in the main text: during the first two weeks of measurements
teams explore more, in their aim to cover the area of interest, i.e., the predefined mapping area,
as well as possible. In the last phase, however, when no mapping area exists, they perform
repeated measurements on their daily tracks, with reduced space exploration. This pattern is
important for further analyses, since the space/time coverage appears to be much better when
the area is restricted.

For a better view of the evolution of measured pollution levels between phases 2 and 3, Figure
19 shows the distribution of BC for the different locations, compared in the different phases. We
use notched boxplots, which show minimum, maximum and quartile values for the data: the box
represents the range of the data between the first and third quartile. The notches show confidence
intervals (if these do not overlap, differences between the distributions are significant). In the
plots presented here, the notches are so small that they are invisible. The plots also contain
information about the size of the different datasets: the width of the boxes is proportional to the
square root of the number of data points represented. In Kassel, volunteers were grouped into
two groups in phase 3: the first group (g1 - three sensor boxes) had as a task to avoid highly
polluted areas, while group g2 (6 sensor boxes) had no task other than using the sensor box
where they wished. This in order to test whether any learning appears during measurements.

For Antwerp, volunteers collected much higher BC levels in phase 3. In London, although
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(a) Week 1. (b) Week 2.

(c) Week 3. (d) Week 4.

Figure 17: Coverage for group “ggwp” over the four measuring weeks of the APIC challenge.
The grey area indicates the predefined mapping area.

means are not larger, the maximum levels achieved are larger in phase 3. However, for these
two cities data in phase 3 is rather limited compared to the other locations and to phase 2 (as
shown by the width of the boxplots in Figure 19 and in Figure 15). For Turin, an increase in the
measured pollution levels is clear again. So, for all three locations, there is a good indication that
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(a) Week 1. (b) Week 2.

(c) Week 3. (d) Week 4.

Figure 18: Coverage for group “TUX” over the four measuring weeks of the APIC challenge.

volunteers concentrated more on high pollution levels in the 3rd phase of the challenge: when
they were allowed to explore, the aim was to identify highly polluted locations.

For Kassel, the group tasked with minimising their exposure (g1) displays on average larger
BC levels compared to the other group. Maximum values appear, however, to be lower compared
both to the previous phase and to g2. This may indicate that volunteers have only learned how to
avoid extreme pollution levels, but still cannot discriminate when it comes to average behaviour.

Of course, pollution levels themselves may change from one day or period to another, making
evaluation of user behaviour difficult. For instance, if a user appears to measure higher values in
time, this could be either because of a shift in his personal interests, or because pollution itself
increases. For the period of the challenge, PM10 data (particulate matter with an aerodynamic
diameter under 10 µm) were available from official monitoring stations for all locations, while BC
only for Antwerp [8, 9, 10, 11]. Although BC is mainly represented in the small diameter ranges
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Figure 19: Pollution levels per location compared in the two phases. The distribution of
BC levels (in µg/m3) are shown for the two measuring phases of the challenge, phases 2 and 3,
separate for each location. For phase 3 Kassel’s AirAmbassadors are split into two groups with
different objectives. Group 1 (g1) was supposed to avoid strongly poluted areas. Group 2 (g2)
had no specific goal.
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of PM, PM10 data were used for comparison with the measurements, due to higher availability,
since they give a good indiction of the general level of pollution. In Figure 20, we compare the
daily average PM10 with average BC values obtained by our volunteers. In Antwerp, we also
show official average BC levels. As the figure shows, BC levels measured by our volunteers are
within a good range compared to PM10 values. Differences are comparable to those observed
between reference BC and PM10 in Antwerp and may indicate some particular interest of the
volunteers. Also, no increase between phases 2 and 3 is visible in PM10 data. Table 9 shows
average PM10 for all locations for phases 2 and 3 (for Antwerp we also show BC). This confirms
that no significant increase in overall pollution levels appeared from phase 2 to phase 3.

Table 9: Average official pollution levels for the four locations in phase 2 and phase 3 of the challenge.

Antwerp PM10 Antwerp BC Kassel PM10 London PM10 Turin PM10

Phase 2 29.25 4.33 26.2 26.73 50.42
Phase 3 28.29 3.03 28.1 26.05 39.66

0 5 10 15 20 25

2
4

6
8

10

Antwerp

Day

A
ve

ra
ge

 B
C

●
●

●

●
●

●
●

●

●
●

●

●
●

● ● ●
● ●

● ● ●

●
●

●

●
●

20
60

10
0

A
ve

ra
ge

 P
M

10

● Official PM10
EveryAware BC
Official BC

0 5 10 15 20 25

2
4

6
8

10

Kassel

Day

A
ve

ra
ge

 B
C

●

●
●

●

● ● ●

●
● ● ● ●

●

●

●

●

● ●
● ●

●

●

●
●

●

●

●

●

20
60

10
0

A
ve

ra
ge

 P
M

10

● Official PM10
EveryAware BC

0 5 10 15 20 25

2
4

6
8

10

London

Day

A
ve

ra
ge

 B
C

●
● ● ● ●

● ● ●
●

●

●

●
●

● ●

● ● ● ● ● ●
●

●

● ●

●
● ●

20
60

10
0

A
ve

ra
ge

 P
M

10

● Official PM10
EveryAware BC

0 5 10 15 20 25

2
4

6
8

10

Turin

Day

A
ve

ra
ge

 B
C

●

●
●

●

●

●

● ●

●

●
●

●

●

●
●

●
●

● ●
●

●
●

● ●

●

●
●

●

20
60

10
0

A
ve

ra
ge

 P
M

10

● Official PM10
EveryAware BC

Figure 20: Comparison of measured average BC to PM10 and BC reference measurements in the
areas of interest.

7.1 Opinion evolution model

This section revisit the APD graphs from the main text aggregated according to each phase
reported in Figure 21.
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Figure 21: Clockwise, from the top left: the APD histogram for the overall, for Kassel, for Turin
and for London in each phase of the challenge and with an estimation of phase 3 data obtained
from phase 1 data through the transformation defined in Eq. (5).
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If we look at phase 3 histograms two main features attract our attention: a narrow peak at
0 and a strongly asymmetric structure. The first feature was somehow expected since players
are trusting the AS (AirSquare) values shown in the AS, and they are annotating accordingly.
Fortunately, the peak at zero is not delta like, which would be expected if users were copying the
AS value. Rather, players still have their opinion on the environment and keep it despite the on
field measurements. This may happen because they are really trying to follow the basic ideas of
the game, but also because copying it is not the best strategy, since the AS value is aggregated,
i.e. it is the average of all sensor box measurements taken in the corresponding AS, while the real
measurements used for revenue calculation were punctual values which could be substantially
different. So the shape of the distribution around zero seems to be caused by users learning the
most likely air quality value and trying to estimate fluctuations. But graphs in Figure 21 show
something more. There is a clear asymmetry for phase 3 distributions, since the great part of
APD values fall in the positive range. This could be a consequence of the fact that AS values were
around 3 µg/m3 so there was a 30% probability to underestimate that value and 70% to over
estimate, but if we look at the phase 1 distributions, this asymmetry effect seems better explained
by a sort of memory effect or inertia of players in changing their opinions. This hypothesis seems
realistic if we look at the London graph. The main peak around 4 µg/m3 is still present in phase
3, although it is shifted. In order to measure this effect we defined a transformation that takes
into the account both features just discussed: the accumulation around 0 and the shift. Let us
consider a given set of opinions oi about a certain number of topics provided by a certain number
of subjects. At a given time those subjects are exposed to values hi, which are perceived as hints
of the true values. We are interested in what happens to the difference between opinions and
hints before and after the exposition, to understand how this information will affect the opinion
structure. To this aim, we define the set of differences di between the opinions and the relative
hints and analyse the distribution of those differences before and after the exposition. Obviously,
the variation of the differences is only due to the variation of the opinions. As we said, we want
to reproduce the phenomenon of the accumulation around the hints (i.e., daft ∼ 0) and the shift
of the general opinion, that we will try to describe as a sort of rescaling (i.e., daft ∼ dbef/r
where r will be the rescaling constant). Which of the two phenomena will take place will be
decided randomly: with a given probability p0 the opinion will reset around 0, otherwise, with
probability 1− p0, the opinion will just be rescaled. Finally, around this two attractors we add
a certain amount of noise. We decided for a Cauchy distribution C(X) centered at 0 in one case
and at dbef/r in the other, i.e.

C(x;µ, γ) =
1

πγ

(
1 +

(
x−µ
γ

)2) (4)

where µ is the average (and the center of this symmetric distribution) and γ represents a scale
factor. It is worth to note that the variance of this distribution is not defined, since the second
momentum of the distribution does not converge. This choice seems reasonable because tails
seem to be power law-like rather than gaussian-like, as the log plots in Figure 21 show. Let us
define our transformation and its effect on the difference dbef between the opinion and the hint
before the exposure. According to the rules we stated earlier, daft will be distributed according
to this density function:

T (daft; dbef , p0, r, γ0, γr) =

{
C(daft; 0, γ0) with prob. p0
C(daft; dbef/r, γr) with prob. 1− p0 (5)

The transformation we just defined introduces four parameters:
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• p0, which is the probability that the old opinion is reset around d = 0; thus, with probability
1− p0, the opinion shows a certain inertia; this resistance to change causes a shift toward
the hint instead of a complete reset;

• r, the rescale factor quantifying the shift of resilient opinions;

• γ0 and γr , the γ scale factors for the Cauchy distributions centered respectively at 0 and
at dbef/r introduced to add a realistic noise.

We used our data to infer the parameters of our model for Kassel, London, Turin and for the
complete set of data. If we apply the transformation to phase 1 data, we get an estimate of phase
3 distances between opinions and hints. Then, to evaluate how good is the estimate, we use a
two sample Kolmogorov-Smirnov two sided test. This kind of test gives as result the probability
pval that the hypothesis that the two samples are drawn from the same distribution cannot be
rejected. Usually, a value below 5% means that the hypothesis has to be rejected otherwise
the hypothesis is likely to be true. If the pval is around 10% the two samples come from two
distribution which are, in any case, very close. Above 30% the samples can be considered with
a good degree of confidence as coming from the same distribution. We explored the space of
parameters with 10% steps and repeating the test 100 times to find the combinations with the
highest pval for Kassel, London, Turin and for the overall. These optimal combinations are
reported in Table 10 with the relative results for the Kolmogorov-Smirnov test.

Table 10: Parameter combinations with the highest pval resulting from the Kolmogorov-Smirnov test. Parameter
space has been explored with 10% steps and each configuration has been tested 100 times. The average pval is
reported. Some peaks in the tails for London compromised the test, causing as a result unsatisfying values for the
parameters. We reduced the range in the most meaningful area, which is (−1 : 4]). We found the best parameters
testing only this area, obtaining a remarkable result (pval = 27%). Then we made again the test reintroducing
neglected data, obtaining a pval = 9% which is still a satisfactory result.

dataset p0 r γr γ0 < pval >

Kassel 0.336 1.62 0.381 0.0138 0.192
London 0.147 1.90 0.100 0.030 0.267 (0.087)
Turin 0.583 1.56 0.304 0.300 0.417

Overall 0.204 1.767 0.28 0.015 0.262

From Table 10 it appears that the reset of the opinion around the hint does not happen so
often. In London, for example, it is almost a secondary effect. In the best case, Turin, the reset
seems to be there slightly more than in half of the cases. We also reported in Figure 21 an
estimate of the APDs for phase 3 obtained by applying the transformation 5 with the optimal
parameter combination to the data of phase 1. The similarity between the estimate and phase 3
real data is pretty clear.

It is very likely that Eq. (5) is not the real transformation of the opinion due to the subjects’
exposure to hints. We made strong assumptions and we reduced our data set to focus on the
interesting part. Also, we are analyzing and modeling the phenomenon on a very narrow time
scale (weeks) without knowing almost anything about the others (for example, if we considered
months the dynamics could be potentially extremely different). Despite these considerations, the
results we showed point out with sufficient reliability that the main components are there. The
model we referred to helped us to measure how our volunteers were influenced by the hints we
gave them. We may now affirm with a certain degree of confidence that even when people do
not trust completely the AS values, they still get influenced by them. Another way to see this
is that, even if people do not reset their opinions, the space itself in which their opinions are
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arranged is deformed by the exposure to hints. Obviously these considerations are justified if the
subjects consider the source of the hints as objective. In other cases, for example, if volunteers
are told that opinions come from other volunteers, completely different dynamics are expected
to come into play.
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