The Javae Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2013-02-28

Specification: JSR-000901 Javae L anguage Specification (" Specification")
Version: 7

Status: Final Release

Release: July 2011

Copyright © 1997, 2013, Oracle America, Inc. and/or its affiliates. All rights reserved.
500 Oracle Parkway, Redwood City, California 94065, U.S.A.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may
be trademarks of their respective owners.

The Specification provided herein is provided to you only under the Limited License Grant
included herein as Appendix A. Please see Appendix A, Limited License Grant.

Table of Contents

Prefaceto the Java SE 7 Edition xv

Prefacetothe Third Edition xvii

Preface to the Second Edition xxi

Prefaceto the First Edition xxiii

I ntroduction 1

1.1 Organization of the Specification 2

1.2 Example Programs 5

1.3 Notation 6

1.4 Relationship to Predefined Classes and Interfaces 6
15 References 7

Grammars 9

21 Context-Free Grammars 9

2.2 Thelexica Grammar 9

2.3 The Syntactic Grammar 10

24 Grammar Notation 10

Lexical Structure 15

31
3.2
3.3
3.4
35
3.6
3.7
38
39
3.10

Unicode 15

Lexical Trandations 16

Unicode Escapes 17

Line Terminators 18

Input Elements and Tokens 19
White Space 21

Comments 21

Identifiers 23

Keywords 24

Literals 25

3.10.1 Integer Literals 25
3.10.2 Floating-Point Literals 32
3.10.3 Boolean Literals 35
3.10.4 Character Literals 35
3.10.5 String Literals 36

3.10.6 Escape Sequences for Character and String Literals 38

The Java® Language Specification

3.10.7

The Null Literal 39

3.11 Separators 40
3.12 Operators 40

4 Types, Values, and Variables 41

The Kinds of Typesand Values 41
Primitive Types and Values 42

4.1
4.2

4.3

44
4.5

4.6
4.7
4.8
4.9
4.10

411
412

421
4.2.2
4.2.3
4.2.4
4.2.5

Integral Typesand Values 43

Integer Operations 43

Floating-Point Types, Formats, and Values 45
Floating-Point Operations 48

Thebool ean Type and boolean Values 51

Reference Types and Values 52

431
4.3.2
433
434

Objects 54

The Class bj ect 56

TheClassstring 57

When Reference Types Are the Same 57

Type Variables 58
Parameterized Types 60

451
45.2

Type Arguments and Wildcards 61

Members and Constructors of Parameterized Types 64

Type Erasure 65
Reifiable Types 66
Raw Types 67
Intersection Types 71
Subtyping 72

4.10.1
4.10.2
4.10.3

Subtyping among Primitive Types 72
Subtyping among Class and Interface Types 73
Subtyping among Array Types 73

Where Types AreUsed 74
Variables 75

412.1
4.12.2
4.12.3
4124
4125
4.12.6

Variables of Primitive Type 76
Variables of Reference Type 76
Kinds of Variables 78

final Variables 80

Initial Values of Variables 81
Types, Classes, and Interfaces 82

5 Conversionsand Promotions 85

51

Kinds of Conversion 88

511
512
513
514
5.15
516
517

Identity Conversion 88

Widening Primitive Conversion 88

Narrowing Primitive Conversion 90

Widening and Narrowing Primitive Conversion 93
Widening Reference Conversion 93

Narrowing Reference Conversion 93

Boxing Conversion 94

The Java® Language Specification

5.1.8 Unboxing Conversion 95
5.1.9 Unchecked Conversion 97
5.1.10 Capture Conversion 97
5.1.11 String Conversion 99
5.1.12 Forbidden Conversions 100
5.1.13 Value Set Conversion 100

5.2 Assignment Conversion 101
53 Method Invocation Conversion 106
54 String Conversion 108
55 Casting Conversion 108
55.1 Reference Type Casting 111
55.2 Checked Casts and Unchecked Casts 115
55.3 Checked Castsat Run Time 116
56 Numeric Promotions 117
5.6.1 Unary Numeric Promotion 118
5.6.2 Binary Numeric Promotion 119
Names 121
6.1 Declarations 122
6.2 Namesand ldentifiers 127
6.3 Scopeof aDeclaration 130
6.4 Shadowing and Obscuring 133
6.4.1 Shadowing 135
6.4.2 Obscuring 138
6.5 Determining the Meaning of aName 140
6.5.1 Syntactic Classification of a Name According to Context 141
6.5.2 Reclassification of Contextually Ambiguous Names 143
6.5.3 Meaning of Package Names 145
6.5.3.1 Simple Package Names 145
6.5.3.2 Qualified Package Names 146
6.5.4 Meaning of PackageOrTypeNames 146
6.5.4.1 Simple PackageOrTypeNames 146
6.5.4.2 Qualified PackageOrTypeNames 146
6.5.5 Meaning of Type Names 146
6.5.5.1 Simple Type Names 146
6.5.5.2 Qualified Type Names 146
6.5.6 Meaning of Expression Names 147
6.5.6.1 Simple Expression Names 147
6.5.6.2 Qualified Expression Names 148
6.5.7 Meaning of Method Names 151
6.5.7.1 Simple Method Names 151
6.5.7.2 Qualified Method Names 152
6.6 AccessControl 153

6.6.1 Determining Accessibility 154
6.6.2 Detailson protected Access 158
6.6.2.1 Accesstoaprotected Member 158
6.6.2.2 Qualified Accessto apr ot ect ed Constructor 159

The Java® Language Specification

6.7 Fully Qualified Names and Canonical Names 160

7 Packages 163

7.1 Package Members 163
7.2 Host Support for Packages 165
7.3 Compilation Units 167
7.4 Package Declarations 168
74.1 Named Packages 168
7.4.2 Unnamed Packages 169
7.4.3 Observability of aPackage 170
7.5 Import Declarations 170
751 Single-Type-Import Declarations 171
752 Type-Import-on-Demand Declarations 173
75.3 Single-Static-Import Declarations 174
754 Static-lmport-on-Demand Declarations 175
7.6 TopLeve TypeDeclarations 175

8 Classes 179

8.1 Class Declarations 181
8.1.1 ClassModifiers 181
8.1.1.1 abstract Classes 182
8.1.1.2 final Classes 184
8113 strictfp Classes 184
8.1.2 Generic Classes and Type Parameters 185
8.1.3 Inner Classes and Enclosing Instances 187
8.1.4 Superclasses and Subclasses 190
8.1.5 Superinterfaces 192
8.1.6 ClassBody and Member Declarations 195
8.2 Class Members 196
8.3 Field Declarations 201
8.3.1 FiedModifiers 205
83.1.1 static Fields 205
8.3.1.2 final Fields 209
8.3.1.3 transient Fields 209
8.3.14 volatile Fields 209
8.3.2 Initidization of Fields 211
8.3.2.1 Initidizersfor Class Variables 211
8.3.2.2 Initializers for Instance Variables 212
8.3.23 Redtrictions on the use of Fields during
Initialization 212
8.4 Method Declarations 215
8.4.1 Forma Parameters 216
8.4.2 Method Signature 219
8.4.3 Method Modifiers 220
8.4.3.1 abstract Methods 221
8.4.3.2 static Methods 222
8.4.3.3 final Methods 223

8.5
8.6

8.7
8.8

8.9

The Java® Language Specification

8.4.34 native Methods 224
8.4.35 strictfp Methods 224
8.4.3.6 synchroni zed Methods 224

84.4 Generic Methods 226

845 Method Return Type 226

8.4.6 Method Throws 227

8.4.7 Method Body 228

8.4.8 Inheritance, Overriding, and Hiding 229
8.4.8.1 Overriding (by Instance Methods) 229
8.4.8.2 Hiding (by Class Methods) 232
8.4.8.3 Requirementsin Overriding and Hiding 233
8.4.84 Inheriting Methods with Override-Equivalent

Signatures 237

84.9 Overloading 238

Member Type Declarations 242

85.1 Static Member Type Declarations 242

Instance Initializers 243

Static Initializers 243

Constructor Declarations 244

8.8.1 Forma Parameters and Type Parameters 245

8.8.2 Constructor Signature 245

8.8.3 Constructor Modifiers 245

8.84 Generic Constructors 246

8.8.5 Constructor Throws 247

8.8.6 TheTypeof aConstructor 247

8.8.7 Constructor Body 247
8.8.7.1 Explicit Constructor Invocations 248

8.8.8 Constructor Overloading 251

8.8.9 Default Constructor 251

8.8.10 Preventing Instantiation of aClass 253

Enums 253

89.1 Enum Constants 254

8.9.2 Enum Body Declarations 256

Interfaces 263

9.1

9.2
9.3

9.4

Interface Declarations 264
9.11 Interface Modifiers 264
9.1.1.1 abstract Interfaces 265
9.1.1.2 strictfp Interfaces 265
9.1.2 Generic Interfaces and Type Parameters 265
9.1.3 Superinterfaces and Subinterfaces 266
9.1.4 Interface Body and Member Declarations 267
Interface Members 268
Field (Constant) Declarations 269
9.3.1 Initidization of Fieldsin Interfaces 271
Abstract Method Declarations 271
9.4.1 Inheritance and Overriding 272

Vii

viii

The Java® Language Specification

10

11

12

9.4.1.1 Overriding (by Instance Methods) 273
94.1.2 Requirementsin Overriding 273
9.4.1.3 Inheriting Methods with Override-Equivalent
Signatures 273
9.4.2 Overloading 274

9.5 Member Type Declarations 274
9.6 Annotation Types 275
9.6.1 Annotation Type Elements 276
9.6.2 Defaultsfor Annotation Type Elements 280
9.6.3 Predefined Annotation Types 280
9.6.3.1 @rarget 280
9.6.3.2 @etention 281
9.6.3.3 @nherited 281
9.6.34 @verride 282
9.6.35 @uppressWarnings 283
9.6.3.6 @eprecated 283
9.6.3.7 (@afevarargs 284
9.7 Annotations 285
9.71 Normal Annotations 286
9.72 Marker Annotations 288
9.7.3 Single-Element Annotations 289
Arrays 291
10.1 Array Types 292
10.2 Array Variables 292
10.3 Array Creation 294
10.4 Array Access 294
10.5 Array Store Exception 295
10.6 Array Initializers 297
10.7 Array Members 298
10.8 < ass Objectsfor Arrays 300
10.9 AnArray of CharactersisNotastring 301

Exceptions 303

111

11.2

11.3

The Kinds and Causes of Exceptions 304

11.1.1 TheKinds of Exceptions 304

11.1.2 The Causes of Exceptions 305

11.1.3 Asynchronous Exceptions 306
Compile-Time Checking of Exceptions 307
11.2.1 Exception Analysis of Expressions 308
11.2.2 Exception Analysis of Statements 308
11.2.3 Exception Checking 309

Run-Time Handling of an Exception 311

Execution 315

121

Java Virtual Machine Startup 315

13

122

12.3

124

125
12.6

12.7
12.8

The Java® Language Specification

12.1.1 LoadtheClassTest 316

12.1.2 Link Test : Verify, Prepare, (Optionally) Resolve 316
12.1.3 Initialize Test: Execute Initializers 317
1214 InvokeTest.main 318

Loading of Classes and Interfaces 318

12.21 Theloading Process 319

Linking of Classes and Interfaces 320

12.3.1 Veification of the Binary Representation 320
12.3.2 Preparation of aClass or Interface Type 321
12.3.3 Resolution of Symbolic References 321
Initialization of Classes and Interfaces 322

12.4.1 When Initialization Occurs 323

12.4.2 Detailed Initialization Procedure 325
Creation of New Class Instances 327

Finalization of Class Instances 331

12.6.1 Implementing Findization 332

12.6.2 Interaction with the Memory Model 334
Unloading of Classes and Interfaces 335

Program Exit 336

Binary Compatibility 337

131
13.2
133
134

The Form of aBinary 338

What Binary Compatibility Isand IsNot 343
Evolution of Packages 344

Evolution of Classes 344

13.4.1 abstract Classes 344

13.4.2 final Classes 344

13.4.3 public Classes 345

13.4.4 Superclasses and Superinterfaces 345
1345 Class Type Parameters 346

13.4.6 ClassBody and Member Declarations 347
13.4.7 Accessto Members and Constructors 348
13.4.8 Field Declarations 350

13.4.9 final Fieldsand Constants 352

13.4.10 static Fields 354

13.4.11 transient Fields 354

13.4.12 Method and Constructor Declarations 354
13.4.13 Method and Constructor Type Parameters 355
13.4.14 Method and Constructor Formal Parameters 356
13.4.15 Method Result Type 357

13.4.16 abstract Methods 357

13.4.17 final Methods 358

13.4.18 native Methods 358

13.4.19 static Methods 359

13.4.20 synchroni zed Methods 359

13.4.21 Method and Constructor Throws 359
13.4.22 Method and Constructor Body 359

The Java® Language Specification

14

135

13.4.23 Method and Constructor Overloading 359
13.4.24 Method Overriding 361

13.4.25 Static Initializers 361

13.4.26 Evolution of Enums 361
Evolution of Interfaces 361

13.5.1 public Interfaces 361

13.5.2 Superinterfaces 362

13.5.3 Interface Members 362

13.5.4 Interface Type Parameters 362
1355 Field Declarations 363

13.5.6 abstract Methods 363

13.5.7 Evolution of Annotation Types 363

Blocks and Statements 365

141
14.2
14.3
144

145
14.6
14.7
14.8
14.9

14.10
1411
14.12

14.13

14.14

14.15
14.16
14.17
14.18
14.19
14.20

Normal and Abrupt Completion of Statements 365

Blocks 367

Local Class Declarations 367

Local Variable Declaration Statements 369

1441 Loca Variable Declarators and Types 370

14.4.2 Execution of Local Variable Declarations 370

Statements 371

The Empty Statement 373

Labeled Statements 373

Expression Statements 374

Theif Statement 375

149.1 Theif-then Statement 375

14.9.2 Theif-then-el se Statement 376

Theassert Statement 376

Theswi t ch Statement 379

Thewhi | e Statement 383

14.12.1 Abrupt Completion of whi | e Statement 384

The do Statement 385

14.13.1 Abrupt Completion of do Statement 385

Thefor Statement 387

14.14.1 Thebasicfor Statement 387
14.14.1.1 Initialization of f or Statement 388
14.14.1.2 Iteration of f or Statement 388
14.14.1.3 Abrupt Completion of f or Statement 389

14.14.2 The enhanced f or statement 390

Thebr eak Statement 392

Theconti nue Statement 394

Ther et ur n Statement 396

Thet hr ow Statement 397

Thesynchroni zed Statement 399

Thetry statement 401

14.20.1 Executionof try-catch 404

14.20.2 Executionof try-finally andtry-catch-finally 405

15

14.21

The Java® Language Specification

14.20.3 try-with-resources 407
14.20.3.1 Basictry-with-resources 408
14.20.3.2 Extended t ry-with-resources 411
Unreachable Statements 411

Expressions 417

151
15.2
153
154
155
156
15.7

15.8

159

15.10

1511

15.12

Evaluation, Denotation, and Result 417

Variablesas Values 418

Type of an Expression 418

FP-strict Expressions 419

Expressions and Run-Time Checks 419

Normal and Abrupt Completion of Evaluation 421

Evauation Order 423

15.7.1 Evauate Left-Hand Operand First 423

15.7.2 Evaluate Operands before Operation 425

15.7.3 Evaluation Respects Parentheses and Precedence 425

15.7.4 Argument Lists are Evaluated Left-to-Right 427

15.7.5 Evaluation Order for Other Expressions 428

Primary Expressions 428

15.8.1 Lexica Literals 429

15.8.2 ClassLiteras 430

1583 this 430

15.8.4 Quaifiedthis 431

15.8,5 Parenthesized Expressions 432

Class Instance Creation Expressions 432

15.9.1 Determining the Class being Instantiated 434

15.9.2 Determining Enclosing Instances 435

15.9.3 Choosing the Constructor and its Arguments 437

15.9.4 Run-Time Evauation of Class Instance Creation
Expressions 439

15.9.5 Anonymous Class Declarations 440
15.95.1 Anonymous Constructors 441

Array Creation Expressions 442

15.10.1 Run-Time Evaluation of Array Creation Expressions 443

Field Access Expressions 446

15.11.1 Field AccessUsing aPrimary 447

15.11.2 Accessing Superclass Membersusing super 450

Method Invocation Expressions 451

15.12.1 Compile-Time Step 1: Determine Class or Interface to
Search 452

15.12.2 Compile-Time Step 2: Determine Method Signature 453
15.12.2.1 Identify Potentially Applicable Methods 459
15.12.2.2 Phase 1: Identify Matching Arity Methods Applicable

by Subtyping 460
15.12.2.3 Phase 2: Identify Matching Arity Methods Applicable
by Method Invocation Conversion 461

Xi

Xii

The Java® Language Specification

15.13

15.14

15.15

15.16
15.17

15.18

15.19
15.20

1521

15.22

15.23
15.24

15.12.2.4 Phase 3: Identify Applicable Variable Arity
Methods 462
15.12.2.5 Choosing the Most Specific Method 462
15.12.2.6 Method Result and Throws Types 465
15.12.2.7 Inferring Type Arguments Based on Actual
Arguments 466

15.12.2.8 Inferring Unresolved Type Arguments 477

15.12.3 Compile-Time Step 3: Is the Chosen Method Appropriate? 478

15.12.4 Run-Time Evaluation of Method Invocation 481
15.12.4.1 Compute Target Reference (If Necessary) 481
15.12.4.2 Evauate Arguments 483
15.12.4.3 Check Accessibility of Type and Method 484
15.12.4.4 Locate Method to Invoke 485
15.12.4.5 Create Frame, Synchronize, Transfer Control 488

Array Access Expressions 490

15.13.1 Run-Time Evaluation of Array Access 491

Postfix Expressions 493

15.14.1 Expression Names 493

15.14.2 Postfix Increment Operator ++ 494

15.14.3 Postfix Decrement Operator - - 494

Unary Operators 495

15.15.1 Prefix Increment Operator ++ 496

15.15.2 Prefix Decrement Operator - - 497

15.15.3 Unary Plus Operator + 497

15.15.4 Unary Minus Operator - 498

15.15.5 Bitwise Complement Operator ~ 498

15.15.6 Logical Complement Operator ! 499

Cast Expressions 499

Multiplicative Operators 500

15.17.1 Multiplication Operator * 501

15.17.2 Division Operator / 502

15.17.3 Remainder Operator % 503

Additive Operators 506

15.18.1 String Concatenation Operator + 506

15.18.2 Additive Operators (+ and -) for Numeric Types 509

Shift Operators 511

Relational Operators 512

15.20.1 Numerical Comparison Operators <, <=, >, and >= 512

15.20.2 Type Comparison Operator i nst anceof 513

Equality Operators 514

15.21.1 Numerical Equality Operators==and! = 515

15.21.2 Boolean Equality Operators==and! = 516

15.21.3 Reference Equality Operators==and!= 517

Bitwise and Logical Operators 517

15.22.1 Integer Bitwise Operators &, ~, and| 518

15.22.2 Boolean Logical Operators &, ~, and| 519

Conditional-And Operator && 519

Conditional-Or Operator | | 520

16

17

15.25
15.26

15.27
15.28

The Java® Language Specification

Conditional Operator ? : 521

Assignment Operators 523

15.26.1 Simple Assignment Operator = 524
15.26.2 Compound Assignment Operators 529
Expression 535

Constant Expressions 536

Definite Assignment 539

16.1

16.2

16.3
16.4
16.5
16.6
16.7
16.8
16.9

Definite Assignment and Expressions 545

16.1.1 Boolean Constant Expressions 545

16.1.2 Conditional-And Operator && 545

16.1.3 Conditional-Or Operator | | 546

16.1.4 Logical Complement Operator! 546

16.1.5 Conditional Operator ? : 546

16.1.6 Conditional Operator ? : 547

16.1.7 Other Expressions of Typebool ean 547

16.1.8 Assignment Expressions 547

16.1.9 Operators++and-- 548

16.1.10 Other Expressions 548

Definite Assignment and Statements 549

16.2.1 Empty Statements 549

16.2.2 Blocks 549

16.2.3 Loca Class Declaration Statements 551

16.2.4 Loca Variable Declaration Statements 551

16.25 Labeled Statements 551

16.2.6 Expression Statements 552

16.2.7 if Statements 552

16.2.8 assert Statements 552

16.2.9 switch Statements 553

16.2.10 whi | e Statements 553

16.2.11 do Statements 554

16.2.12 for Statements 554
16.2.12.1 Initialization Part of f or Statement 555
16.2.12.2 Incrementation Part of f or Statement 555

16.2.13 break, conti nue, ret urn, and t hr ow Statements 556

16.2.14 synchroni zed Statements 556

16.2.15 try Statements 556

Definite Assignment and Parameters 558

Definite Assignment and Array Initializers 558

Definite Assignment and Enum Constants 559

Definite Assignment and Anonymous Classes 559

Definite Assignment and Member Types 559

Definite Assignment and Static Initializers 560

Definite Assignment, Constructors, and Instance Initializers 560

Threadsand Locks 563

171

Synchronization 564

Xiii

The Java® Language Specification

17.2 Wait Sets and Notification 564
17.2.1 Wait 565
17.2.2 Notification 566
17.2.3 Interruptions 567
17.2.4 Interactions of Waits, Notification, and Interruption 567
17.3 SleepandYield 568
174 Memory Model 569
17.4.1 Shared Variables 572
17.42 Actions 572
17.4.3 Programsand Program Order 573
17.4.4 Synchronization Order 574
17.45 Happens-before Order 575
17.4.6 Executions 578
17.4.7 Well-Formed Executions 579
17.4.8 Executions and Causality Requirements 579
17.4.9 Observable Behavior and Nonterminating Executions 582
175 final Field Semantics 584
1751 Semanticsof final Fields 586
17.5.2 Readingfinal FieldsDuring Construction 586
17.5.3 Subsequent Modification of fi nal Fields 587
1754 Write-protected Fields 588
176 Word Tearing 589
17.7 Non-atomic Treatment of doubl e and | ong 590

18 Syntax 591
Index 607

A Limited License Grant 641

Xiv

Preface to the Java SE 7 Edition

T HE Javee SE 7 Edition of The Java Language Specification describes all the
features that have been added to the Java programming language in Java SE 7. It
also integrates changes madeto the Javaprogramming language under maintenance
since the Third Edition in 2005.

Readers may send feedback about errors and ambiguities in The Java Language
Soecification toj I s- comrent s_ww@r acl e. com

The majority of new features in this edition were specified by JSR 334, Small
Enhancements to the Java Programming Language, led by Joe Darcy with
an Expert Group of Joshua Bloch, Bruce Chapman, Alexey Kudravtsev, Mark
Mahieu, Tim Peierls, and Olivier Thomann. The origins of these features lie in
Project Coin, an OpendDK project started in 2009 with the goal of "Making
things programmers do every day easier”. The project solicited proposals from
the Java community for broadly useful language features that were, in comparison
with "large" features like generics, relatively "small" in their specification,
implementation, and testing.

Thousands of emails and six dozen proposals later, proposals were accepted from
Joshua Bloch (the t r y-with-resources statement), Derek Foster/Bruce Chapman
(improvements to literals), Neal Gafter (multi-cat ch and precise rethrow), Bob
Lee (smplified variable arity method invocation), and Jeremy Manson (improved
type inference for instance creation, ak.a. the "diamond" syntax). The popular
"strings in switch" feature was al so accepted. Special thanks are due to Tom Ball,
Stephen Colebourne, Rémi Forax, Shams Mahmood Imam, James Lowden, and
all those who submitted interesting proposals and thoughtful comments to Project
Coin. Over the course of the project, therewere essential contributionsfrom Mandy
Chung, Jon Gibbons, Brian Goetz, David Holmes, and Dan Smith in areas ranging
from library support to language specification. Stuart Marks led a "coinification"
effort to apply the featuresto the Oracle JDK codebase, both to validate their utility
and to develop conventions for wider use.

The "diamond" syntax and precise rethrow give type inference a new visibility in
the Java programming language. To agreat extent, inference is worthwhile only if
it produces types no less specific than those in a manifestly-typed program prior
to Java SE 7. Otherwise, new code may find inference insufficient, and migration
from manifest to inferred types in existing code will be risky. To mitigate the

XV

XVi

PREFACE TO THE JAVA SE 7 EDITION

risk, Joe Darcy and Maurizio Cimadamore measured the effectiveness of different
inference schemes on alarge corpus of open source Java code. Such "quantitative
language design” greatly improves confidence in the suitability and safety of
the fina feature. The challenge of growing a mature language with millions of
developers is partidly offset by the ability of language designers to learn from
developers' actual code.

The Java SE 7 platform adds features that cater for non-Javalanguages, effectively
expanding the computational model of the platform. Without changes, the Java
programming language would be unable to access or even express some of these
features. Its static type system comes under particular stress when invoking code
written in dynamically typed languages. Consequently, method invocation in
the Java programming language has been modified to support method handle
invocation as defined by JSR 292, Dynamically Typed Languages on the Java
Platform.

The Java Compatibility Kit (JCK) team whose work helps validate this
specification are due an enormous vote of thanks: Leonid Arbouzov, Alexey
Gavrilov, YuliaNovozhilova, Sergey Reznick, and Victor Rudometov. Many other
colleagues at Oracle (past or present) have also given valuable support to this
specification: Uday Dhanikonda, Janet Koenig, Adam Messinger, Mark Reinhold,
Georges Saab, Bill Shannon, and Bernard Traversat.

The following individuals have al provided many valuable comments which
improved this specification: J. Stephen Adamczyk, Peter Ahé, Davide Ancona,
Michael Bailey, Dmitry Batrak, Joshua Bloch, Kevin Bourrillion, Richard
Bosworth, Martin Bravenboer, Martin Buchholz, Didier Cruette, Glenn Colman,
Neal Gafter, Jim Holmlund, Ric Holt, Philippe Mulet, Bill Pugh, Vladimir
Reshetnikov, John Spicer, Robert Stroud, and Mattias Ulbrich.

This edition is the first to be written in the DocBook XML format. Metadata in
the XML markup formsakind of static type system, classifying each paragraph by
its role, such as a definition or an error. The reward is much crisper conformance
testing. Many thanks go to Robert Stayton for sharing his considerable DocBook
expertise and for helping to render DocBook in the traditional ook and feel of The
Java Language Specification.

Alex Buckley
Santa Clara, California

June, 2011

Preface to the Third Edition

T HE Java SE 5.0 platform represents the largest set of changesin the history of
the Java programming language. Generics, annotations, autoboxing and unboxing,
enum types, foreach loops, variable arity methods, and static imports are all new
to the language as of Autumn 2004.

This Third Edition of The Java Language Specification reflects these
developments. It integratesall the changes madeto the Javaprogramming language
since the publication of the Second Edition in 2000, including asserts from J2SE
1.4.

The Java programming language has grown a great deal in these past four years.
Unfortunately, it is unrealistic to shrink a commercially successful programming
language - only to grow it more and more. The challenge of managing this growth
under the constraints of compatibility and the conflicting demands of awidevariety
of uses and users is non-trivial. | can only hope that we have met this challenge
successfully with this specification; time will tell.

This specification builds on the efforts of many people, both at Sun Microsystems
and outside it.

The most crucial contribution is that of the people who actually turn the
specification into rea software. Chief among these are the maintainers of j avac,
the reference compiler for the Java programming language.

Neal Gafter was"Mr. j avac" during the crucial period in which the large changes
described here wereintegrated and productized. Neal's dedication and productivity
can honestly be described as heroic. We literally could not have completed the
task without him. In addition, hisinsight and skill made a huge contribution to the
design of the new language features across the board. No one deserves more credit
for this version of the Java programming language than he - but any blame for its
deficiencies should be directed at myself and the members of the many JSR Expert
Groups!

Neal has gone on in search of new challenges, and has been succeeded by Peter
von der Ahé, who continues to improve and stengthen the implementation. Before
Neal'sinvolvement, Bill Maddox wasin charge of j avac when the previous edition
was completed, and he nursed features such as generics and asserts through their
early days.

XVii

XViil

PREFACE TO THE THIRD EDITION

Another individual who deserves to be singled out is Joshua Bloch. Josh
participated in endless language design discussions, chaired several Expert Groups
and was a key contributor to the Java platform. It is fair to say that Josh and Neal
care more about this book than | do myself!

Many parts of the specification were developed by various Expert Groups in the
framework of the Java Community Process.

The most pervasive set of language changes is the result of JSR 14, Adding
Genericsto the Java Programming Language. The members of the JSR 14 Expert
Group were Norman Cohen, Christian Kemper, Martin Odersky, Kresten Krab
Thorup, Philip Wadler, and myself. In the early stages, Sven-Eric Panitz and Steve
Marx were members as well. All deserve thanks for their participation.

JSR 14 represents an unprecedented effort to fundamentally extend the type
system of awidely used programming language under very stringent compatibility
requirements. A prolonged and arduous process of design and implementation led
ustothe current language extension. Long beforethe JSR for genericswasinitiated,
Martin Odersky and Philip Wadler had created an experimental language called
Pizza to explore the ideas involved. In the spring of 1998, David Stoutamire and
myself began a collaboration with Martin and Philip based on those ideas, that
resulted in GJ. When the JSR 14 Expert Group was convened, GJwas chosen asthe
basisfor extending the Java programming language. Martin Odersky implemented
the GJ compiler, and hisimplementation became the basisfor j avac (starting with
JDK 1.3, even though generics were disabled until 1.5).

The theoretical basis for the core of the generic type system owes a great debt to
the expertise of Martin Odersky and Philip Wadler. L ater, the system was extended
with wildcards. These were based on the work of Atsushi Igarashi and Mirko
Viroli, which itself built on earlier work by Kresten Thorup and Mads Torgersen.
Wildcards were initialy designed and implemented as part of a collaboration
between Sun and Aarhus University. Neal Gafter and myself participated on Sun's
behalf, and Erik Ernst and Mads Torgersen, together with Peter von der Ahé and
Christian Plesner-Hansen, represented Aarhus. Thanks to Ole Lehrmann-Madsen
for enabling and supporting that work.

Joe Darcy and Ken Russell implemented much of the specific support for reflection
of generics. Neal Gafter, Josh Bloch and Mark Reinhold did ahuge amount of work
generifying the JDK libraries.

Honorable mention must go to individual s whose comments on the generics design
made a significant difference. Alan Jeffrey made crucial contributions to JSR 14
by pointing out subtle flaws in the original type system. Bob Deen suggested the
"? super T" syntax for lower bounded wildcards.

PREFACE TO THE THIRD EDITION

JSR 201 included a series of changes: autoboxing, enums, foreach loops, variable
arity methods and static import. The members of the JSR 201 Expert Group were
Cédric Beust, David Biesack, Joshua Bloch (co-chair), Corky Cartwright, Jm
des Rivieres, David Flanagan, Christian Kemper, Doug Lea, Changshin Lee, Tim
Peierls, Michd Trudeau, and myself (co-chair). Enums and the foreach loop were
primarily designed by Josh Bloch and Neal Gafter. Variable arity methods would
never have made it into the Java programming language without Neal's special
efforts designing them (not to mention the small matter of implementing them).

Josh Bloch bravely took upon himself the responsibility for JSR 175, which added
annotations to the Java programming language. The members of JSR 175 Expert
Group were Cédric Beust, Joshua Bloch (chair), Ted Farrell, Mike French, Gregor
Kiczales, Doug L ea, Deegptendu Majunder, Simon Nash, Ted Neward, Roly Perera,
Manfred Schneider, Blake Stone, and Josh Street. Neal Gafter, as usual, was a
major contributor on this front as well.

Another change in this edition is a complete revision of the Java memory model,
undertaken by JSR 133. The members of the JSR 133 Expert Group were Hans
Boehm, Doug Lea, Tim Lindholm (co-chair), Bill Pugh (co-chair), Martin Trotter,
and Jerry Schwarz. The primary technical authors of the memory model are Sarita
Adve, Jeremy Manson, and Bill Pugh. The Javamemory model chapter in thisbook
isinfact amost entirely their work, with only editorial revisions. Joseph Bowbeer,
David Holmes, Victor Luchangco, and Jan-Willem Maessen made significant
contributions as well. Key sections dealing with finalization in Chapter 12 owe
much to thiswork aswell, and especially to Doug Lea.

Many people have provided valuable comments on this edition.

I'd like to express my gratitude to Archibald Putt, who provided insight and
encouragement. His writings are always an inspiration. Thanks once again to Joe
Darcy for introducing us, as well as for many useful comments, and his specific
contributions on numerical issues and the design of hexadecimal literals.

Many colleagues at Sun (past or present) have provided useful feedback and
discussion, and hel ped produce thiswork in myriad ways: Andrew Bennett, Martin
Buchholz, Jerry Driscoll, Robert Field, Jonathan Gibbons, Graham Hamilton,
Mimi Hills, Jim Holmlund, Janet Koenig, Jeff Norton, Scott Seligman, Wei Tao,
and David Ungar.

Special thanksto Laurie Tolson, my manager, for her support throughout the long
process of deriving these specifications.

The following individuals al provided many vauable comments that have
contributed to this specification: Scott Annanian, Martin Bravenboer, Bruce

XiX

XX

PREFACE TO THE THIRD EDITION

Chapman, Lawrence Gonsalves, Tim Hanson, David Holmes, Angelika Langer,
Pat Lavarre, Philippe Mulet, and Cal Varnson.

Ann Sellers, Greg Doench, and John Fuller at Addison-Wesley were exceedingly
patient and ensured that the book materialized, despite the many missed deadlines
for this text.

As always, | thank my wife Weihong and my son Teva for their support and
cooperation.

Gilad Bracha

Los Altos, California

January, 2005

Preface to the Second Edition

OVER the past few years, the Java programming language has enjoyed
unprecedented success. This success has brought a challenge: a ong with explosive
growth in popularity, there has been explosive growth in the demands made on the
language and its libraries. To meet this challenge, the language has grown as well
(fortunately, not explosively) and so have the libraries.

This Second Edition of The Java Language Specification reflects these
developments. It integratesall the changes madeto the Javaprogramming language
since the publication of the First Edition in 1996. The bulk of these changes were
made in the 1.1 release of the Java platform in 1997, and revolve around the
addition of nested type declarations. Later modifications pertained to floating-
point operations. In addition, this edition incorporates important clarifications and
amendments involving method lookup and binary compatibility.

This specification defines the language as it exists today. The Java programming
languageislikely to continueto evolve. At thiswriting, there areongoing initiatives
through the Java Community Process to extend the language with generic types
and assertions, refine the memory model, etc. However, it would be inappropriate
to delay the publication of the Second Edition until these efforts are concluded.

The specifications of the libraries are now far too large to fit into this volume, and
they continueto evolve. Consequently, API specifications have been removed from
this book. The library specifications can be found on the Web; this specification
now concentrates solely on the Java programming language proper.

Many people contributed to this book, directly and indirectly. Tim Lindholm
brought extraordinary dedication to his role as technical editor of the Java Series.
He also made invaluable technical contributions, especially on floating-point
issues. The book would likely not see the light of day without him. Lisa Friendly,
the Serieseditor, provided encouragement and advice for which | am very thankful.

David Bowen first suggested that | get involved in the specifications of the Java
platform. | am grateful to him for introducing me to this uncommonly rich area.

John Rosg, the father of nested typesin the Java programming language, has been
unfailingly gracious and supportive of my attempts to specify them accurately.

Many people have provided valuable comments on this edition. Specia thanks
go to Roly Perera at Ergnosis and to Leonid Arbouzov and his colleagues on

XXi

XXii

PREFACE TO THE SECOND EDITION

the Java platform conformance team in Novosibirsk: Konstantin Bobrovsky,
Natalia Golovleva, Vladimir lvanov, Alexel Kaigorodov, Serguei Katkov,
Dmitri Khukhro, Eugene Latkin, Ilya Neverov, Pavel Ozhdikhin, Igor Pyankov,
Viatcheslav Rybalov, Serguei Samoilidi, Maxim Sokolnikov, and Vitaly Tchaiko.
Their thorough reading of earlier drafts has greatly improved the accuracy of this
specification.

| am indebted to Martin Odersky and to Andrew Bennett and the members of
the javac compiler team, past and present: Iris Garcia, Bill Maddox, David
Stoutamire, and Todd Turnidge. They all worked hard to make sure the reference
implementation conformed to the specification. For many enjoyable technical
exchanges, | thank them and my other colleagues at Sun: Lars Bak, Joshua
Bloch, Cliff Click, Robert Field, Mohammad Gharahgouzl oo, Ben Gomes, Steffen
Grarup, Robert Griesemer, Graham Hamilton, Gordon Hirsch, Peter Kesder,
Sheng Liang, James Mcllree, Philip Milne, Srdjan Mitrovic, Anand Palaniswamy,
Mike Paleczny, Mark Reinhold, Kenneth Russell, Rene Schmidt, David Ungar,
Chris Vick, and Hong Zhang.

Tricia Jordan, my manager, has been a model of patience, consideration and
understanding. Thanks are also dueto Larry Abrahams, director of Java2 Standard
Edition, for supporting this work.

The following individuals all provided useful comments that have contributed
to this specification: Godmar Bak, Hans Boehm, Philippe Charles, David Chase,
Joe Darcy, Jim des Rivieres, Sophia Drossopoulou, Susan Eisenbach, Paul Haahr,
Urs Hoelzle, Bart Jacobs, Kent Johnson, Mark Lillibridge, Norbert Lindenberg,
Phillipe Mulet, Kelly O'Hair, Bill Pugh, Cameron Purdy, Anthony Scian, Janice
Shepherd, David Shields, John Spicer, Lee Worall, and David Wragg.

Suzette Pelouch provided invaluable assistance with the index and, together with
Doug Kramer and Atul Dambalkar, assisted with FrameMaker expertise; Mike
Hendrickson and Julie Dinicola at Addison-Wesley were gracious, helpful and
ultimately made this book areality.

On a personal note, | thank my wife Weihong for her love and support.
Finaly, I'd like to thank my coauthors, James Gosling, Bill Joy, and Guy Steelefor
inviting meto participate in this work. It has been a pleasure and a privilege.
Gilad Bracha
Los Altos, California
April, 2000

Preface to the First Edition

T HE Java programming language was originally called Oak, and was designed
for use in embedded consumer-electronic applications by James Gosling. After
several years of experience with the language, and significant contributions by
Ed Frank, Patrick Naughton, Jonathan Payne, and Chris Warth it was retargeted
to the Internet, renamed, and substantially revised to be the language specified
here. The final form of the language was defined by James Godling, Bill Joy, Guy
Steele, Richard Tuck, Frank Yellin, and Arthur van Hoff, with help from Graham
Hamilton, Tim Lindholm, and many other friends and colleagues.

The Java programming language is a general-purpose concurrent class-based
object-oriented programming language, specifically designed to have as few
implementation dependencies as possible. It allows application devel opersto write
aprogram once and then be able to run it everywhere on the Internet.

This book attempts a complete specification of the syntax and semantics of the
language. We intend that the behavior of every language construct is specified
here, so that all implementations will accept the same programs. Except for timing
dependencies or other non-determinisms and given sufficient time and sufficient
memory space, a program written in the Java programming language should
compute the same result on all machines and in all implementations.

We believe that the Java programming language is a mature language, ready for
widespread use. Nevertheless, we expect some evolution of the language in the
years to come. We intend to manage this evolution in a way that is completely
compatible with existing applications. To do this, we intend to make relatively few
new versions of the language. Compilers and systems will be able to support the
several versions simultaneously, with complete compatibility.

Much research and experimentation with the Java platform is already underway.
We encourage this work, and will continue to cooperate with external groups to
exploreimprovementsto the language and platform. For example, we have already
received severa interesting proposals for parameterized types. In technically
difficult areas, near the state of the art, this kind of research collaboration is
essential.

We acknowledge and thank the many people who have contributed to this book
through their excellent feedback, assistance and encouragement:

XXiii

XXV

PREFACE TO THE FIRST EDITION

Particularly thorough, careful, and thoughtful reviews of drafts were provided by
Tom Cargill, Peter Deutsch, Paul Hilfinger, Masayuki Ida, David Moon, Steven
Muchnick, Charles L. Perkins, Chris Van Wyk, Steve Vinoski, Philip Wadler,
Daniel Weinreb, and Kenneth Zadeck. We are very grateful for their extraordinary
volunteer efforts.

We are also grateful for reviews, guestions, comments, and suggestions from
Stephen Adams, Bowen Alpern, Glenn Ammons, Leonid Arbouzov, Kim Bruce,
Edwin Chan, David Chase, Pavel Curtis, Drew Dean, William Dietz, David Dill,
Patrick Dussud, Ed Felten, John Giannandrea, John Gilmore, Charles Gust, Warren
Harris, Lee Hasiuk, Mike Hendrickson, Mark Hill, Urs Hoelzle, Roger Hoover,
Susan Flynn Hummel, Christopher Jang, Mick Jordan, Mukesh Kacker, Peter
Kesder, James Larus, Derek Lieber, Bill McKeeman, Steve Naroff, Evi Nemeth,
Raobert O'Callahan, Dave Papay, Craig Partridge, Scott Pfeffer, Eric Raymond, Jim
Roskind, Jim Russell, William Scherlis, Edith Schonberg, Anthony Scian, Matthew
Self, Janice Shepherd, Kathy Stark, Barbara Steele, Rob Strom, William Waite,
Greg Weeks, and Bob Wilson. (This list was generated semi-automatically from
our E-mail records. We apologize if we have omitted anyone.)

The feedback from all these reviewers was invaluable to us in improving the
definition of the language as well asthe form of the presentation in this book. We
thank them for their diligence. Any remaining errors in this book - we hope they
are few - are our responsibility and not theirs.

We thank Francesca Freedman and Doug Kramer for assistance with matters of
typography and layout. We thank Dan Mills of Adobe Systems Incorporated for
assistance in exploring possible choices of typefaces.

Many of our colleagues at Sun Microsystems have helped usin oneway or another.
Lisa Friendly, our series editor, managed our relationship with Addison-Wesley.
Susan Stambaugh managed the distribution of many hundreds of copiesof draftsto
reviewers. We received valuable assistance and technical advice from Ben Adida,
Ole Agesen, Ken Arnold, Rick Cattell, Asmus Freytag, Norm Hardy, Steve Heller,
David Hough, Doug Kramer, Nancy Lee, Marianne Mueller, Akira Tanaka, Greg
Tarsy, David Ungar, Jim Waldo, Ann Wollrath, Geoff Wyant, and Derek White.
We thank Alan Baratz, David Bowen, Mike Clary, John Doerr, Jon Kannegaard,
Eric Schmidt, Bob Sproull, Bert Sutherland, and Scott McNealy for leadership and
encouragement.

We are thankful for the tools and services we had at our disposal in writing
this book: telephones, overnight delivery, desktop workstations, laser printers,
photocopiers, text formatting and page layout software, fonts, electronic mail,
the World Wide Web, and, of course, the Internet. We live in three different

PREFACE TO THE FIRST EDITION

states, scattered across a continent, but collaboration with each other and with our
reviewers has seemed almost effortless. Kudosto the thousands of peoplewho have
worked over the years to make these excellent tools and services work quickly and
reliably.

Mike Hendrickson, Katie Duffy, Simone Payment, and Rosa Aimée Gonzalez
of Addison-Wesley were very helpful, encouraging, and patient during the long
process of bringing this book to print. We also thank the copy editors.

Rosemary Simpson worked hard, on avery tight schedule, to create the index. We
got into the act at the last minute, however; blame us and not her for any jokesyou
may find hidden therein.

Finally, we are grateful to our familiesand friendsfor their love and support during
thislagt, crazy, year.

In their book The C Programming Language, Brian Kernighan and Dennis Ritchie
said that they felt that the C language "wears well as one's experience with it
grows." If you like C, we think you will like the Java programming language. We
hope that it, too, wears well for you.

James Gosling
Cupertino, California

Bill Joy
Aspen, Colorado

Guy Stecle
Chelmsford, Massachusetts

July, 1996

XXV

CHAPTER 1

| ntroduction

T HE Javee programming language is a general-purpose, concurrent, class
based, object-oriented language. It is designed to be simple enough that many
programmers can achieve fluency inthelanguage. The Javaprogramming language
isrelated to C and C++ but isorganized rather differently, with anumber of aspects
of C and C++ omitted and afew ideas from other languagesincluded. It isintended
to be a production language, not a research language, and so, as C. A. R. Hoare
suggested in his classic paper on language design, the design has avoided including
new and untested features.

The Javaprogramming languageis strongly and statically typed. This specification
clearly distinguishes between the compile-time errorsthat can and must be detected
at compile time, and those that occur at run time. Compile time normally consists
of translating programs into a machine-independent byte code representation.
Run-time activities include loading and linking of the classes needed to execute
a program, optional machine code generation and dynamic optimization of the
program, and actual program execution.

The Java programming language is arelatively high-level language, in that details
of the machine representation are not available through the language. It includes
automatic storage management, typically using a garbage collector, to avoid
the safety problems of explicit dealocation (as in C's free or C++'s del et e).
High-performance garbage-collected implementations can have bounded pausesto
support systems programming and real-time applications. The language does not
include any unsafe constructs, such asarray accesseswithout index checking, since
such unsafe constructs would cause a program to behave in an unspecified way.

The Javaprogramming languageis normally compiled to the bytecoded instruction
set and binary format defined in The Java Virtual Machine Specification, Java SE
7 Edition.

11

Organization of the Specification INTRODUCTION

1.1 Organization of the Specification

Chapter 2 describes grammars and the notation used to present the lexical and
syntactic grammars for the language.

Chapter 3 describesthe lexical structure of the Java programming language, which
is based on C and C++. The language is written in the Unicode character set. It
supports the writing of Unicode characters on systems that support only ASCII.

Chapter 4 describes types, values, and variables. Types are subdivided into
primitive types and reference types.

The primitive types are defined to be the same on all machines and in al
implementations, and are various sizes of two's-complement integers, single- and
double-precision |EEE 754 standard floating-point numbers, abool ean type, and
a Unicode character char type. Vaues of the primitive types do not share state.

Reference types are the class types, the interface types, and the array types. The
reference types are implemented by dynamicaly created objects that are either
instances of classes or arrays. Many referencesto each object can exist. All objects
(including arrays) support the methods of the class j ect , which is the (single)
root of the class hierarchy. A predefined st ri ng class supports Unicode character
strings. Classes exist for wrapping primitive values inside of objects. In many
cases, wrapping and unwrapping is performed automatically by the compiler (in
which case, wrapping is called boxing, and unwrapping is called unboxing). Class
and interface declarations may be generic, that is, they may be parameterized by
other reference types. Such declarations may then be invoked with specific type
arguments.

Variables are typed storage locations. A variable of a primitive type holds avalue
of that exact primitive type. A variable of aclass type can hold a null reference or
areference to an object whose type is that class type or any subclass of that class
type. A variable of an interface type can hold a null reference or areferenceto an
instance of any classthat implements theinterface. A variable of an array type can
hold anull reference or areferenceto an array. A variable of classtype Obj ect can
hold a null reference or areference to any object, whether class instance or array.

Chapter 5 describes conversions and numeric promotions. Conversions change the
compile-time type and, sometimes, the value of an expression. These conversions
include the boxing and unboxing conversions between primitive types and
reference types. Numeric promotions are used to convert the operands of anumeric
operator to a common type where an operation can be performed. There are no

INTRODUCTION Organization of the Specification

loopholesinthelanguage; castson referencetypesare checked at runtimeto ensure
type safety.

Chapter 6 describes declarations and names, and how to determine what names
mean (denote). Thelanguage does not requiretypesor their membersto be declared
before they are used. Declaration order is significant only for local variables, local
classes, and the order of initializers of fieldsin aclass or interface.

The Java programming language provides control over the scope of names
and supports limitations on external access to members of packages, classes,
and interfaces. This helps in writing large programs by distinguishing the
implementation of atype from its users and those who extend it. Recommended
naming conventions that make for more readable programs are described here.

Chapter 7 describes the structure of a program, which is organized into packages
similar to themodules of Modula. The membersof apackage are classes, interfaces,
and subpackages. Packages are divided into compilation units. Compilation units
contain type declarations and can import types from other packages to give them
short names. Packages have names in a hierarchical name space, and the Internet
domain name system can usually be used to form unigue package names.

Chapter 8 describes classes. The members of classes are classes, interfaces, fields
(variables) and methods. Classvariablesexist once per class. Classmethodsoperate
without reference to a specific object. Instance variables are dynamically created
in objects that are instances of classes. Instance methods are invoked on instances
of classes; such instances become the current object t hi s during their execution,
supporting the object-oriented programming style.

Classes support single implementation inheritance, in which the implementation
of each class is derived from that of a single superclass, and ultimately from the
class j ect . Variables of a classtype can reference an instance of that class or of
any subclass of that class, allowing new types to be used with existing methods,
polymorphically.

Classes support concurrent programming with synchr oni zed methods. Methods
declare the checked exceptions that can arise from their execution, which allows
compile-time checking to ensure that exceptiona conditions are handled. Objects
candeclareafi nal i ze methodthat will beinvoked beforethe objectsarediscarded
by the garbage collector, allowing the objectsto clean up their state.

For simplicity, the language has neither declaration "headers' separate from the
implementation of a class nor separate type and class hierarchies.

11

11

Organization of the Specification INTRODUCTION

A special form of classes, enums, support the definition of small sets of valuesand
their manipulation in atype safe manner. Unlike enumerations in other languages,
enums are objects and may have their own methods.

Chapter 9 describes interface types, which declare a set of abstract methods,
member types, and constants. Classes that are otherwise unrelated can implement
the same interface type. A variable of an interface type can contain a reference
to any object that implements the interface. Multiple interface inheritance is
supported.

Annotation types are speciaized interfaces used to annotate declarations. Such
annotations are not permitted to affect the semantics of programs in the Java
programming language in any way. However, they provide useful input to various
tools.

Chapter 10 describes arrays. Array accesses include bounds checking. Arrays are
dynamically created objects and may be assigned to variables of type j ect . The
language supports arrays of arrays, rather than multidimensional arrays.

Chapter 11 describes exceptions, which are nonresuming and fully integrated with
the language semantics and concurrency mechanisms. There are three kinds of
exceptions: checked exceptions, run-time exceptions, and errors. The compiler
ensures that checked exceptions are properly handled by requiring that a method
or constructor can result in a checked exception only if the method or constructor
declaresit. This provides compile-time checking that exception handlers exist, and
aids programming in the large. Most user-defined exceptions should be checked
exceptions. Invalid operationsin the program detected by the JavaVirtual Machine
result in run-time exceptions, such as Nul | Poi nt er Except i on. Errorsresult from
failures detected by the Java Virtual Machine, such as cut Of Meror yEr r or . Most
simple programs do not try to handle errors.

Chapter 12 describes activities that occur during execution of a program. A
program is normaly stored as binary files representing compiled classes and
interfaces. These binary files can be loaded into a Java Virtual Machine, linked to
other classes and interfaces, and initialized.

After initialization, class methods and class variables may be used. Some classes
may be instantiated to create new objects of the class type. Objects that are class
instances also contain an instance of each superclass of the class, and object
creation involves recursive creation of these superclass instances.

When an object is no longer referenced, it may be reclaimed by the garbage
collector. If an object declaresafinalizer, thefinalizer is executed before the object

INTRODUCTION Example Programs

is reclaimed to give the object a last chance to clean up resources that would not
otherwise be released. When a classis no longer needed, it may be unloaded.

Chapter 13 describes binary compatibility, specifying the impact of changes to
typeson other typesthat use the changed types but have not been recompiled. These
considerationsare of interest to devel opers of typesthat areto bewidely distributed,
in a continuing series of versions, often through the Internet. Good program
development environments automatically recompile dependent code whenever a
type is changed, so most programmers need not be concerned about these details.

Chapter 14 describes blocks and statements, which are based on C and C++.
The language has no got o statement, but includes labeled br eak and cont i nue
statements. Unlike C, the Java programming language requires bool ean (Or
Bool ean) expressions in control-flow statements, and does not convert types to
bool ean implicitly (except through unboxing), in the hope of catching more errors
at compile time. A synchroni zed statement provides basic object-level monitor
locking. A t ry statement canincludecat ch and f i nal I y clausesto protect against
non-local control transfers.

Chapter 15 describes expressions. This document fully specifies the (apparent)
order of evaluation of expressions, for increased determinism and portability.
Overloaded methods and constructors are resolved at compile time by picking the
most specific method or constructor from those which are applicable.

Chapter 16 describes the precise way in which the language ensures that
local variables are definitely set before use. While all other variables are
automatically initialized to a default value, the Java programming language does
not automatically initialize local variablesin order to avoid masking programming
errors.

Chapter 17 describes the semantics of threads and locks, which are based on
the monitor-based concurrency originally introduced with the Mesa programming
language. The Java programming language specifies a memory model for shared-
memory multiprocessors that supports high-performance implementations.

Chapter 18 presents a syntactic grammar for the language.

1.2 Example Programs

Most of the example programs given in the text are ready to be executed and are
similar in form to:

cl ass Test {

1.2

13

Notation INTRODUCTION

public static void main(String[] args) {
for (int i =0; i < args.length; i++)
Systemout.print(i == 0 ? args[i] : " " + args[i]);
Systemout. println();

}

Onamachinewith the Oracle JDK installed, thisclass, storedinthefileTest . j ava,
can be compiled and executed by giving the commands:

javac Test.java
java Test Hello, world.

producing the output:

Hel | o, worl d.

1.3 Notation

Throughout this specification we refer to classes and interfaces drawn from the
Java SE platform API. Whenever we refer to a class or interface (other than those
declared in an example) using asingle identifier N, the intended reference isto the
class or interface named N in the package | ava. | ang. We use the canonical name
(86.7) for classes or interfaces from packages other than j ava. | ang.

Non-normative information, designed to clarify the specification, is given in
smaller, indented text.

Thisis non-normative information. It provides intuition, rationale, advice, examples, etc.

1.4 Relationship to Predefined Classes and Interfaces

As noted above, this specification often refers to classes of the Java SE
platform API. In particular, some classes have a special relationship with
the Java programming language. Examples include classes such as obj ect,
C ass, d assLoader, String, Thread, and the classes and interfaces in package
java. |l ang. refl ect , among others. This specification constrains the behavior of
such classes and interfaces, but does not provide a complete specification for them.
The reader is referred to the Java SE platform APl documentation.

Consequently, this specification does not describe reflection in any detail. Many
linguistic constructs have analogs in the reflection API, but these are generaly

INTRODUCTION References

not discussed here. For example, when we list the ways in which an object can
be created, we generally do not include the ways in which the reflection API can
accomplish this. Readers should be aware of these additional mechanisms even
though they are not mentioned in the text.

1.5 References

Apple Computer. Dylan Reference Manual. Apple Computer Inc., Cupertino, California.
September 29, 1995.

Bobrow, Daniel G., Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor Kiczales,
and David A. Moon. Common Lisp Object System Specification, X3J13 Document
88-002R, June 1988; appears as Chapter 28 of Steele, Guy. Common Lisp: The Language,
2nd ed. Digital Press, 1990, ISBN 1-55558-041-6, 770-864.

Ellis, Margaret A., and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley, Reading, Massachusetts, 1990, reprinted with corrections October 1992, ISBN
0-201-51459-1.

Goldberg, Adele and Robson, David. Smalltalk-80: The Language. Addison-Wesley, Reading,
Massachusetts, 1989, ISBN 0-201-13688-0.

Harbison, Samuel. Modula-3. Prentice Hall, Englewood Cliffs, New Jersey, 1992, ISBN
0-13-596396.

Hoare, C. A. R. Hints on Programming Language Design. Stanford University Computer
Science Department Technical Report No. CS-73-403, December 1973. Reprinted in
SIGACT/SIGPLAN Symposium on Principles of Programming Languages. Association
for Computing Machinery, New Y ork, October 1973.

|IEEE Sandard for Binary Floating-Point Arithmetic. ANSI/IEEE Std. 754-1985. Available
from Globa Engineering Documents, 15 Inverness Way East, Englewood, Colorado
80112-5704 USA; 800-854-7179.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language, 2nd ed. Prentice
Hall, Englewood Cliffs, New Jersey, 1988, ISBN 0-13-110362-8.

Madsen, Ole Lehrmann, Birger Mgller-Pedersen, and Kristen Nygaard. Object-Oriented
Programming in the Beta Programming Language. Addison-Wesley, Reading,
Massachusetts, 1993, ISBN 0-201-62430-3.

Mitchell, James G., William Maybury, and Richard Sweet. The Mesa Programming Language,
Version 5.0. Xerox PARC, Palo Alto, California, CSL 79-3, April 1979.

Stroustrup, Bjarne. The C++ Progamming Language, 2nd ed. Addison-Wesley, Reading,
Massachusetts, 1991, reprinted with corrections January 1994, ISBN 0-201-53992-6.

Unicode Consortium, The. The Unicode Sandard, Version 6.0.0. Mountain View, CA, 2011,
ISBN 978-1-936213-01-6.

15

CHAPTER2

Grammars

T HIS chapter describes the context-free grammars used in this specification to
define the lexical and syntactic structure of a program.

2.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has
an abstract symbol called a nonterminal as its left-hand side, and a sequence of
one or more nonterminal and terminal symbols as its right-hand side. For each
grammar, the terminal symbols are drawn from a specified al phabet.

Starting from a sentence consisting of asingledistinguished nonterminal, called the
goal symbol, a given context-free grammar specifies alanguage, namely, the set of
possible sequences of terminal symbols that can result from repeatedly replacing
any nonterminal in the sequence with aright-hand side of a production for which
the nonterminal isthe left-hand side.

2.2 ThelLexical Grammar

A lexical grammar for the Java programming language is given in 83. This
grammar has as its terminal symbols the characters of the Unicode character set.
It defines a set of productions, starting from the goal symbol Input (83.5), that
describe how sequences of Unicode characters (83.1) aretranslated into aseguence
of input elements (83.5).

These input elements, with white space (83.6) and comments (83.7) discarded,
form the terminal symbols for the syntactic grammar for the Java programming
language and are called tokens (83.5). These tokens are the identifiers (83.8),

2.3

10

The Syntactic Grammar GRAMMARS

keywords (83.9), literals (83.10), separators (83.11), and operators (83.12) of the
Java programming language.

2.3 The Syntactic Grammar

A syntactic grammar for the Java programming language is given in Chapters
4, 6-10, 14, and 15. This grammar has tokens defined by the lexical grammar
as its terminal symbols. It defines a set of productions, starting from the goal
symbol CompilationUnit (87.3), that describe how sequences of tokens can form
syntactically correct programs.

Chapter 18 also gives a syntactic grammar for the Java programming language,
better suited to implementation than exposition. The same language is accepted by
both syntactic grammars.

2.4 Grammar Notation

Terminal symbolsareshowninfi xed wi dt h font in the productions of the lexical
and syntactic grammars, and throughout this specification whenever the text is
directly referring to such a terminal symbol. These are to appear in a program
exactly aswritten.

Nonterminal symbols are shown in italic type. The definition of a nonterminal is
introduced by the name of the nonterminal being defined followed by acolon. One
or more alternative right-hand sides for the nonterminal then follow on succeeding
lines.

For example, the syntactic definition:

IfThenSatement:
it (Expression) Statement

states that the nonterminal IfThenStatement represents the token i f, followed by a left
parenthesis token, followed by an Expression, followed by a right parenthesis token,
followed by a Statement.

As another example, the syntactic definition:

GRAMMARS Grammar Notation 2.4

ArgumentList:
Argument
ArgumentList, Argument

states that an ArgumentList may represent either a single Argument or an ArgumentList,
followed by a comma, followed by an Argument. This definition of ArgumentList is
recursive, that isto say, it is defined in terms of itself. The result is that an ArgumentList
may contain any positive number of arguments. Such recursive definitions of nonterminals
are common.

The subscripted suffix "opt", which may appear after a terminal or nonterminal,
indicates an optional symbol. The alternative containing the optional symbol
actually specifiestwo right-hand sides, one that omitsthe optional element and one
that includesiit.

This means that:

BreakSatement:
br eak Identifieropt ;

is aconvenient abbreviation for:

BreakSatement:
break ;
br eak |dentifier ;

and that:

BasicFor Statement:
for (Forlnityy ; Expressiongy ; ForUpdategy) Statement

is aconvenient abbreviation for:

BasicFor Statement:
for (; Expressiong: ForUpdateyy) Statement
for (Forlnit; Expressiongy; ForUpdateqy) Satement

whichinturnisan abbreviation for:

BasicFor Satement:
for (; ; ForUpdateyy) Statement
for (; Expression; ForUpdatey,) Statement
for (Forlnit; ; ForUpdatey) Statement
for (Forlnit; Expression; ForUpdatey,) Statement

11

2.4 Grammar Notation GRAMMARS

which in turn is an abbreviation for:

BasicFor Satement:
for (; ;) Satement
for (; ; ForUpdate) Statement
for (; Expression;) Statement
for (; Expression; ForUpdate) Satement
for (Forlnit; ;) Statement
for (Forlnit; ; ForUpdate) Satement
for (Forlnit; Expression;) Statement
for (Forlnit; Expression; ForUpdate) Statement

so the nonterminal BasicFor Statement actually has eight alternative right-hand sides.

A very long right-hand side may be continued on a second line by substantially
indenting this second line.

For example, the syntactic grammar contains this production:

ConstructorDeclaration:
Constructor Modifier sy, Constructor Declarator
Throwsyp: ConstructorBody

which defines one right-hand side for the nonterminal ConstructorDeclaration.

When the words "one of" follow the colon in a grammar definition, they signify
that each of the terminal symbols on the following line or lines is an aternative
definition.

For example, the lexical grammar contains the production:

ZeroToThree: one of
0123

which is merely a convenient abbreviation for:

ZeroToThree:
0

1
2
3

12

GRAMMARS Grammar Notation 2.4

When an alternative in alexical production appearsto be atoken, it representsthe
sequence of characters that would make up such atoken.

Thus, the definition:

BooleanLiteral: one of
true fal se

in alexical grammar production is shorthand for:

BooleanLiteral:
true
fal se

Theright-hand side of alexical production may specify that certain expansions are
not permitted by using the phrase "but not" and then indicating the expansions to
be excluded.

For example, this occursin the productions for InputCharacter (83.4) and Identifier (83.8):

InputCharacter:
Unicodel nputCharacter but not CR or LF

Identifier:
| dentifierName but not a Keyword or BooleanLiteral or NullLiteral

Finally, afew nonterminal symbols are described by a descriptive phrasein roman
type in cases where it would be impractical to list al the alternatives.

For example:

Rawl nputCharacter:
any Unicode character

13

CHAPTER3

Lexical Structure

T HIS chapter specifies the lexical structure of the Java programming language.

Programs are written in Unicode (83.1), but lexical translations are provided (83.2)
so that Unicode escapes (83.3) can be used to include any Unicode character using
only ASCII characters. Line terminators are defined (83.4) to support the different
conventions of existing host systems while maintaining consistent line numbers.

The Unicode characters resulting from the lexical trandations are reduced to a
seguence of input elements (83.5), which are white space (83.6), comments (83.7),
and tokens. The tokens are the identifiers (83.8), keywords (83.9), literals (§83.10),
separators (83.11), and operators (83.12) of the syntactic grammar.

3.1 Unicode

Programs are written using the Unicode character set. Information about this
character set and its associated character encodings may be found at http://
www. uni code. org/ .

The Java SE platform tracks the Unicode specification as it evolves. The precise
version of Unicode used by a given release is specified in the documentation of
the class Char act er.

Versions of the Java programming language prior to 1.1 used Unicode version 1.1.5.
Upgradesto newer versions of the Unicode Standard occurred in JDK 1.1 (to Unicode 2.0),
JDK 1.1.7 (to Unicode 2.1), Java SE 1.4 (to Unicode 3.0), and Java SE 5.0 (to Unicode 4.0).

The Unicode standard was originally designed as a fixed-width 16-bit character
encoding. It has since been changed to allow for characters whose representation
requires more than 16 bits. The range of legal code points is now U+0000
to U+10FFFF, using the hexadecimal U+n notation. Characters whose code

15

3.2

16

Lexical Translations LEXICAL STRUCTURE

points are greater than U+FFFF are called supplementary characters. To represent
the complete range of characters using only 16-bit units, the Unicode standard
defines an encoding called UTF-16. In thisencoding, supplementary charactersare
represented as pairs of 16-bit code units, the first from the high-surrogates range,
(U+D800 to U+DBFF), the second from the low-surrogates range (U+DC00 to U
+DFFF). For charactersin the range U+0000 to U+FFFF, the values of code points
and UTF-16 code units are the same.

The Java programming language represents text in sequences of 16-bit code units,
using the UTF-16 encoding.

Some APIs of the Java SE platform, primarily in the Char act er class, use 32-bit integers
to represent code points as individual entities. The Java SE platform provides methods to
convert between 16-bit and 32-bit representations.

This specification uses the terms code point and UTF-16 code unit where the
representation is relevant, and the generic term character where the representation
isirrelevant to the discussion.

Except for comments (83.7), identifiers, and the contents of character and string
literals (83.10.4, 8§3.10.5), all input elements (83.5) in a program are formed
only from ASCII characters (or Unicode escapes (83.3) which result in ASCII
characters).

ASCII (ANSI X3.4) isthe American Standard Code for Information Interchange. Thefirst
128 characters of the Unicode UTF-16 encoding are the ASCI| characters.

3.2 Lexical Trandations

A raw Unicode character stream is trandated into a sequence of tokens, using the
following three lexical trangation steps, which are applied in turn:

1. A trandation of Unicodeescapes(83.3) intheraw stream of Unicode characters
to the corresponding Unicode character. A Unicode escape of theform\ uxxxx,
where xxxx is a hexadecimal value, represents the UTF-16 code unit whose
encoding is xxxx. This trandation step allows any program to be expressed
using only ASCII characters.

2. A trandation of the Unicode stream resulting from step 1 into a stream of input
characters and line terminators (83.4).

3. A trandation of the stream of input characters and line terminators resulting
from step 2 into a sequence of input elements (83.5) which, after white space

LEXICAL STRUCTURE Unicode Escapes 33

(83.6) and comments (83.7) are discarded, comprise the tokens (83.5) that are
the terminal symbols of the syntactic grammar (82.3).

The longest possible translation is used at each step, even if the result does not
ultimately make a correct program while another lexical trandation would.

Thus, the input characters a- - b are tokenized (83.5) as a, - -, b, which is not part of any
grammatically correct program, even though the tokenization a, -, - , b could be part of a
grammatically correct program.

3.3 Unicode Escapes

A compiler for the Java programming language (" Java compiler") first recognizes
Unicode escapesin itsinput, trand ating the ASCII characters\ u followed by four
hexadecimal digits to the UTF-16 code unit (83.1) of the indicated hexadecimal
value, and passing all other characters unchanged. Representing supplementary
characters requires two consecutive Unicode escapes. This tranglation step results
in asequence of Unicode input characters.

Unicodel nputCharacter:
UnicodeEscape
Rawl nputCharacter

UnicodeEscape:
\ UnicodeMarker HexDigit HexDigit HexDigit HexDigit

UnicodeMarker:
u
UnicodeMarker u

RawlnputCharacter:
any Unicode character

HexDigit: one of
0123456789abcdef ABCDEF

The\, u, and hexadecimal digits here are all ASCII characters.

In addition to the processing implied by the grammar, for each raw input character
that isabackslash \ , input processing must consider how many other\ characters
contiguously precedeit, separating it fromanon-\ character or the start of the input

17

3.4

18

Line Terminators LEXICAL STRUCTURE

stream. If this number is even, then the\ iseligible to begin a Unicode escape; if
the number is odd, then the\ is not eligible to begin a Unicode escape.

For example, theraw input "\ \ u2126=\ u2126" resultsin the eleven characters” \ \ u
2126 =#"(\u2126 isthe Unicode encoding of the character #).

If an eligible\ isnot followed by u, then it istreated as a Rawl nputCharacter and
remains part of the escaped Unicode stream.

If an eligible\ isfollowed by u, or more than one u, and the last u is not followed
by four hexadecimal digits, then a compile-time error occurs.

Thecharacter produced by aUnicode escape does not participatein further Unicode
€SCapes.

For example, the raw input \ u005cu005a results in the six characters\ u 0 0 5 a,
because 005c¢ is the Unicode value for \ . It does not result in the character Z, which is
Unicode character 005a, because the\ that resulted from the\ u005c is not interpreted as
the start of a further Unicode escape.

The Java programming language specifies a standard way of transforming a
program written in Unicode into ASCII that changes a program into a form that
can be processed by ASCII-based tools. The transformation involves converting
any Unicode escapesin the source text of the program to ASCII by adding an extra
u - for example, \ uxxxx becomes\ uuxxxx - while simultaneously converting non-
ASCII charactersin the source text to Unicode escapes containing asingle u each.

This transformed version is equally acceptable to a Java compiler and represents
the exact same program. The exact Unicode source can later be restored from this
ASCII form by converting each escape sequence where multipleu's are present to a
sequence of Unicode characterswith one fewer u, while simultaneously converting
each escape sequencewith asingleu to the corresponding single Unicode character.

A Java compiler should use the \ uxxxx notation as an output format to display Unicode
characters when a suitable font is not available.

3.4 LineTerminators

A Java compiler next divides the sequence of Unicode input charactersinto lines
by recognizing line terminators.

LEXICAL STRUCTURE Input Elements and Tokens

LineTerminator:
the ASCII LF character, also known as "newline"
the ASCII CR character, also known as "return”
the ASCII CR character followed by the ASCII LF character

InputCharacter:
Unicodel nputCharacter but not CR or LF

Lines are terminated by the ASCII characters CR, or LF, or CR LF. The two
characters CR immediately followed by LF are counted as one line terminator, not
two.

A line terminator specifies the termination of the// form of acomment (83.7).

The lines defined by line terminators may determine the line numbers produced by a Java
compiler.

The result is a sequence of line terminators and input characters, which are the
terminal symbols for the third step in the tokenization process.

3.5 Input Elementsand Tokens

The input characters and line terminators that result from escape processing (83.3)
and then input line recognition (83.4) are reduced to a sequence of input elements.

35

19

35 Input Elements and Tokens LEXICAL STRUCTURE

Input:
InputElementsop: Subgpt

I nputElements:
I nputElement
InputElements | nputElement

InputElement:
WhiteSpace
Comment
Token

Token:
Identifier

Keyword
Literal

Separator

Operator

b
the ASCII SUB character, also known as "control-Z"

Thoseinput elementsthat are not white space (§3.6) or comments (83.7) aretokens.
The tokens are the terminal symbols of the syntactic grammar (82.3).

White space (83.6) and comments (83.7) can serve to separate tokens that, if
adjacent, might be tokenized in another manner. For example, the ASCII characters
- and = in the input can form the operator token - = (83.12) only if there is no
intervening white space or comment.

Asaspecia concession for compatibility with certain operating systems, the ASCI|
SUB character (\ uoo1ia, or control-Z) is ignored if it is the last character in the
escaped input stream.

Consider two tokens x and y in the resulting input stream. If x precedesy, then we
say that x isto theleft of y and that y isto theright of x.

For example, in this simple piece of code:

class Empty {

we say that the} token isto the right of the { token, even though it appears, in this two-
dimensional representation, downward and to theleft of the{ token. This convention about

20

LEXICAL STRUCTURE White Space 3.6

the use of thewords|eft and right allows usto speak, for example, of the right-hand operand
of abinary operator or of the |left-hand side of an assignment.

3.6 White Space

White space is defined asthe ASCII space character, horizontal tab character, form
feed character, and line terminator characters (83.4).

WhiteSpace:
the ASCII SP character, aso known as "space”
the ASCII HT character, also known as "horizontal tab"
the ASCII FF character, also known as "form feed"
LineTerminator

3.7 Comments

There are two kinds of comments.
o [* text*/

A traditional comment: all the text from the ASCII characters /* to the ASCI|
characters*/ isignored (asin C and C++).

o /] text

An end-of-line comment: all the text from the ASCII characters // to the end of
thelineisignored (asin C++).

21

3.7

Comments

Comment:
Traditional Comment
EndOfLineComment

Traditional Comment:
[* CommentTail

EndOfLineComment:
/ | CharactersinLinegpy

CommentTail:
* CommentTailSar
NotSar CommentTail

CommentTailSar:
/
* CommentTailSar
NotStar NotSash CommentTail

NotStar:
InputCharacter but not *
LineTerminator

NotSarNotSash:
InputCharacter but not * or /
LineTerminator

CharactersinLine:
InputCharacter

CharactersinLine InputCharacter

These productionsimply all of the following properties:

e Comments do not nest.

LEXICAL STRUCTURE

* /* and */ have no special meaning in comments that begin with //.

* /I has no special meaning in comments that begin with /* or /**.

Asaresult, the text:

/* this comment /* // /** ends here:

22

LEXICAL STRUCTURE Identifiers 3.8

is a single complete comment.

The lexical grammar implies that comments do not occur within character literals
(83.10.4) or string literals (§3.10.5).

3.8 ldentifiers

An identifier is an unlimited-length sequence of Java letters and Java digits, the
first of which must be a Java letter.

Identifier:
| dentifierChars but not a Keyword or BooleanLiteral or NullLiteral

IdentifierChars:
Javal etter
I dentifier Chars JavaLetter OrDigit

Javal etter:
any Unicode character that is a Java letter (see below)

Javal etter OrDigit:
any Unicode character that is a Java letter-or-digit (see below)

A "Java letter’" is a character for which the method
Character.isJavaldentifierStart(int) returnstrue.

A "Java letter-or-digit® is a character for which the method
Character.isJavaldentifierPart(int) returnstrue.

The "Java letters' include uppercase and lowercase ASCII Latin letters A-Z (\ u0041-
\ u005a), and a- z (\ u0061-\ u007a), and, for historical reasons, the ASCII underscore
(_, or \ u005f) and dollar sign ($, or \ u0024). The $ character should be used only in
mechanically generated source code or, rarely, to access pre-existing names on legacy
systems.

The"Javadigits' include the ASCII digits0- 9 (\ u0030-\ u0039).

Letters and digits may be drawn from the entire Unicode character set, which
supports most writing scriptsin use in the world today, including the large sets for
Chinese, Japanese, and Korean. This allows programmersto useidentifiersin their
programs that are written in their native languages.

23

3.9

24

Keywords LEXICAL STRUCTURE

An identifier cannot have the same spelling (Unicode character sequence) as a
keyword (83.9), boolean literal (83.10.3), or thenull literal (83.10.7), or acompile-
time error occurs.

Two identifiers are the same only if they are identical, that is, have the same
Unicode character for each letter or digit. Identifiers that have the same external
appearance may yet be different.

For example, the identifiers consisting of the single letters LATIN CAPITAL LETTER
A (A \u0041), LATIN SMALL LETTER A (a, \u0061), GREEK CAPITAL
LETTER ALPHA (A, \u0391), CYRILLIC SMALL LETTER A (a, \u0430) and
MATHEMATICAL BOLD ITALIC SMALL A (a,\ ud835\ udc82) are al different.

Unicode composite characters are different from their canonical equivalent decomposed
characters. For example, aLATIN CAPITAL LETTERA ACUTE (A,\ u00c1) isdifferent
from a LATIN CAPITAL LETTER A (A, \ u0041) immediately followed by a NON-
SPACING ACUTE (", \u0301) in identifiers. See The Unicode Standard, Section 3.11
"Normalization Forms'.

Examples of identifiers are:
e String

* i3

* apeTn

o MAX_VALUE

e isLetterODigit

3.9 Keywords

50 character sequences, formed from ASCII letters, are reserved for use as
keywords and cannot be used as identifiers (83.8).

LEXICAL STRUCTURE

Keyword: one of
abstract conti nue

assert def aul t
bool ean do

br eak doubl e
byt e el se
case enum
catch ext ends
char final

cl ass finally
const fl oat

for

if

goto

i mpl ement s
i mport

i nst anceof
i nt
interface
| ong
native

new
package
private
pr ot ect ed
public
return
short
static
strictfp
super

Literals 3.10

switch
synchroni zed
this

t hr ow

t hr ows
transi ent
try

voi d

vol atile
whil e

The keywords const and got o are reserved, even though they are not currently used.
This may allow a Java compiler to produce better error messages if these C++ keywords

incorrectly appear in programs.

Whilet r ue and f al se might appear to be keywords, they are technically Boolean literals
(83.10.3). Similarly, while nul I might appear to be a keyword, it is technically the null

literal (§3.10.7).

3.10 Literals

A literal isthe source code representation of avalue of aprimitive type (84.2), the
String type (84.3.3), or the null type (84.1).

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
SringLiteral
NullLiteral

3.10.1 Integer Literals

Aninteger literal may be expressed in decimal (base 10), hexadecimal (base 16),

octal (base 8), or binary (base 2).

25

3.10 Literals LEXICAL STRUCTURE

IntegerLiteral:
DecimallntegerLiteral
HexlntegerLiteral
OctallntegerLiteral
BinarylntegerLiteral

DecimalIntegerLiteral:
DecimalNumeral I nteger TypeSuffixXopt

HexlIntegerLiteral:
HexNumeral Integer TypeSuffixop

OctallntegerLiteral:
OctalNumeral Integer TypeSuffiXqpt

BinarylntegerLiteral:
BinaryNumeral Integer TypeSuffiXop

Integer TypeSuffix: one of
I L

Aninteger literal isof typel ong if it is suffixed with an ASCII letter L or 1 (ell);
otherwiseit isof typei nt (84.2.1).

The suffix L is preferred, becausetheletter | (ell) isoften hard to distinguish from the digit
1 (one).

Underscores are allowed as separators between digits that denote the integer.

In a hexadecimal or binary literal, the integer is only denoted by the digits after
the ox or ob characters and before any type suffix. Therefore, underscores may not
appear immediately after ox or ob, or after the last digit in the numeral.

In adecimal or octal literal, the integer is denoted by all the digits in the litera
before any type suffix. Therefore, underscores may not appear before thefirst digit
or after the last digit in the numeral. Underscores may appear after the initial 0 in
an octal numeral (since 0 is a digit that denotes part of the integer) and after the
initial non-zero digit in anon-zero decimal literal.

26

LEXICAL STRUCTURE Literals

A decimal numeral iseither the single ASCII digit 0, representing the integer zero,
or consistsof an ASCII digit from 1 to 9 optionally followed by one or more ASCI|
digitsfrom 0 to 9 interspersed with underscores, representing a positive integer.

DecimalNumeral:
0
NonZeroDigit Digitsop
NonZeroDigit Underscores Digits

Digits:

Digit

Digit DigitsAndUnder scoresop: Digit
Digit:

0

NonZeroDigit

NonZeroDigit: one of
1234567809

DigitsAndUnderscores:
DigitOrUnderscore
DigitsAndUnderscores DigitOrUnderscore

DigitOrUnderscore:
Digit

Underscores:

Underscores

3.10

27

3.10 Literals LEXICAL STRUCTURE

A hexadecimal numeral consists of theleading ASCII charactersox or 0x followed
by one or more ASCII hexadecimal digits interspersed with underscores, and can
represent a positive, zero, or negative integer.

Hexadecimal digitswith values 10 through 15 are represented by the ASCI| letters
a through f or A through F, respectively; each letter used as a hexadecimal digit
may be uppercase or lowercase.

HexNumeral:
0 x HexDigits
0 X HexDigits

HexDigits:
HexDigit
HexDigit HexDigitsAndUnder scoresyp: HexDigit

HexDigit: one of
0123456789abcdef ABCDEF

HexDigitsAndUnder scores:
HexDigitOrUnderscore
HexDigitsAndUnder scores HexDigitOrUnderscore

HexDigitOrUnderscore:
HexDigit

The HexDigit production above comes from 8§3.3.

28

LEXICAL STRUCTURE Literals

Anocta numeral consistsof an ASCII digit o followed by one or more of the ASCI|
digitso through 7 interspersed with underscores, and can represent a positive, zero,
or negative integer.

OctalNumeral:
0 OctalDigits
0 Underscores OctalDigits

OctalDigits:
Octal Digit
Octal Digit Octal DigitsAndUnder scoresqp: Octal Digit

OctalDigit: one of
01234567

Octal DigitsAndUnder scores:
Octal DigitOrUnderscore
Octal DigitsAndUnder scores Octal DigitOrUnderscore

Octal DigitOrUnderscore:
Octal Digit

Note that octal numerals always consist of two or more digits; 0 is always considered to be
adecimal numeral - not that it matters much in practice, for the numerals 0, 00, and 0x0
all represent exactly the same integer value.

3.10

29

3.10 Literals LEXICAL STRUCTURE

A binary numeral consists of theleading ASCII charactersob or 0B followed by one
or more of the ASCII digitso or 1 interspersed with underscores, and can represent
apositive, zero, or negative integer.

BinaryNumeral:
0 b BinaryDigits
0 B BinaryDigits

BinaryDigits:
BinaryDigit
BinaryDigit BinaryDigitsAndUnder scor esy, BinaryDigit

BinaryDigit: one of
01

BinaryDigitsAndUnder scores:
BinaryDigitOrUnderscore
BinaryDigitsAndUnder scores BinaryDigitOrUnderscore

BinaryDigitOrUnderscore:
BinaryDigit

30

LEXICAL STRUCTURE Literals

The largest decimal literal of typei nt is 2147483648 (2°%).

All decimal literalsfrom 0 t0 2147483647 may appear anywhereani nt literal may
appear.

It isacompile-time error if adecimal literal of typei nt islarger than 2147483648
(2°Y), or if the decimal literal 2147483648 appears anywhere other than as the
operand of the unary minus operator (815.15.4).

The largest positive hexadecimal, octal, and binary literals of typei nt - each of
which represents the decimal value 2147483647 (231-1) - arerespectively:

o Ox7fff _ffff,
e 0177_7777_7777,and
* 0b0111_1111_1111_1111 1111_1111_1111_1111

The most negative hexadecimal, octal, and binary literals of typeint - each of
which represents the decimal value - 2147483648 (-231) - are respectively:

* 0x8000_0000,
* 0200_0000_0000, and
* 0b1000_0000_0000_0000_0000_0000_0000_0000

The following hexadecimal, octal, and binary literals represent the decimal value
-1

o Oxffff _ffff,
e 0377_7777_7777,and
e Ob1111_ 1111 1111 1111 1111 1111 1111 1111

It is acompile-time error if a hexadecimal, octal, or binary i nt literal does not fit
in 32 hits.

The largest decimal literal of type| ong is 9223372036854775808L (2%°).

All decimal literals from oL to 9223372036854775807L may appear anywhere a
I ong literal may appear.

It is a compile-time error if a decimal literal of type Iong is larger than
9223372036854775808L (2%%), or if the decimal literal 9223372036854775808L
appears anywhere other than asthe operand of the unary minus operator (§15.15.4).

The largest positive hexadecimal, octal, and binary literals of type | ong - each
of which represents the decimal value 9223372036854775807L (2%-1) - are
respectively:

3.10

31

3.10

32

Literals LEXICAL STRUCTURE

o OX7fff ffff ffff ffffL,
e 07_7777_7777_7777_7777_7777L, and

o 0b0111 1111 1111 1111 1111 1111 1111 1111 1111 1211 1111 1111 1111 1111 1111 1111L

The most negative hexadecimal, octal, and binary literals of type I ong - each
of which represents the decimal value - 9223372036854775808L (-2%%) - are
respectively:

* 0x8000_0000_0000_0000L, and
* 010_0000_0000_0000_0000_0000L, and

« 0b1000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000L

The following hexadecimal, octal, and binary literals represent the decimal value
- 1L

o OXffff fFff fFff fFFfL,
e 017 _7777_7777_7777_7777_7777L, and

o Ob1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111L

It is a compile-time error if a hexadecimal, octal, or binary |1 ong literal does not
fitin 64 bits.

Examplesof i nt literals:
0 2 0372 OxDada_Caf e 1996 0x00_FF__00_FF
Examples of | ong literals:

ol 0777L 0x100000000L 2_147_483_648L 0xC0BOL

3.10.2 Floating-Paint Literals

A floating-point literal has the following parts: awhole-number part, adecimal or
hexadecimal point (represented by an ASCII period character), afraction part, an
exponent, and a type suffix.

A floating-point literal may be expressed in decimal (base 10) or hexadecimal (base
16).

For decimal floating-point literals, at least one digit (in either the whole number or
the fraction part) and either adecimal point, an exponent, or afloat type suffix are
required. All other parts are optional. The exponent, if present, is indicated by the
ASCII letter e or E followed by an optionally signed integer.

LEXICAL STRUCTURE Literals

For hexadecimal floating-point literals, at least one digit is required (in either the
whole number or the fraction part), and the exponent is mandatory, and the float
type suffix isoptional. The exponent isindicated by the ASCI| letter p or P followed
by an optionally signed integer.

Underscoresare allowed as separators between digitsthat denote the whole-number
part, and between digitsthat denote the fraction part, and between digitsthat denote
the exponent.

FloatingPointLiteral:
Decimal FloatingPointLiteral
Hexadecimal FloatingPointLiteral

Decimal FloatingPointLiteral:
Digits. Digitsyp ExponentPartqy: FloatTypeSuffiXopt
. Digits ExponentPartp: FloatTypeSuffixopt
Digits ExponentPart Float TypeSuffiXopt
Digits ExponentParto, FloatTypeSuffix

ExponentPart:
ExponentIndicator Sgnedinteger

ExponentIndicator: one of
e E

Sgnedinteger:
Sgnept Digits

Sgn: one of
+ -

FloatTypeSuffix: one of
f FdD

3.10

33

3.10 Literals LEXICAL STRUCTURE

Hexadecimal FloatingPointLiteral:
HexSgnificand BinaryExponent FloatTypeSuffixopt

HexSgnificand:
HexNumeral
HexNumeral .
0 x HexDigitsyy . HexDigits
0 X HexDigitsyy . HexDigits

BinaryExponent:
BinaryExponentIndicator Sgnedinteger

BinaryExponentl ndicator: one of
p P

A floating-point literal isof typef | oat if it issuffixed with an ASCII letter For f;
otherwise itstypeisdoubl e and it can optionally be suffixed with an ASCI| |etter
Dord (84.2.3).

The elements of the types float and doubl e are those values that can be
represented using the |EEE 754 32-bit single-precision and 64-bit double-precision
binary floating-point formats, respectively.

The details of proper input conversion from a Unicode string representation of a floating-
point number to the internal |EEE 754 binary floating-point representation are described
for the methods val ueF of classFl oat and class Doubl e of the packagej ava. | ang.

The largest positive finite literal of typefl oat iS3. 4028235e38f .

The smallest positive finite non-zero literal of typef ! oat iS1. 40e- 45f .

The largest positive finite literal of type doubl e iS1. 7976931348623157e308.
The smallest positive finite non-zero literal of type doubl e iS4. 9e- 324.

It isacompile-time error if anon-zero floating-point literal istoo large, so that on
rounded conversion to itsinternal representation, it becomes an IEEE 754 infinity.

A program can represent infinitieswithout producing acompile-time error by using
constant expressions such as 1f / 0f or - 1d/ 0d or by using the predefined constants
PCSI TI VE_I NFI NI TY and NEGATI VE_I NFI NI TY of the classes Fl oat and Doubl e.

Itisacompile-timeerror if anon-zero floating-point literal istoo small, so that, on
rounded conversion to its internal representation, it becomes a zero.

LEXICAL STRUCTURE Literals

A compile-time error does not occur if anon-zero floating-point literal has a small
value that, on rounded conversion to its internal representation, becomes a non-
zero denormalized number.

Predefined constants representing Not-a-Number values are defined in the classes
Fl oat and Doubl e asFl oat . NaN and Doubl e. NaN.

Examplesof f | oat literas:
lelf 2. f . 3f of 3. 14f 6.022137e+23f
Examples of doubl e literals:

lel 2. .3 0.0 3.14 le-9d 1lel37

3.10.3 Boolean Literals

The bool ean type has two values, represented by the boolean literals t rue and
fal se, formed from ASCI|I letters.

BooleanLiteral: one of
true fal se

A boolean literal is aways of type bool ean (84.2.5).

3.10.4 Character Literals

A character literal is expressed as a character or an escape sequence (83.10.6),
enclosed in ASCII single quotes. (The single-quote, or apostrophe, character is
\ u0027.)

CharacterLiteral:
' SngleCharacter
' EscapeSequence’

SngleCharacter:
InputCharacter but not' or\

See §3.10.6 for the definition of EscapeSequence.

Character literals can only represent UTF-16 code units (83.1), i.e., they arelimited
to values from \ u0000 to \ uf f f f . Supplementary characters must be represented

3.10

35

3.10

36

Literals LEXICAL STRUCTURE

either as a surrogate pair within achar sequence, or as an integer, depending on
the API they are used with.

A character litera isaways of type char (84.2.1).

It is a compile-time error for the character following the SngleCharacter or
EscapeSequence to be other than a* .

It is a compile-time error for a line terminator (83.4) to appear after the opening
' and before the closing ' .

As specified in 83.4, the characters CR and LF are never an InputCharacter; each is
recognized as constituting a LineTerminator.

The following are examples of char literals:

¢« 'g'

%

e '\ t'

e "\

o "\

e "\ u03a9'

« '\ UFFFF

e "\177

o 'y

Because Unicode escapes are processed very early, it is not correct to write ' \ u0o00a’
for a character litera whose value is linefeed (LF); the Unicode escape \ u000a is
transformed into an actua linefeed in trandation step 1 (83.3) and the linefeed becomes a
LineTerminator in step 2 (§83.4), and so the character literal is not valid in step 3. Instead,

one should use the escape sequence ' \ n' (83.10.6). Similarly, it is not correct to write
"\u000d' for acharacter literal whose valueis carriage return (CR). Instead, use' \r" .

In C and C++, a character literal may contain representations of more than one character,
but thevalue of such acharacter litera isimplementation-defined. In the Java programming
language, a character literal always represents exactly one character.

3.10.5 StringLiterals

A dtring literal consists of zero or more characters enclosed in double quotes.
Characters may be represented by escape sequences (83.10.6) - one escape
sequence for characters in the range U+0000 to U+FFFF, two escape sequences
for the UTF-16 surrogate code units of characters in the range U+010000 to U
+10FFFF.

LEXICAL STRUCTURE Literals

SringLiteral:
" SringCharactersyy

SringCharacters:
SringCharacter
SringCharacters StringCharacter

SringCharacter:
InputCharacter but not * or\
EscapeSequence

See §3.10.6 for the definition of EscapeSequence.

A string literal isaways of type st ri ng (84.3.3).

It is a compile-time error for a line terminator to appear after the opening " and
before the closing matching " .

As specified in 83.4, the characters CR and LF are never an InputCharacter; each is
recognized as constituting a LineTerminator.

A long string literal can always be broken up into shorter pieces and written as a (possibly
parenthesized) expression using the string concatenation operator + (§15.18.1).

The following are examples of string literals:

/1 the enpty string

A /1 a string containing " al one

"This is a string" /'l a string containing 16 characters

"This is a" + // actually a string-valued constant expression,
"two-line string" /1 formed fromtwo string literals

Because Unicode escapes are processed very early, it is not correct to write "\ uo00a"
for a string literal containing a single linefeed (LF); the Unicode escape \ u000a is
transformed into an actual linefeed in trandlation step 1 (83.3) and the linefeed becomes
aLineTerminator in step 2 (§83.4), and so the string literal is not valid in step 3. Instead,
one should write"\ n" (83.10.6). Similarly, it is not correct to write"\ u000d" for astring
literal containing asingle carriage return (CR). Instead, use™\ r " . Finally, itisnot possible
to write"\ u0022" for astring literal containing a double quotation mark (*).

A string literal is areference to an instance of class St ri ng (84.3.1, §4.3.3).

Moreover, astring literal always refers to the same instance of classstri ng. This
isbecause string literals - or, more generally, stringsthat are the values of constant
expressions (815.28) - are "interned” so as to share unique instances, using the
method St ri ng. i ntern.

3.10

37

3.10 Literals LEXICAL STRUCTURE

Example 3.10.5-1. String Literals
The program consisting of the compilation unit (87.3):

package test Package;
class Test {
public static void main(String[] args) {
String hello = "Hello", lo = "lo";
Systemout.print((hello == "Hello") + " ");
Systemout.print((Cher.hello == hello) + " ");
Systemout.print((other.Gher.hello == hello) + " ");
Systemout.print((hello == ("Hel"+"l0o")) + " ");
Systemout.print((hello == ("Hel"+l0)) + " ");
Systemout.printin(hello == ("Hel"+lo).intern());
}

class Oher { static String hello = "Hello"; }
and the compilation unit:

package ot her;
public class Gher { public static String hello = "Hello"; }

produces the output:
true true true true false true
This exampleillustrates six points:
e Litera strings within the same class (88) in the same package (87) represent references

tothe same St ri ng object (84.3.1).

« Litera strings within different classes in the same package represent references to the
same St ri ng object.

« Literal stringswithin different classesin different packageslikewise represent references
tothesame St ri ng object.

e Strings computed by constant expressions (815.28) are computed at compile time and
then treated asif they were literals.

¢ Strings computed by concatenation at run time are newly created and therefore distinct.

¢ Theresult of explicitly interning a computed string isthe same string as any pre-existing
literal string with the same contents.
3.10.6 Escape Sequencesfor Character and String Literals

The character and string escape sequences allow for the representation of some
nongraphic characters as well as the single quote, double quote, and backslash
charactersin character literals (83.10.4) and string literals (§83.10.5).

38

LEXICAL STRUCTURE Literals 3.10

EscapeSequence:
\ b /*\u0008: backspace BS*/

/¥ \u0009: horizontal tab HT */

/¥ \uoooa: linefeed LF */

/* \uoooc: form feed FF */

/* \u000d: carriage return CR */

/¥ \u0022: double quote " */

/* \u0027: single quote ' */

\ [* \ uoosc: backslash \ */

OctalEscape /* \ u0000 to\ uoof f : from octal value */

EE T T

— - - - -

Octal Escape:
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit Octal Digit

OctalDigit: one of
01234567

ZeroToThree: one of
0123

It isacompile-time error if the character following a backslash in an escape is not
an ASCll b, t,n,f,r,",",\,0,1,2,3,4,5,6, 0r 7. The Unicode escape \ u is
processed earlier (83.3).

Octal escapes are provided for compatibility with C, but can express only Unicode values
\ u0000 through \ uOOFF, so Unicode escapes are usually preferred.

3.10.7 TheNull Literal

The null type has one value, the null reference, represented by the null literal nul 1,
which isformed from ASCI| characters.

NullLiteral:
nul |

A null literal is aways of the null type (84.1).

39

311

40

Separators LEXICAL STRUCTURE

3.11 Separators

Nine ASCII characters are the separators (punctuators).

Separator: one of
() { } []

3.12 Operators

37 tokens are the operators, formed from ASCI| characters.

Operator: one of

= > < ! ~ ? .

== <= >= I= && | | ++ -

+ - * / & | A % << @ >> >>>
+= -= *= [= &= | = Nz OF <<= >>= >>>=

CHAPTER |

Types, Values, and Variables

T HE Java programming language is a statically typed language, which means
that every variable and every expression has atype that is known at compile time.

The Java programming language is also a strongly typed language, because types
limit the values that a variable (84.12) can hold or that an expression can produce,
limit the operations supported on those values, and determine the meaning of the
operations. Strong static typing helps detect errors at compile time.

The types of the Java programming language are divided into two categories:
primitive types and reference types. The primitive types (84.2) are the bool ean
type and the numeric types. The numeric types are the integral typesbyt e, short,
i nt, | ong, and char , and thefloating-point typesf | oat and doubl e. Thereference
types (84.3) are classtypes, interface types, and array types. Thereis also aspecial
null type. An object (84.3.1) isadynamically created instance of aclass type or a
dynamically created array. The values of areference type are references to objects.
All objects, including arrays, support the methods of class tvj ect (84.3.2). String
literals are represented by St ri ng objects (84.3.3).

4.1 TheKindsof Typesand Values

There are two kinds of types in the Java programming language: primitive types
(84.2) and reference types (84.3). There are, correspondingly, two kinds of data
values that can be stored in variables, passed as arguments, returned by methods,
and operated on: primitive values (84.2) and reference values (84.3).

Type:
PrimitiveType
ReferenceType

41

4.2

42

Primitive Types and Values TYPES VALUES AND VARIABLES

Thereisalso aspecial null type, thetype of the expressionnul | (83.10.7, §15.8.1),
which has no name.

Because the null type has no name, it isimpossible to declare a variabl e of the null
type or to cast to the null type.

The null reference is the only possible value of an expression of null type.

The null reference can always undergo a widening reference conversion to any
reference type.

In practice, the programmer can ignore the null type and just pretend that null is merely a
speciad literal that can be of any reference type.

4.2 Primitive Typesand Values

A primitive type is predefined by the Java programming language and named by
its reserved keyword (§3.9):

PrimitiveType:
NumericType
bool ean

NumericType:
Integral Type
FloatingPointType

Integral Type: one of
byt e short i nt | ong char

FloatingPointType: one of
fl oat doubl e

Primitive values do not share state with other primitive values.
The numeric types are the integral types and the floating-point types.

Theintegral types are byt e, short, i nt, and | ong, whose values are 8-bit, 16-hit,
32-bit and 64-bit signed two's-complement integers, respectively, and char , whose
values are 16-bit unsigned integers representing UTF-16 code units (83.1).

TYPES, VALUES, AND VARIABLES Primitive Types and Values

The floating-point types are f1 oat , whose values include the 32-bit |IEEE 754
floating-point numbers, and doubl e, whose values include the 64-bit IEEE 754
floating-point numbers.

Thebool ean type has exactly two values: true and f al se.

4.2.1 Integral Typesand Values

The values of the integral types are integersin the following ranges:

» For byt e, from-128to 127, inclusive

» For short, from -32768 to 32767, inclusive

» Forint, from -2147483648 to 2147483647, inclusive

 For I ong, from -9223372036854775808 to 9223372036854 775807, inclusive
» For char, from'\u0000' to'\uffff' inclusive, thatis, from O to 65535

4.2.2 Integer Operations

The Java programming language providesanumber of operatorsthat act onintegral
values:

» The comparison operators, which result in avalue of type bool ean:
* The numerical comparison operators <, <=, >, and >= (8§15.20.1)
* The numerical equality operators == and ! = (§15.21.1)
» The numerical operators, which result in avalue of typei nt or | ong:
* The unary plus and minus operators + and - (815.15.3, 815.15.4)
* The multiplicative operators *, / , and %(815.17)
* The additive operators + and - (815.18)
* Theincrement operator ++, both prefix (815.15.1) and postfix (815.14.2)
* The decrement operator - -, both prefix (815.15.2) and postfix (§15.14.3)
* The signed and unsigned shift operators <<, >>, and >>> (§15.19)
* The bitwise complement operator ~ (815.15.5)
* Theinteger bitwise operators &, ~, and | (815.22.1)
» The conditional operator ? : (815.25)

4.2

43

4.2

Primitive Types and Values TYPES VALUES AND VARIABLES

» The cast operator (815.16), which can convert from an integral value to avalue
of any specified numeric type

* The string concatenation operator + (815.18.1), which, when given a String
operand and an integral operand, will convert the integral operandto a stri ng
representing its valuein decimal form, and then produce anewly created St ri ng
that is the concatenation of the two strings

Other useful constructors, methods, and constants are predefined in the classes
Byt e, Short, | nt eger, Long, and Char act er .

If an integer operator other than a shift operator has at least one operand of type
I ong, then the operation is carried out using 64-bit precision, and the result of
the numerical operator is of type | ong. If the other operand is not | ong, it isfirst
widened (85.1.5) to type | ong by numeric promotion (85.6).

Otherwise, the operation is carried out using 32-hit precision, and the result of the
numerical operator isof typei nt . If either operandisnot ani nt , itisfirst widened
totypei nt by numeric promotion.

Any value of any integral type may be cast to or from any numeric type. There are
no casts between integral types and the type bool ean.

See 8§4.2.5 for an idiom to convert integer expressionsto bool ean.

The integer operators do not indicate overflow or underflow in any way.
An integer operator can throw an exception (811) for the following reasons:

e Any integer operator can throw a Nul |l Poi nter Exception if unboxing
conversion (85.1.8) of anull referenceis required.

» The integer divide operator / (815.17.2) and the integer remainder operator %
(815.17.3) canthrow anAri t hnet i cExcept i on if theright-hand operandiszero.

» The increment and decrement operators ++ (815.14.2, §15.15.1) and --
(815.14.3, 815.15.2) can throw an Qut Of MenoryError if boxing conversion
(85.1.7) is required and there is not sufficient memory available to perform the
conversion.

Example 4.2.2-1. Integer Operations

class Test {
public static void main(String[] args) {
int i = 1000000;
Systemout.printin(i * i);
long I =1i;
Systemout.printin(l * 1);
Systemout.printin(20296 / (I - i));

TYPES, VALUES, AND VARIABLES Primitive Types and Values

}
This program produces the outpult:

- 727379968
1000000000000

and then encounters an Ari t hmet i cExcepti on in the divison by | - i, because |
- i iszero. Thefirst multiplication is performed in 32-bit precision, whereas the second
multiplicationisal ong multiplication. The value - 727379968 isthe decimal value of the
low 32 hits of the mathematical result, 1000000000000, which is a value too large for
typei nt .

4.2.3 Floating-Point Types, Formats, and Values

The floating-point typesaref | oat and doubl e, which are conceptually associated
with the single-precision 32-bit and double-precision 64-bit format IEEE 754
values and operations as specified in IEEE Sandard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New Y ork).

Thel EEE 754 standard includes not only positive and negative numbersthat consist
of asign and magnitude, but also positive and negative zeros, positive and negative
infinities, and special Not-a-Number values (hereafter abbreviated NaN). A NaN
value is used to represent the result of certain invalid operations such as dividing
zero by zero. NaN constants of both 1 oat and doubl e type are predefined as
Fl oat . NaN and Doubl e. NaN.

Every implementation of the Java programming languageisrequired to support two
standard sets of floating-point values, called the float value set and the double value
set. In addition, an implementation of the Java programming language may support
either or both of two extended-exponent floating-point value sets, called the float-
extended-exponent value set and the double-extended-exponent value set. These
extended-exponent value sets may, under certain circumstances, be used instead
of the standard value sets to represent the values of expressions of type 1 oat or
doubl e (85.1.13, §15.4).

The finite nonzero values of any floating-point value set can all be expressed in
the form's - m- 2€"N*Y where sis +1 or -1, mis a positive integer less than
2V and eis an integer between Epip = -(2°-2) and Epux = 2€°-1, inclusive, and
where N and K are parameters that depend on the value set. Some values can
be represented in this form in more than one way; for example, supposing that a
value v in a value set might be represented in this form using certain values for
s, m, and e, then if it happened that m were even and e were less than 2, one
could halve mand increase e by 1 to produce a second representation for the same

4.2

45

4.2

46

Primitive Types and Values TYPES VALUES AND VARIABLES

valuev. A representation in this form is called normalized if m = 2"1; otherwise
the representation is said to be denormalized. If a value in a value set cannot be
represented in such away that m= 2V, then the value s said to be a denor malized

value, because it has no normalized representation.

The constraints on the parameters N and K (and on the derived parameters Enin
and Engy) for the two required and two optional floating-point value sets are
summarized in Table 4.1.

Table4.1. Floating-point value set parameters

Parameter float float-extended- double double-extended-
exponent exponent

N 24 24 53 53

K 8 211 11 215

Erax +127 > +1023 +1023 > +16383

Emin -126 <-1022 -1022 <-16382

Where one or both extended-exponent value sets are supported by an
implementation, then for each supported extended-exponent value set there is
a specific implementation-dependent constant K, whose value is constrained by
Table 4.1; thisvalue K in turn dictates the values for Eqin and Epyax.

Each of the four value sets includes not only the finite nonzero values that are
ascribed to it above, but also NaN values and the four values positive zero, negative
zero, positive infinity, and negative infinity.

Note that the constraints in Table 4.1 are designed so that every element of the
float value set is necessarily also an element of the float-extended-exponent value
set, the double value set, and the double-extended-exponent value set. Likewise,
each element of the double value set is necessarily also an element of the double-
extended-exponent value set. Each extended-exponent value set has alarger range
of exponent values than the corresponding standard value set, but does not have
more precision.

The elements of the float value set are exactly the values that can be represented
using the single floating-point format defined in the IEEE 754 standard. The
elements of the doublevalue set are exactly the valuesthat can be represented using
the double floating-point format defined in the |EEE 754 standard. Note, however,
that the elements of the float-extended-exponent and double-extended-exponent
value sets defined here do not correspond to the values that can be represented
using |EEE 754 single extended and double extended formats, respectively.

TYPES, VALUES, AND VARIABLES Primitive Types and Values

The float, float-extended-exponent, double, and double-extended-exponent value
sets are not types. It is always correct for an implementation of the Java
programming language to use an element of the float value set to represent avalue
of type f1 oat ; however, it may be permissible in certain regions of code for an
implementation to use an element of the float-extended-exponent val ue set instead.
Similarly, itisalwayscorrect for an implementation to use an element of the double
value set to represent a value of type doubl e; however, it may be permissible in
certain regions of code for an implementation to use an element of the double-
extended-exponent value set instead.

Except for NaN, floating-point values are ordered; arranged from smallest to
largest, they are negative infinity, negative finite nonzero values, positive and
negative zero, positive finite nonzero values, and positive infinity.

IEEE 754 allows multiple distinct NaN values for each of its single and double
floating-point formats. While each hardware architecture returns a particular bit
pattern for NaN when a new NaN is generated, a programmer can aso create
NaNs with different bit patterns to encode, for example, retrospective diagnostic
information.

For the most part, the Java SE platform treats NaN values of a given type asthough
collapsed into asingle canonical value, and hence this specification normally refers
to an arbitrary NaN as though to a canonical value.

However, version 1.3 of the Java SE platform introduced methods enabling the
programmer to distinguish between NaN values: the Fl oat . f | oat ToRawi nt Bi t s and
Doubl e. doubl eToRawLongBi t s methods. The interested reader is referred to the
specifications for the Fl oat and Doubl e classes for more information.

Positive zero and negative zero compare equal; thus the result of the expression
0.0==-0. 0 istrue and the result of 0. 0>-0. 0 is false. But other operations can
distinguish positive and negative zero; for example, 1. 0/ 0. 0 hasthe value positive
infinity, while the value of 1. 0/ - 0. 0 is negative infinity.

NaN is unordered, so:

¢ The numerical comparison operators <, <=, >, and >= return f al se if either or
both operands are NaN (§15.20.1).

» Theequality operator == returnsf al se if either operand is NaN.
In particular, (x<y) == !(x>=y) will befal seif x ory isNaN.
» Theinequality operator ! = returnst r ue if either operand is NaN (815.21.1).

In particular, x! =x istrue if and only if x is NaN.

4.2

47

4.2

48

Primitive Types and Values TYPES VALUES AND VARIABLES

4.2.4 Floating-Point Operations

The Java programming language provides a number of operators that act on
floating-point values:

» The comparison operators, which result in avalue of type bool ean:
+ The numerical comparison operators <, <=, >, and >= (815.20.1)
* The numerical equality operators == and ! = (§15.21.1)
» The numerical operators, which result in avalue of typefl oat or doubl e:
* The unary plus and minus operators + and - (815.15.3, §15.15.4)
* The multiplicative operators *, / , and %(815.17)
* The additive operators + and - (8§15.18.2)
+ Theincrement operator ++, both prefix (815.15.1) and postfix (815.14.2)
* The decrement operator - -, both prefix (815.15.2) and postfix (815.14.3)
» The conditional operator ? : (815.25)

* The cast operator (815.16), which can convert from a floating-point value to a
value of any specified numeric type

» The string concatenation operator + (8§15.18.1), which, when given a String
operand and afloating-point operand, will convert the floating-point operand to
astring representing its value in decimal form (without information loss), and
then produce a newly created st ri ng by concatenating the two strings

Other useful constructors, methods, and constants are predefined in the classes
Fl oat , Doubl e, and Mat h.

If at least one of the operands to a binary operator is of floating-point type, then
the operation is a floating-point operation, even if the other isintegral.

If at least one of the operands to a numerical operator is of type doubl e, then the
operation is carried out using 64-bit floating-point arithmetic, and the result of the
numerical operator isavaue of type doubl e. If the other operand is not adoubl e,
it isfirst widened (85.1.5) to type doubl e by numeric promotion (85.6).

Otherwise, the operation is carried out using 32-hit floating-point arithmetic, and
the result of the numerical operator isavalue of typefl oat . (If the other operand
isnot afl oat, itisfirst widened to typef | oat by numeric promotion.)

Any value of afloating-point type may be cast to or from any numeric type. There
are no casts between floating-point types and the type bool ean.

TYPES, VALUES, AND VARIABLES Primitive Types and Values

See 84.2.5 for an idiom to convert floating-point expressionsto bool ean.

Operators on floating-point numbers behave as specified by IEEE 754 (with
the exception of the remainder operator (815.17.3)). In particular, the Java
programming language requires support of |EEE 754 denor malized floating-point
numbers and gradual underflow, which makeit easier to prove desirable properties
of particular numerical algorithms. Floating-point operations do not "flush to zero"
if the calculated result is a denormalized number.

The Java programming language requires that floating-point arithmetic behave
as if every floating-point operator rounded its floating-point result to the result
precision. Inexact results must be rounded to the representable value nearest to the
infinitely precise result; if the two nearest representable values are equally near,
the one with its least significant bit zero is chosen. Thisisthe IEEE 754 standard's
default rounding mode known as round to nearest.

The Java programming language uses round toward zero when converting a
floating value to an integer (85.1.3), which acts, in this case, as though the number
were truncated, discarding the mantissa bits. Rounding toward zero chooses at its
result the format's value closest to and no greater in magnitude than the infinitely
precise result.

A floating-point operation that overflows produces a signed infinity.

A floating-point operation that underflows produces a denormalized value or a
signed zero.

A floating-point operation that hasno mathematically definiteresult producesNaN.
All numeric operations with NaN as an operand produce NaN as a result.
A floating-point operator can throw an exception (811) for the following reasons:

» Any floating-point operator can throw a Nul | Poi nt er Excepti on if unboxing
conversion (85.1.8) of anull referenceis required.

e The increment and decrement operators ++ (815.14.2, 815.15.1) and --
(815.14.3, 815.15.2) can throw an Qut Of Meror yError if boxing conversion
(85.1.7) isrequired and there is not sufficient memory available to perform the
conversion.

Example 4.2.4-1. Floating-point Operations

class Test {
public static void main(String[] args) {
/'l An exanpl e of overfl ow
double d = 1e308;
Systemout. print("overflow produces infinity: ");

4.2

49

4.2

50

Primitive Types and Values

Systemout.println(d + "*10==" + d*10);
/1 An exanpl e of gradual underflow
d = 1e-305 * Math.Pl;
Systemout. print("gradual underflow " + d + "\n
for (int i =0; i < 4; i++)

Systemout.print(" " + (d /= 100000));
Systemout. println();
/1 An exanpl e of NaN:
Systemout.print("0.0/0.0 is Not-a-Nunber: ");
d = 0.0/0.0;
System out. println(d);
/1 An exanple of inexact results and rounding:
Systemout.print("inexact results with float:");

for (int i =0; i < 100; i++) {
float z = 1.0f / i;
if (z* i !'=1.0f)
Systemout.print(" " + i);
}

System out. println();
/1 Anot her exanple of inexact results and rounding:
System out. print("inexact results with double:");

for (int i =0; i < 100; i++) {
double z = 1.0/ i;
if (z*i !=1.0)
Systemout.print(" " +i);
}

Systemout. println();

/1l An exanpl e of cast to integer rounding:
Systemout.print("cast to int rounds toward 0: ");
d = 12345. 6;

Systemout.printin((int)d + " " + (int)(-d));

}
This program produces the outpuit:

overfl ow produces infinity: 1.0e+308*10==Infinity
gradual underflow 3.141592653589793E- 305
3.1415926535898E- 310 3. 141592653E-315 3. 142E-320 0.0
0.0/0.0 is Not-a-Nunber: NaN

inexact results with float: 0 41 47 55 61 82 83 94 97
inexact results with double: 0 49 98

cast to int rounds toward O: 12345 -12345

This example demonstrates, among other things, that gradua underflow can result in a

gradual loss of precision.

The resultswheni is0 involve division by zero, so that z becomes positive infinity, and

z * 0isNaN, whichisnot equal to 1. 0.

TYPES VALUES AND VARIABLES

TYPES, VALUES, AND VARIABLES Primitive Types and Values

4.25 Thebool ean Typeand boolean Values

Thebool ean type represents alogical quantity with two possible values, indicated
by the literalst rue and f al se (§3.10.3).

The boolean operators are:

* Therelational operators==and ! = (§15.21.2)

» Thelogical complement operator ! (815.15.6)

» Thelogical operators &, ~, and | (815.22.2)

* The conditional-and and conditional-or operators && (8§15.23) and | | (815.24)
 The conditional operator ? : (815.25)

» The string concatenation operator + (8§15.18.1), which, when given a String
operand and abool ean operand, will convert the bool ean operandto astri ng
(either "t rue" or"fal se"), and then produce anewly created St ri ng that isthe
concatenation of the two strings

Boolean expressions determine the control flow in several kinds of statements:
e Theif statement (814.9)

e Thewhi | e statement (814.12)

e Thedo statement (§14.13)

* Thefor statement (814.14)

A bool ean expression also determines which subexpression is evaluated in the
conditional ? : operator (815.25).

Only bool ean and Bool ean expressions can be used in control flow statements and
asthefirst operand of the conditional operator 2 : .

Aninteger or floating-point expression x can be converted to abool ean, following
the C language convention that any nonzero valueist r ue, by the expression x! =0.

An object reference obj can be converted to abool ean, following the C language
convention that any reference other than nul I istrue, by the expression obj !
=nul | .

A bool ean can be converted to ast ri ng by string conversion (85.4).

A cast of abool ean valueto type bool ean or Bool ean isalowed (85.1.1, 85.1.7).
No other casts on type bool ean are alowed.

4.2

51

4.3 Reference Types and Values TYPES, VALUES AND VARIABLES

4.3 Reference Typesand Values

There are four kinds of reference types: class types (88), interface types (89), type
variables (84.4), and array types (810).

ReferenceType:
ClassOrlInterfaceType
TypeVariable
ArrayType

ClassOrlnterfaceType:
ClassType
InterfaceType

ClassType:
TypeDecl Specifier TypeArgumentsypt

InterfaceType:
TypeDecl Specifier TypeArgumentsyyt

TypeDecl Specifier:
TypeName
ClassOrlInterfaceType . Identifier

TypeName:
Identifier
TypeName . ldentifier

TypeVariable:
Identifier

ArrayType:
Type[1]

The sample code:

class Point { int[] metrics; }
interface Move { void nove(int deltax, int deltay); }

declaresaclasstypePoi nt , aninterfacetype Move, and usesan array typei nt [] (anarray
of i nt) to declarethefield met ri cs of the class Poi nt .

52

TYPES, VALUES, AND VARIABLES Reference Types and Values

A class or interface type consists of a type declaration specifier, optionally
followed by type arguments (84.5.1). If type arguments appear anywherein aclass
or interface type, it is a parameterized type (84.5).

A type declaration specifier may be either a type name (86.5.5), or a class or

interface type followed by "." and an identifier. In the latter case, the specifier has
theform T.i d, wherei d must be the simple name of an accessible (86.6) member
type (88.5, §9.5) of T, or a compile-time error occurs. The specifier denotes that
member type.

There are contexts in the Java programming language where a generic class or interface
name is used without providing type arguments. Such contexts do not involve the use of
raw types (84.8). Rather, they are contexts where type arguments are unnecessary for, or
irrelevant to, the meaning of the generic class or interface.

For example, asingle-type-import declarationi nport j ava. util . Li st; putsthesimple
type nameLi st in scope within acompilation unit so that parameterized types of the form
Li st <...> may be used. As another example, invocation of a static method of a generic
class needs only to give the (possibly qualified) name of the generic class without any type
arguments, because such typeargumentsareirrelevant to astatic method. (Themethod itself
may be generic, and take its own type arguments, but the type parameters of a static method
are necessarily unrelated to the type parameters of its enclosing generic class (86.5.5).)

Because of the occasional need to use a generic class or interface name without type
arguments, type names are distinct from type declaration specifiers. A type nameisaways
qualified by means of another type name. In some cases, thisis necessary to access an inner
classthat is amember of a parameterized type.

Hereis an example of where atype declaration specifier is distinct from atype name:

cl ass CGenericCQuter<T extends Number> {
public class |nner<S extends Conparabl e<S>> {
T getT() { return null;}
SgetS() { return null;}

}
class Test {
public static void main(String[] args) {
Generi cQut er <l nt eger >. | nner <Doubl e> x1 = null;

Integer i = x1.getT();
Doubl e d = x1.getS();

}
If we accessed | nner by qualifying it with atype name, asin:

CGenericQuter.lnner x2 = null;

4.3

53

4.3

Reference Types and Values TYPES, VALUES AND VARIABLES

we would forceits use as araw type, losing type information.

431 Objects

An object isaclassinstance or an array.

The reference values (often just references) are pointers to these objects, and a
special null reference, which refers to no object.

A classinstanceisexplicitly created by aclassinstance creation expression (815.9).
An array isexplicitly created by an array creation expression (815.10).

A new classinstanceisimplicitly created when the string concatenation operator +
(815.18.1) is used in anon-constant (815.28) expression, resulting in a new object
of type string (84.3.3).

A new array object isimplicitly created when an array initializer expression (810.6)
is evaluated; this can occur when a class or interface is initialized (812.4), when
a new instance of aclass is created (815.9), or when alocal variable declaration
statement is executed (§14.4).

New objects of thetypesBool ean, Byt e, Short , Char act er, | nt eger , Long, Fl oat ,
and Doubl e may beimplicitly created by boxing conversion (85.1.7).

Example 4.3.1-1. Object Creation

class Point {
int x, vy;
Point() { Systemout.printin("default"); }
Point(int x, int y) { this.x =x; this.y =vy; }

/* A Point instance is explicitly created at
class initialization time: */
static Point origin = new Point(0,0);

/* A String can be inplicitly created
by a + operator: */
public String toString() { return "(" + x +"," +y +")"; }
}

class Test {
public static void main(String[] args) {
/* A Point is explicitly created
usi ng new nstance: */
Point p = null;
try {
p = (Point)d ass. forNanme("Poi nt").new nstance();
} catch (Exception e) {
Systemout.println(e);

TYPES, VALUES, AND VARIABLES Reference Types and Values

}

/* An array is inplicitly created
by an array constructor: */
Point a[] = { new Point(0,0), new Point(1,1) };

/* Strings are inplicitly created
by + operators: */
Systemout.printin("p: " + p);
Systemout.println("a: { " + a0 +", " + a1l +" }");

/* An array is explicitly created

by an array creation expression: */
String sa[] = new String[2];
sa[0] = "he"; sa[1l] = "llo",;
Systemout.println(sa[0] + sa[1l]);

}
This program produces the outpuit:

def aul t

p: (0,0)

a: { (0,0), (1,1) }
hell o

The operators on references to objects are:

Field access, using either a qualified name (86.6) or a field access expression
(§15.11)

Method invocation (815.12)
The cast operator (85.5, §15.16)

The string concatenation operator + (815.18.1), which, when given a Stri ng
operand and areference, will convert the referenceto a st ri ng by invoking the
t oSt ri ng method of the referenced object (using " nul | * if either the reference
or the result of toString is anull reference), and then will produce a newly
created St ri ng that is the concatenation of the two strings

Thei nst anceof operator (815.20.2)
The reference equality operators== and ! = (815.21.3)
The conditional operator ? : (815.25).

There may be many references to the same object. Most objects have state, stored
in the fields of objects that are instances of classes or in the variables that are the
components of an array object. If two variables contain references to the same
object, the state of the object can be modified using one variable's reference to the

4.3

55

4.3

56

Reference Types and Values TYPES, VALUES AND VARIABLES

object, and then the altered state can be observed through the reference in the other
variable.

Example 4.3.1-2. Primitive and Reference | dentity
class Value { int val; }

class Test {
public static void main(String[] args) {

int il=3;
int i2=1i1;
i2 = 4

Systemout.print("il==" + i1l);
Systemout.println(" but i2==" +i2);
Val ue vl = new Val ue();

vl.val = 5;

Val ue v2 = vi,;

v2.val = 6;

Systemout. print("vl. val ==" + vl.val);
Systemout.println(" and v2.val ==" + v2.val);

}
This program produces the output:

i 1==3 but i2==4
vl.val ==6 and v2.val ==6

because v1. val and v2.val reference the same instance variable (84.12.3) in the one
Val ue object created by the only new expression, whilei 1 andi 2 are different variables.

Each object is associated with amonitor (817.1), which is used by synchr oni zed
methods (88.4.3) and thesynchr oni zed statement (814.19) to provide control over
concurrent access to state by multiple threads (817).

4.3.2 TheClass oj ect

The class mj ect isasuperclass (88.1.4) of all other classes.

All class and array types inherit (88.4.8) the methods of class j ect , which are
summarized as follows:

» The method cl one is used to make a duplicate of an object.

» Themethod equal s defines anotion of object equality, which isbased on value,
not reference, comparison.

» Themethod fi nal i ze isrun just before an object is destroyed (812.6).

TYPES, VALUES, AND VARIABLES Reference Types and Values

* The method get d ass returns the C ass object that represents the class of the
object.

A d ass object exists for each reference type. It can be used, for example,
to discover the fully qualified name of a class, its members, its immediate
superclass, and any interfaces that it implements.

The type of a method invocation expression of get O ass iS O ass<? ext ends
[T|> where T isthe class or interface searched (815.12.1) for get d ass.

A class method that is declared synchr oni zed (88.4.3.6) synchronizes on the
monitor associated with the d ass object of the class.

» The method hashCode is very useful, together with the method equal s, in
hashtables such asj ava. uti | . Hashmap.

» Themethodswai t , noti fy,andnoti fyAl | areusedin concurrent programming
using threads (817.2).

» Themethodt oSt ri ng returnsa st ri ng representation of the object.

43.3 TheClassstring

Instances of class st ri ng represent sequences of Unicode code points.
A st ri ng object has a constant (unchanging) value.
String literals (83.10.5) are references to instances of class St ri ng.

The string concatenation operator + (815.18.1) implicitly creates a new Stri ng
object when the result is not a compile-time constant expression (815.28).

4.34 When Reference Types Arethe Same

Two reference types are the same compile-time type if they have the same binary
name (813.1) and their type arguments, if any, arethe same, applying thisdefinition
recursively.

When two reference types are the same, they are sometimes said to be the same
class or the same interface.

At run time, severa reference types with the same binary name may be loaded
simultaneously by different class loaders. These types may or may not represent
the same type declaration. Even if two such types do represent the same type
declaration, they are considered distinct.

Two reference types are the same run-time type if:

4.3

57

4.4

58

Type Variables TYPES VALUES, AND VARIABLES

» They are both class or both interface types, are defined by the same class|oader,
and have the same binary name (813.1), in which case they are sometimes said
to be the same run-time class or the same run-time interface.

» They are both array types, and their component types are the same run-time type
(810).

4.4 TypeVariables

A typevariableisanunqualifiedidentifier used asatypein class, interface, method,
and constructor bodies.

A type variable is declared as a type parameter of a generic class declaration
(88.1.2), generic interface declaration (89.1.2), generic method declaration
(88.4.4), or generic constructor declaration (88.8.4).

TypeParameter:
TypeVariable TypeBoundopt

TypeBound:
ext ends TypeVariable
ext ends ClassOrInterfaceType Additional BoundListop

Additional BoundList:
Additional Bound Additional BoundList
Additional Bound

Additional Bound:
& InterfaceType

The scope of atype variable declared as atype parameter is specified in §6.3.

Every type variable declared as a type parameter has a bound. If no bound is
declared for atype variable, bj ect isassumed. If abound is declared, it consists
of either:

» asingletypevariableT, or
» aclassor interface type T possibly followed by interfacetypes! ; & ... &1 .

Itisacompile-timeerror if any of thetypesi ; ... I , isaclasstype or type variable.

TYPES, VALUES AND VARIABLES Type Variables

The erasures (84.6) of all constituent types of a bound must be pairwise different,
or acompile-time error occurs.

A typevariable must not at the same time be a subtype of two interface typeswhich
are different parameterizations of the same generic interface, or a compile-time
error occurs.

Theorder of typesinaboundisonly significant inthat the erasure of atypevariable
is determined by the first type in its bound, and that a class type or type variable
may only appear in the first position.

The members of atype variable X with bound T &1 1 & ... &I , are the members of
the intersection type (84.9) T &1 & ... & | , @ppearing at the point where the type
variable is declared.

Example 4.4-1. Members of a Type Variable
package TypeVar Menbers;

class C {
public voi d nmCPublic() {}
protected void nCProtected() {}
voi d mCDef aul t () {}
private void nCPrivate() {}
}

interface | {
void m();
}

class CT extends Cinplenments | {
public void m () {}

}

class Test {
<T extends C & | > void test(T t) {

t.m(); I X
t.nCPublic(); Il XK
t.mCProtected(); // OK
t.mCDefaul t(); /Il K
t.mCPrivate(); /1 Conpile-tine error

}

The type variable T has the same members as the intersection type C & |, which in turn
has the same members as the empty class CT, defined in the same scope with equivalent
supertypes. Themembersof aninterfaceareawayspubl i ¢, and thereforealwaysinherited
(unless overridden). Hence m is a member of CT and of T. Among the members of C, all
but nCPr i vat e areinherited by CT, and are therefore members of both CT and T.

4.4

59

4.5

60

Parameterized Types TYPES, VALUES AND VARIABLES

If C had been declared in a different package than T, then the call to nCDef aul t would
giverisetoacompile-timeerror, asthat member would not be accessible at the point where
T isdeclared.

45 Parameterized Types

A generic class or interface declaration ¢ (88.1.2, §9.1.2) with one or more type
parameters Ay,...,A, which have corresponding bounds B;,...,B, defines a set of
parameterized types, onefor each possibleinvocation of thetype parameter section.

Each parameterized type in the set is of the form C<Ty,...,T,> where each type
argument T; ranges over al types that are subtypes of al types listed in the
corresponding bound. That is, for each bound type s; in B, T; is a subtype of
Si [F]_: :Tl FnI :Tn] .

A parameterized type is written as a ClassType or InterfaceType that contains
at least one type declaration specifier immediately followed by a type argument
list <Ty,...,To>. The type argument list denotes a particular invocation of the type
parameters of the generic type indicated by the type declaration specifier.

Given atype declaration specifier immediately followed by a type argument list,
let c be the final Identifier in the specifier.

It is a compile-time error if Cis not the name of a generic class or interface, or if
the number of type arguments in the type argument list differs from the number
of type parameters of C.

Let P = C<Ty,...,To> be a parameterized type. It must be the case that, after P is
subjected to capture conversion (85.1.10) resulting in the type C<Xy,...,X,>, for each
typeargument X, (1<i<n), X < B[As:=Xq, ..., Ay: =X,] (84.10), or acompile-
time error occurs.

Thenotation[A : =T;] denotes substitution of the type variable A, with thetypeT;
for 1 <i < n, and is used throughout this specification.

In this specification, whenever we speak of aclassor interface type, weincludethe
generic version aswell, unless explicitly excluded.

Examples of parameterized types:

* Vector<String>
¢ Seq<Seq<A>>
* Seq<String>. Zi pper <l nt eger >

TYPES VALUES AND VARIABLES Parameterized Types

e Col | ecti on<l nteger>

e Pair<string, String>
Examples of incorrect invocations of a generic type:

e Vector<int>isillegal, as primitive types cannot be type arguments.

e Pair<String>isillegal, asthere are not enough type arguments.

e Pair<String, String, String>isillegal, asthere are too many type arguments.

A parameterized type may be an invocation of a generic class or interface which is nested.
For example, if anon-generic class C has ageneric member classD<T>, then C. D<Qbj ect >
is a parameterized type. And if a generic class C<T> has a non-generic member class D,

then the member type C<Stri ng>. D is a parameterized type, even though the class D is
not generic.

Two parameterized types are provably distinct if either of the following conditions
hold:

» They areinvocations of distinct generic type declarations.

» Any of their type arguments are provably distinct.

451 TypeArgumentsand Wildcards

Type arguments may be either reference types or wildcards. Wildcards are useful
in situations where only partial knowledge about the type parameter is required.

4.5

61

4.5 Parameterized Types TYPES, VALUES AND VARIABLES

TypeArguments:
< TypeArgumentList >

TypeArgumentList:
TypeArgument
TypeArgumentList, TypeArgument

TypeArgument:
ReferenceType
Wildcard

Wildcard:
2 WildcardBoundsgp

WildcardBounds:
ext ends ReferenceType
super ReferenceType

Example 4.5.1-1. Wildcards

inmport java.util.Collection;
inmport java.util.Arraylist;

class Test {
static void printCollection(Collection<?>c) {
/1 a wildcard collection
for (Qbject o: c) {
System out. println(o);
}
}

public static void main(String[] args) {
Col l ection<String> cs = new ArrayList<String>();
cs.add("hel l 0");
cs.add("worl d");
printCollection(cs);

}

Note that using Col | ect i on<CObj ect > as the type of the incoming parameter, ¢, would
not be nearly as useful; the method could only be used with an argument expression that
had type Col | ect i on<bj ect >, which would be quite rare. In contrast, the use of an
unbounded wildcard allows any kind of collection to be used as a parameter.

Here is an example where the element type of an array is parameterized by awildcard:

public Method get Met hod(d ass<?>[] paraneterTypes) { ... }

62

TYPES VALUES AND VARIABLES Parameterized Types

Wildcards may be given explicit bounds, just like regular type variable
declarations. An upper bound is signified by the following syntax, where B is the
bound:

? extends B

Unlike ordinary type variables declared in a method signature, no type inference
isrequired when using awildcard. Consequently, it is permissible to declare lower
bounds on awildcard, using the following syntax, where B is alower bound:

? super B

Example 4.5.1-2. Bounded Wildcards

bool ean addAl | (Col | ecti on<? extends E> c)

Here, the method is declared within the interface Col | ect i on<E>, and is designed to add
all the elements of its incoming argument to the collection upon which it is invoked. A
natural tendency would beto use Col | ect i on<E> asthetypeof c, but thisisunnecessarily
restrictive. An alternative would be to declare the method itself to be generic:

<T> bool ean addAl | (Col | ecti on<T> c)

Thisversionissufficiently flexible, but note that the type parameter isused only onceinthe
signature. Thisreflectsthefact that the type parameter is not being used to express any kind
of interdependency between the type(s) of the argument(s), the return type and/or throws
type. In the absence of such interdependency, generic methods are considered bad style,
and wildcards are preferred.

Ref erence(T referent, ReferenceQueue<? super T> queue);

Here, the referent can be inserted into any queue whose element type is a supertype of the
type T of the referent; T is the lower bound for the wildcard.

Two type arguments are provably distinct if one of the following istrue:

» Neither argument is atype variable or wildcard, and the two arguments are not
the same type.

» One type argument is a type variable or wildcard, with an upper bound (from
capture conversion, if necessary) of s; and the other type argument T isnot atype
variable or wildcard; and neither |s| <: [T| nor [T| <: [S].

» Each type argument is a type variable or wildcard, with upper bounds (from
capture conversion, if necessary) of s and T; and neither [s| <: [T| nor [T| <: [S].

A type argument T, is said to contain another type argument T,, written T, <= Ty,
if the set of types denoted by T, is provably a subset of the set of types denoted

4.5

63

Parameterized Types TYPES, VALUES AND VARIABLES

by T1 under the reflexive and transitive closure of the following rules (where <:
denotes subtyping (84.10)):

e ?extends T<=?extends SifT<: S
e ?super T<=?super SifsS<: T

e T<=T

e T<=?extends T

e T<=?super T

The relationship of wildcards to established type theory is an interesting one, which we
briefly alude to here. Wildcards are arestricted form of existential types. Given a generic
type declaration G<T ext ends B>, G<?> isroughly analogousto Sonme X <: B. GX>.

Historically, wildcards are a direct descendant of the work by Atsushi Igarashi and Mirko
Viroli. Readersinterested in amore comprehensive discussion should refer to On Variance-
Based Subtyping for Parametric Types by Atsushi lgarashi and Mirko Viroli, in the
Proceedings of the 16th European Conference on Object Oriented Programming (ECOOP
2002). This work itself builds upon earlier work by Kresten Thorup and Mads Torgersen
(Unifying Genericity, ECOOP 99), aswell as along tradition of work on declaration based
variance that goes back to Pierre America's work on POOL (OOPSLA 89).

Wildcards differ in certain details from the constructs described in the aforementioned
paper, in particular in the use of capture conversion (85.1.10) rather than the cl ose
operation described by Igarashi and Viroli. For a formal account of wildcards, see Wild
FJ by Mads Torgersen, Erik Ernst and Christian Plesner Hansen, in the 12th workshop on
Foundations of Object Oriented Programming (FOOL 2005).

452 Membersand Constructors of Parameterized Types

Let c be ageneric class or interface declaration with type parameters Ay,...,A,, and
let c<Ty,...,Tn> be aninvocation of C, where, for 1 <i < n, T; aretypes (rather than
wildcards). Then:

 Let mbe amember or constructor declaration (88.2, §8.8.6) in C, whose type as
declared isT.

Thetype of min C<Ty,...,To> IST[A1: =Ty, .. ., A =Th] .

» Letmbeamember or constructor declarationin b, whereDisaclassextended by C
or aninterfaceimplemented by C. Let D<uy,...,Uc> be the supertype of C<Ty,...,Tp>
that corresponds to D.

Thetype of min C<Ty,...,Ty> isthe type of min D<Uy,...,U>.

If any of the type argumentsin the invocation of C are wildcards, then:

TYPES, VALUES AND VARIABLES Type Erasure

» The types of the fields, methods, and constructors in c<T;,...,T,> are the types
of the fields, methods, and constructors in the capture conversion (85.1.9) of
C<T1,.ee, Tp>.

* Let D be a (possibly generic) class or interface declaration in C. Then the type
of Din C<Ty,...,T,> isDwhere, if Dis generic, all type arguments are unbounded
wildcards.

Thisis of no consequence, asit isimpossible to access a member of a parameterized type
without performing capture conversion (85.1.10), and it is impossible to use a wildcard
type after the keyword new in a class instance creation expression.

The sole exception to the previous paragraph is when a nested parameterized type is used
asthe expressionin ani nst anceof operator (815.20.2), where capture conversion is not

applied.

46 TypeErasure

Type erasureis a mapping from types (possibly including parameterized types and
type variables) to types (that are never parameterized types or type variables). We
write |T| for the erasure of type T. The erasure mapping is defined as follows:

» The erasure of a parameterized type (84.5) G<Ty,...,Tn> iS|G.

» The erasure of anested typeT. Cis|T|.C.

» Theerasure of an array type T[] iS|T|[] .

» The erasure of atype variable (84.4) isthe erasure of itsleftmost bound.
» The erasure of every other typeis the type itself.

Type erasure also maps the signature (88.4.2) of a constructor or method to a
signature that has no parameterized types or type variables. The erasure of a
constructor or method signature s is a signature consisting of the same name as s
and the erasures of all the formal parameter typesgivenins.

The type parameters of a constructor or method (88.4.4), and the return type
(88.4.5) of amethod, also undergo erasure if the constructor or method's signature
iserased.

The erasure of the signature of a generic method has no type parameters.

4.6

65

4.7

66

Reifiable Types TYPES VALUES AND VARIABLES

4.7 Reifiable Types

Because some type information is erased during compilation, not al types are
available at run time. Types that are completely available at run time are known
asreifiable types.

A typeisreifiableif and only if one of the following holds:

It refers to a non-generic class or interface type declaration.

It is a parameterized type in which al type arguments are unbounded wildcards
(84.5.2).

Itisaraw type (84.8).

It isaprimitive type (84.2).

It isan array type (810.1) whose element type isreifiable.

It isanested type where, for each type T separated by a". ", T itself isreifiable.

For example, if a generic class X<T> has a generic member class Y<U>, then the
type X<?>. Y<?> is reifiable because X<?> isreifiable and Y<?> isreifiable. The type
X<?>. Y<Cbj ect > isnot reifiable because Y<bj ect > is not reifiable.

An intersection typeis not reifiable.

The decision not to make all generic types reifiable is one of the most crucial, and
controversial design decisions involving the type system of the Java programming
language.

Ultimately, the most important motivation for this decision is compatibility with existing
code. In anaive sense, the addition of new constructs such as generics has no implications
for pre-existing code. The Java programming language, per se, is compatible with earlier
versions as long as every program written in the previous versions retains its meaning in
the new version. However, this notion, which may be termed language compatibility, is
of purely theoretical interest. Real programs (even trivial ones, such as "Hello World")
are composed of several compilation units, some of which are provided by the Java SE
platform (such aselementsof j ava. | ang orj ava. uti |). In practice, then, the minimum
requirement is platform compatibility - that any program written for the prior version of the
Java SE platform continues to function unchanged in the new version.

One way to provide platform compatibility is to leave existing platform functionality
unchanged, only adding new functionality. For example, rather than modify the existing
Collections hierarchy inj ava. uti | , one might introduce a new library utilizing generics.

The disadvantages of such a schemeisthat it is extremely difficult for pre-existing clients
of the Callection library to migrate to the new library. Collections are used to exchange
data between independently developed modules; if a vendor decides to switch to the new,
generic, library, that vendor must also distribute two versionsof their code, to be compatible

TYPES, VALUES AND VARIABLES Raw Types

with their clients. Librariesthat are dependent on other vendors code cannot be modified to
use generics until the supplier'slibrary is updated. If two modules are mutually dependent,
the changes must be made simultaneously.

Clearly, platform compatibility, as outlined above, does not provide a realistic path for
adoption of a pervasive new feature such as generics. Therefore, the design of the generic
type system seeks to support migration compatibility. Migration compatibiliy alows the
evolution of existing code to take advantage of generics without imposing dependencies
between independently developed software modules.

The price of migration compatibility isthat afull and sound reification of the generic type
system is not possible, at least while the migration is taking place.

4.8 Raw Types

Tofacilitateinterfacing with non-generic legacy code, it ispossibleto use asatype
the erasure (84.6) of a parameterized type (84.5) or the erasure of an array type
(810.1) whose element type is a parameterized type. Such a type is called a raw

type.
More precisely, araw typeis defined to be one of:

» Thereferencetypethat isformed by taking the name of ageneric typedeclaration
without an accompanying type argument list.

» An array type whose element type isaraw type.

* A non-static member type of araw type R that is not inherited from a superclass
or superinterface of R.

A non-generic class or interface type is not araw type.

To see why a nhon-st ati ¢ type member of a raw type is considered raw, consider the
following example:

class Quter<T>{
Tt,;
class | nner {
T setQuterT(T t1) { t =t1; returnt; }
}
}

The type of the member(s) of | nner depends on the type parameter of Qut er . If Qut er is
raw, | nner must be treated as raw as well, asthereisno valid binding for T.

4.8

67

4.8

68

Raw Types TYPES, VALUES AND VARIABLES

Thisrule applies only to type members that are not inherited. Inherited type members that
depend on type variables will be inherited as raw types as a consequence of the rule that
the supertypes of araw type are erased, described later in this section.

Another implication of the rules above is that a generic inner class of araw type can itself
only be used as araw type:

class Quter<T>{
class I nner<S> {
S's;
}
}

It isnot possibleto access| nner asapartialy raw type (a"rare" type):

Quter.|nner<Double> x = null; // illegal
Double d = x.s;

because Qut er itself israw, hence so are al itsinner classesincluding | nner, and soitis
not possible to pass any type arguments to Inner.

The superclasses (respectively, superinterfaces) of a raw type are the erasures of
the superclasses (superinterfaces) of any of its parameterized invocations.

The type of a constructor (88.8), instance method (88.4, 89.4), or non-static field
(88.3) Mof araw type Ccthat is not inherited from its superclasses or superinterfaces
isthe raw type that corresponds to the erasure of itstype in the generic declaration
corresponding to C.

The type of a static method or static field of araw type cisthe same asitstypein
the generic declaration corresponding to C.

It isacompile-time error to pass type arguments to anon-st at i ¢ type member of
araw typethat is not inherited from its superclasses or superinterfaces.

It isacompile-time error to attempt to use atype member of a parameterized type
asaraw type.

This means that the ban on "rare" types extends to the case where the qualifying type is
parameterized, but we attempt to use the inner class as araw type:

Quter<integer>.lnner x = null; // illegal

Thisis the opposite of the case discussed above. Thereis no practical justification for this
half-baked type. Inlegacy code, no type arguments are used. In non-legacy code, we should
use the generic types correctly and pass al the required type arguments.

TYPES, VALUES AND VARIABLES Raw Types

The supertype of a class may be a raw type. Member accesses for the class are
treated as normal, and member accesses for the supertype are treated as for raw
types. In the constructor of the class, calsto super aretreated as method calls on
araw type.

The use of raw types is alowed only as a concession to compatibility of legacy
code. The use of raw types in code written after the introduction of genericsinto
the Java programming language is strongly discouraged. It is possible that future
versions of the Java programming language will disallow the use of raw types.

To make sure that potential violations of the typing rules are aways flagged, some
accessesto members of araw typewill result in compile-time unchecked warnings.
The rules for compile-time unchecked warnings when accessing members or
constructors of raw types are asfollows:

» Atanassignmenttoafield: if thetype of theleft-hand operandisaraw type, then
a compile-time unchecked warning occurs if erasure changes the field's type.

» Ataninvocation of amethod or constructor: if thetype of the classor interfaceto
search (815.12.1) isaraw type, then acompile-time unchecked warning occursif
erasure changes any of the formal parameter types of the method or constructor.

» No compile-time unchecked warning occurs for a method call when the formal
parameter types do not change under erasure (even if the result type and/or
t hr ows clause changes), for reading from afield, or for a classinstance creation
of araw type.

Note that the unchecked warnings above are distinct from the unchecked warnings possible
from unchecked conversion (85.1.9), casts (85.5.2), method declarations (88.4.1, §8.4.8.3,
88.4.8.4, 89.4.1.2), and variable arity method invocations (§15.12.4.2).

The warnings here cover the case where alegacy consumer uses a generified library. For
example, the library declares a generic class Foo<T ext ends Stri ng> that hasafield f
of type Vect or <T>, but the consumer assigns a vector of integersto e. f where e hasthe
raw type Foo. The legacy consumer receives a warning because it may have caused heap
pollution (84.12.2) for generified consumers of the generified library.

(Note that the legacy consumer can assign aVect or <St ri ng> from the library to itsown
Vect or variable without receiving awarning. That is, the subtyping rules (84.10.2) of the
Java programming language make it possible for a variable of araw type to be assigned a
value of any of the type's parameterized instances.)

Thewarningsfrom unchecked conversion cover the dual case, where agenerified consumer
uses a legacy library. For example, a method of the library has the raw return type
Vect or , but the consumer assigns the result of the method invocation to avariable of type
Vect or <St ri ng>. Thisis unsafe, since the raw vector might have had adifferent element
type than Stri ng, but is still permitted using unchecked conversion in order to enable
interfacing with legacy code. The warning from unchecked conversion indicates that the

4.8

69

4.8 Raw Types TYPES, VALUES AND VARIABLES

generified consumer may experience problems from heap pollution at other points in the
program.

Example 4.8-1. Raw Types

class Cell <E> {

E val ue;
Cel |l (E v) { value =v; }
E get () { return value; }

void set(E v) { value = v; }

public static void main(String[] args) {
Cell x = new Cel I <String>("abc");
Systemout.println(x.value); // OK has type Object
Systemout.println(x.get()); // OK has type Object
x.set("def"); /1 unchecked war ni ng

Example 4.8-2. Raw Types and I nheritance

import java.util.*;
cl ass NonGeneric {
Col | ecti on<Number> nmyNunbers() { return null; }

}

abstract class RawMvenber s<T> extends NonGeneric
i npl enents Col | ection<String> {
static Collection<NonGeneric> cng =
new ArrayLi st <NonGeneric>();

public static void main(String[] args) {

Rawvenbers rw = nul | ;

Col | ecti on<Nunber> cn = rw. myNunbers();

Il K
Iterator<String>is = rw.iterator();
/1 Unchecked war ni ng
Col | ecti on<NonGeneri c> cnn = rw. cng;
/Il OK, static nenber

}
In this program, Rawivenber s<T> inherits the method:
Iterator<String> iterator()

fromthe Col | ect i on<St ri ng> superinterface. However, the type Rawvenber s inherits
i terator() fromtheerasureof Col | ecti on<St ri ng>, which meansthat thereturntype
ofiterator() istheerasureof | terator<String>,lterator.

70

TYPES, VALUES AND VARIABLES Intersection Types

As aresult, the attempt to assign to rw. i t er at or () requires an unchecked conversion
(85.1.9) from Iterator tolterator<String>, causing an unchecked warning to be
issued.

In contrast, the static member cng retains its full parameterized type even when accessed
through a object of raw type. (Note that access to a static member through an instance
is considered bad style and is to be discouraged.) The member nyNunber s is inherited
from the NonGeneri ¢ class (whose erasure is a'so NonGener i ¢) and so retains its full
parameterized type.

Raw types are closely related to wildcards. Both are based on existential types. Raw types
can be thought of as wildcards whose type rules are deliberately unsound, to accommodate
interaction with legacy code. Historically, raw types preceded wildcards; they were first
introduced in GJ, and described in the paper Making the future safe for the past: Adding
Genericity to the Java Programming Language by Gilad Bracha, Martin Odersky, David
Stoutamire, and Philip Wadler, in Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA 98), October 1998.

4.9 Intersection Types

An intersection type takes the form 7, & ... & T, (n > 0), where T; (1 <i < n) are
type expressions.

Intersection types arise in the processes of capture conversion (85.1.10) and type
inference (815.12.2.7). It is not possible to write an intersection type directly as
part of a program; no syntax supports this.

The values of an intersection type are those objects that are values of all of the
typesT; for1<i<n.

The members of an intersection typeT; & ... & T,, are determined as follows:

* ForeachT; (1<i<n),letC bethe most specific class or array type such that
T, <: G. Thenthere must be some T <: G suchthat G <: G foranyi(1<i <
n), or a compile-time error occurs.

» For1<j<n,if T; isatypevariable, thenlet T;" be an interface whose members
are the same as the public members of T;; otherwisg, if T; is an interface, then
let Tj "be Tj .

» Then the intersection type has the same members as a class type (88) with an
empty body, direct superclass ¢, and direct superinterfaces T,', ..., T,)', declared
in the same package in which the intersection type appears.

It isworth dwelling upon the distinction between intersection types and the bounds of type
variables. Every type variable bound induces an intersection type. This intersection type
is often trivial (i.e., consists of a single type). The form of a bound is restricted (only the

4.9

71

4.10

72

Subtyping TYPES, VALUES AND VARIABLES

first element may be aclass or type variable, and only one type variable may appear in the
bound) to preclude certain awkward situations coming into existence. However, capture
conversion can lead to the creation of type variables whose bounds are more general (e.g.,

array types).

4.10 Subtyping

The subtype and supertype relations are binary relations on types.

The supertypes of atype are obtained by reflexive and transitive closure over the
direct supertype relation, written s >; T, which is defined by rules given later in
this section. Wewrite s : > T to indicate that the supertype relation holds between
SsandT.

Sisaproper supertypeof T, writtens>T,if S:>TandS#*T.

The subtypes of atype T are al types U such that T is a supertype of U, and the
null type. We write T <: S to indicate that that the subtype relation holds between
typesT and s.

Tisaproper subtype of s, written T< S, if T<: sandsS+T.
Tisadirect subtype of s, written T<; S, if S>; T.

Subtyping does not extend through parameterized types. T <: S does not imply that
C<T><: C<S>.

4.10.1 Subtyping among Primitive Types

Thefollowing rules define the direct supertype relation among the primitive types:
* doubl e >; fl oat

e float >11ong

* long > int

®* int > char

* int > short

* short >; byte

TYPES, VALUES, AND VARIABLES Subtyping

4.10.2 Subtyping among Class and I nterface Types

Given a generic type declaration C<Fy,...,F,>, the direct supertypes of the
parameterized type C<Ty,...,T,> are al of the following:

» The direct superclasses of C.

» Thedirect superinterfaces of C.

* Thetype j ect, if Cisan interface type with no direct superinterfaces.
» Theraw typecC.

The direct supertypes of the parameterized type C<Ty,...,To>, Where T; (1 <i < n)
isatype, are all of the following:

e D<U; B,...,U 8>, where D<Uy,...,U> is a direct supertype of C<Ty,...,T,> and B is
the substitution [Fy: =T, . . ., Fn: =Th] .

* C<Sy,..,Sy>, Where s containsT; (1<i<n)(84.5.1).

The direct supertypes of the parameterized type C<Ry,...,R,>, Where at least one of
ther (1<i<n)isawildcardtypeargument, arethedirect supertypesof c<Xy,...,Xn>
which isthe result of applying capture conversion (85.1.10) to C<Ry,...,R,>.

The direct supertypes of anintersectiontypeT; &...& T, areT; (L<i<n).
The direct supertypes of atype variable are the typeslisted in its bound.
A type variable isadirect supertype of its lower bound.

The direct supertypes of the null type are all reference types other than the null
typeitself.

4.10.3 Subtyping among Array Types
The following rules define the direct supertype relation among array types.
» If sand T are both reference types, then 5[] >; T[] iff S>; T.
* (hject > oject[]
* Cl oneabl e >; Object[]
®* java.io. Serializable>; Qbject][]
* If Pisaprimitive type, then:
* Object >1 P[]

* O oneable>; P[]

4.10

73

411 Where Types Are Used TYPES, VALUES AND VARIABLES

* java.io.Serializable > P[]

4.11 Where TypesAre Used

Types are used when they appear in declarations or in certain expressions.

Example 4.11-1. Usage of a Type

import java.util.Random
inmport java.util.Collection;
inmport java.util.Arraylist;

cl ass M scMat h<T ext ends Nunber> {
int divisor;
M scMat h(int divisor) { this.divisor = divisor; }
float ratio(long I) {
try {
I /= divisor;
} catch (Exception e) {
if (e instanceof ArithmeticException)
I = Long. MAX_VALUE;
el se
I =0;

return (float)l;

}

doubl e gausser() {

Random r = new Randon();
doubl e[] val = new doubl e[2];
val [0] = r.next Gaussi an();
val [1] = r.next Gaussian();
return (val[0] + val[1]) / 2;

}

Col | ecti on<Nunber> fromArray(Nunber[] na) {
Col | ecti on<Number> cn = new ArraylLi st <Nunmber>();
for (Nunber n : na) cn.add(n);
return cn;

}

<S> void loop(S s) { this.<S>l oop(s); }

}

In this example, types are used in declarations of the following:

e Imported types (87.5); here the type Random imported from the type
java. util . Randomof the packagej ava. uti I, is declared

* Fields, which are the class variables and instance variables of classes (88.3), and
constants of interfaces (§89.3); herethefield di vi sor intheclassM scMat h isdeclared
to be of typei nt

74

TYPES, VALUES, AND VARIABLES Variables

» Method parameters (88.4.1); here the parameter | of the method r at i o is declared to
be of typel ong

» Method results (88.4); here the result of the method rati o is declared to be of type
f 1 oat, and the result of the method gausser isdeclared to be of typedoubl e

¢ Constructor parameters (88.8.1); here the parameter of the constructor for M scMat h is
declared to be of typei nt

¢ Local variables (§814.4, 814.14); the local variablesr and val of the method gausser
are declared to be of types Randomand doubl e[] (array of doubl e)

» Exception parameters (814.20); here the exception parameter e of the cat ch clauseis
declared to be of type Except i on

« Type parameters (84.4); here the type parameter of M scMat h isatype variable T with
the type Nunber asits declared bound

* Inany declaration that uses a parameterized type; here the type Nunber isused asatype
argument (84.5.1) in the parameterized type Col | ect i on<Nunber >.

and in expressions of the following kinds:

» Classinstance creations (815.9); herealocal variabler of method gausser isinitialized
by aclass instance creation expression that uses the type Random

* Genericclass(88.1.2) instance creations (815.9); hereNunber isused asatypeargument
in the expression new ArrayLi st <Number >()

* Array creations (815.10); here the local variable val of method gausser isinitialized
by an array creation expression that creates an array of doubl e with size 2

» Generic method (88.4.4) or constructor (88.8.4) invocations (815.12); here the method
I oop calsitself with an explicit type argument S

e Casts (815.16); here the r et ur n statement of the method r at i o uses the f I oat type
inacast

e Thei nstanceof operator (§15.20.2); herethei nst anceof operator testswhether e is
assignment-compatible with the type Ari t hmet i cExcept i on

412 Variables

A variable is a storage location and has an associated type, sometimes called its
compile-time type, that is either a primitive type (84.2) or areference type (84.3).

A variable's value is changed by an assignment (815.26) or by a prefix or postfix +
+ (increment) or - - (decrement) operator (815.14.2, 815.14.3, §15.15.1, §15.15.2).

Compatibility of the value of avariable with itstypeis guaranteed by the design of
the Javaprogramming language, aslong asaprogram does not giveriseto compile-
time unchecked warnings(84.12.2). Default values (84.12.5) are compatibleand al

412

75

412

76

Variables TYPES, VALUES, AND VARIABLES

assignmentsto a variable are checked for assignment compatibility (85.2), usually
at compile time, but, in a single case involving arrays, a run-time check is made
(810.5).

4.12.1 Variablesof Primitive Type

A variable of aprimitivetype always holds aprimitive value of that exact primitive
type.

4.12.2 Variablesof Reference Type

A variable of aclasstype T can hold a null reference or areference to an instance
of class T or of any classthat is a subclass of T.

A variable of an interface type can hold a null reference or a reference to any
instance of any class that implements the interface.

Note that a variable is not guaranteed to always refer to a subtype of its declared type, but
only to subclasses or subinterfaces of the declared type. This is due to the possibility of
heap pollution discussed below.

If Tisaprimitivetype, then avariable of type"array of T" can hold anull reference
or areference to any array of type "array of T".

If Tisareferencetype, then avariable of type "array of T" can hold anull reference
or areference to any array of type "array of S" such that type s is a subclass or
subinterface of typeT.

A variable of type tbj ect [] can hold areferenceto an array of any reference type.

A variable of type oj ect can hold a null reference or areference to any object,
whether it is an instance of aclass or an array.

It is possible that a variable of a parameterized type will refer to an object that is
not of that parameterized type. This situation is known as heap pollution.

Heap pollution can only occur if the program performed some operation involving
araw typethat would giverise to a compile-time unchecked warning (84.8, 85.1.9,
85.5.2,88.4.1,88.4.8.3,88.4.8.4,89.4.1.2, §15.12.4.2), or if the program aliases an
array variable of non-reifiable element typethrough an array variable of asupertype
which is either raw or non-generic.

For example, the code:

List | = new ArrayLi st <Nunber>();

TYPES, VALUES, AND VARIABLES Variables 412

List<String>Is =1; // Unchecked warning

gives rise to a compile-time unchecked warning, because it is not possible to ascertain,
either at compile time (within the limits of the compile-time type checking rules) or at run
time, whether the variable| doesindeed refer toali st <Stri ng>.

If the code above is executed, heap pollution arises, as the variable | s, declared to be a
Li st <String>, refersto avaluethat isnot infact aLi st <Stri ng>.

The problem cannot be identified at run time because type variables are not reified, and
thus instances do not carry any information at run time regarding the type arguments used
to create them.

In a simple example as given above, it may appear that it should be straightforward to
identify the situation at compiletimeand givean error. However, inthegeneral (andtypical)
case, the value of the variablel may be the result of an invocation of a separately compiled
method, or its value may depend upon arbitrary control flow. The code above is therefore
very atypical, and indeed very bad style.

Furthermore, the fact that Obj ect [] is a supertype of all array types means that unsafe
aliasing can occur which leadsto heap pollution. For example, the following code compiles
because it is statically type-correct:

static void m(List<String> .. stringLists) {
Obj ect[] array = stringLists;
Li st<lnteger> tnpList = Arrays. asLi st(42);
array[0] = tnpList; 11 (1)
String s = stringLists[0].get(0); // (2)
}

Heap pollution occurs at (1) because a component in the st ri ngLi st s array that should
refertoali st <Stri ng> now refersto aLi st <I nt eger >. Thereis no way to detect this
pollutioninthe presence of both auniversal supertype (Obj ect []) and anon-reifiabletype
(the declared type of the formal parameter, Li st <St ri ng>[]). No unchecked warning is
justified at (1); nevertheless, at runtime, aCl assCast Except i on will occur at (2).

A compile-time unchecked warning will be given at any invocation of the method above
because an invocation is considered by the Java programming language's static type system
to create an array whose element type, Li st <St ri ng>, isnon-reifiable (815.12.4.2). If and
only if the body of the method was type-safe with respect to the variable arity parameter,
then the programmer could use the Saf evar ar gs annotation to silence warnings at
invocations (89.6.3.7). Since the body of the method aswritten above causes heap pollution,
it would be completely inappropriate to use the annotation to disable warnings for callers.

Finally, notethat thest ri ngLi st s array could be aliased through variables of types other
than Qbj ect [], and heap pollution could still occur. For example, the type of the ar r ay
variable could bej ava. util. Col | ection[] - araw element type - and the body of the
method above would compilewithout warningsor errorsand still cause heap pollution. And
if the Java SE platform defined, say, Sequence as a non-generic supertype of Li st <T>,
then using Sequence asthetype of ar r ay would also cause heap pollution.

77

412

78

Variables TYPES, VALUES, AND VARIABLES

The variable will always refer to an object that is an instance of a class that
represents the parameterized type.

The value of | s in the example above is always an instance of a class that provides a
representation of aLi st .

Assignment from an expression of araw typeto avariable of a parameterized type should
only be used when combining legacy code which does not make use of parameterized types
with more modern code that does.

If no operation that requires a compile-time unchecked warning to be issued takes place,
and no unsafe aliasing occurs of array variables with non-reifiable element types, then
heap pollution cannot occur. Note that this does not imply that heap pollution only occurs
if a compile-time unchecked warning actually occurred. It is possible to run a program
where some of the binaries were produced by a compiler for an older version of the Java
programming language, or from sources that explicitly suppressed unchecked warnings.
This practice is unhealthy at best.

Conversely, it is possible that despite executing code that could (and perhaps did)
give rise to a compile-time unchecked warning, no heap pollution takes place. Indeed,
good programming practice requires that the programmer satisfy herself that despite any
unchecked warning, the code is correct and heap pollution will not occur.

4.12.3 Kindsof Variables

There are seven kinds of variables:

1. A classvariableis afield declared using the keyword st at i ¢ within a class

declaration (88.3.1.1), or with or without the keyword static within an
interface declaration (89.3).

A classvariableis created when its class or interfaceis prepared (§12.3.2) and
isinitialized to a default value (84.12.5). The class variable effectively ceases
to exist when its class or interface is unloaded (812.7).

Aninstancevariableisafield declared within aclass declaration without using
the keyword st at i ¢ (88.3.1.1).

If aclassT hasafield a that isaninstance variable, then anew instance variable
a is created and initialized to a default value (84.12.5) as part of each newly
created object of class T or of any class that is a subclass of T (88.1.4). The
instance variabl e effectively ceasesto exist when the object of whichitisafield
is no longer referenced, after any necessary finalization of the object (812.6)
has been completed.

Array components are unnamed variables that are created and initialized to
default values (84.12.5) whenever anew object that isan array is created (810,

TYPES, VALUES, AND VARIABLES Variables

§15.10). The array components effectively cease to exist when the array is no
longer referenced.

Method parameters (88.4.1) name argument values passed to a method.

For every parameter declared in amethod declaration, anew parameter variable
is created each time that method is invoked (815.12). The new variable is
initialized with the corresponding argument val ue from the method invocation.
The method parameter effectively ceases to exist when the execution of the
body of the method is complete.

Constructor parameters (88.8.1) name argument values passed to a
constructor.

For every parameter declared in a constructor declaration, a new parameter
variable is created each time a class instance creation expression (815.9) or
explicit constructor invocation (88.8.7) invokes that constructor. The new
variableisinitialized with the corresponding argument val ue from the creation
expression or constructor invocation. The constructor parameter effectively
ceases to exist when the execution of the body of the constructor is complete.

An exception parameter is created each time an exception is caught by acat ch
clause of atry statement (§14.20).

The new variable is initialized with the actual object associated with the
exception (811.3, 814.18). The exception parameter effectively ceasesto exist
when execution of the block associated with the cat ch clause is complete.

Local variables are declared by local variable declaration statements (§14.4).

Whenever the flow of control enters a block (814.2) or for statement
(814.14), anew variable is created for each local variable declared in a local
variable declaration statement immediately contained within that block or f or
statement.

A local variable declaration statement may contain an expression which
initializesthe variable. Thelocal variable with an initializing expression is not
initialized, however, until thelocal variable declaration statement that declares
it is executed. (The rules of definite assignment (816) prevent the value of
a local variable from being used before it has been initialized or otherwise
assigned a value.) The local variable effectively ceases to exist when the
execution of the block or for statement is complete.

Were it not for one exceptiona situation, a local variable could always be regarded
as being created when its local variable declaration statement is executed. The
exceptional situation involvesthe swi t ch statement (814.11), whereit is possible for

412

79

412

80

Variables TYPES, VALUES, AND VARIABLES

control to enter ablock but bypass execution of alocal variable declaration statement.
Because of therestrictionsimposed by the rules of definite assignment (§816), however,
the local variable declared by such a bypassed local variable declaration statement
cannot be used before it has been definitely assigned a value by an assignment
expression (815.26).

Example 4.12.3-1. Different Kinds of Variables

class Point {

static int nunmPoints; /'l numPoints is a class variable
int x, vy; /1 x and y are instance vari abl es
int[] w=newint[10]; // wO0] is an array conponent

int setX(int x) { /1l x is a method paraneter

int oldx = this.x; // oldx is a local variable
this.x = x;
return ol dx;

4124 final Variables

A variablecan bedeclaredfi nal . A fi nal variable may only be assigned to once.
Declaring a variable fi nal can serve as useful documentation that its value will
not change and can help avoid programming errors.

It is a compile-time error if afinal variable is assigned to unless it is definitely
unassigned (816) immediately prior to the assignment.

A blankfinal isafinal variable whose declaration lacks an initializer.

Once afinal variable has been assigned, it always contains the same value. If a
final variable holds areference to an object, then the state of the object may be
changed by operations on the object, but the variable will aways refer to the same
object.

This applies also to arrays, because arrays are objects; if afinal variable holds
a reference to an array, then the components of the array may be changed by
operations on the array, but the variable will always refer to the same array.

Example 4.12.4-1. Final Variables

class Point {
int x, vy;
int useCount;
Point(int x, int y) { this.x = x; this.y =vy; }
static final Point origin = new Point(0, 0);

}

In this program, the class Poi nt declares afi nal class variable origin. Theorigin
variable holds areference to an object that is an instance of class Poi nt whose coordinates

TYPES, VALUES, AND VARIABLES Variables

are (0, 0). The value of the variable Poi nt . ori gi n can never change, so it always refers
to the same Poi nt object, the one created by its initiaizer. However, an operation on
this Poi nt object might change its state - for example, modifying its useCount or even,
misleadingly, itsx or y coordinate.

A variable of primitive type or type Stri ng, that isfi nal and initialized with a
compile-time constant expression (815.28), is called a constant variable.

Whether avariable isaconstant variable or not may have implicationswith respect
to classinitialization (812.4.1), binary compatibility (813.1, 813.4.9) and definite
assignment (816).

A resource of a try-with-resources statement (814.20.3) and an exception
parameter of amulti-cat ch clause (814.20) are implicitly declared f i nal .

An exception parameter of a uni-cat ch clause (814.20) may be effectively final
instead of being explicitly declared fi nal . Such a parameter is never implicitly
declared fi nal .

4125 Initial Valuesof Variables

Every variable in a program must have a value before its value is used:

» Each class variable, instance variable, or array component is initialized with a
default value when it is created (815.9, §15.10):

* For typebyt e, the default value is zero, that is, the value of (byt e) 0.

* For typeshort, the default value is zero, that is, the value of (short) 0.
* For typei nt , the default valueis zero, that is, 0.

* For typel ong, the default value is zero, that is, oL.

*+ For typef | oat , the default value is positive zero, that is, 0. 0Of .

* For type doubl e, the default value is positive zero, that is, 0. 0d.

* For type char, the default value isthe null character, that is, ' \ u0ooo' .
* For typebool ean, the default valueisf al se.

* For al reference types (84.3), the default valueisnul | .

» Each method parameter (88.4.1) is initialized to the corresponding argument
value provided by the invoker of the method (§15.12).

» Each constructor parameter (88.8.1) isinitialized to the corresponding argument
value provided by a class instance creation expression (815.9) or explicit
constructor invocation (88.8.7).

412

81

4.12 Variables TYPES, VALUES, AND VARIABLES

* An exception parameter (814.20) isinitialized to the thrown object representing
the exception (811.3, §14.18).

* A local variable (814.4, 814.14) must be explicitly given a value before it is
used, by either initialization (814.4) or assignment (815.26), in away that can be
verified using the rules for definite assignment (§16).

Example 4.12.5-1. Initial Values of Variables

class Point {
static int npoints;
int x, vy;
Poi nt root;

}

class Test {
public static void main(String[] args) {
System out. println("npoints=" + Point.npoints);
Point p = new Point();
Systemout.println("p.x=" + p.x + ", p.y=" + p.y);
Systemout.println("p.root=" + p.root);

}
This program prints:

npoi nt s=0
p.x=0, p.y=0
p. root =nul |

illustrating the default initialization of npoi nt s, which occurs when the class Poi nt is
prepared (812.3.2), and the default initialization of x, y, and r oot , which occurs when a
new Poi nt isinstantiated. See 812 for afull description of all aspects of loading, linking,
and initialization of classes and interfaces, plus a description of the instantiation of classes
to make new class instances.

4.12.6 Types, Classes, and I nterfaces

In the Java programming language, every variable and every expression has atype
that can be determined at compile time. The type may be a primitive type or a
reference type. Reference types include class types and interface types. Reference
types are introduced by type declarations, which include class declarations (88.1)
and interface declarations (89.1). We often use the term type to refer to either a
class or an interface.

Inthe JavaVirtual Machine, every object belongsto some particular class: theclass
that was mentioned in the creation expression that produced the object (8§15.9), or
the classwhose d ass object was used to invoke areflective method to producethe

82

TYPES, VALUES, AND VARIABLES Variables

object, or the st ri ng classfor objectsimplicitly created by the string concatenation
operator + (815.18.1). This classis caled the class of the object. An object issaid
to be an instance of its class and of all superclasses of its class.

Every array aso has a class. The method get O ass, when invoked for an array
object, will return a class object (of class d ass) that represents the class of the
array (810.8).

The compile-time type of avariable isaways declared, and the compile-time type
of an expression can be deduced at compile time. The compile-time type limitsthe
possible valuesthat the variable can hold at run time or the expression can produce
a runtime. If arun-time valueisareference that isnot nul |, it refersto an object
or array that has a class, and that class will necessarily be compatible with the
compile-time type.

Even though a variable or expression may have a compile-time type that is an
interface type, there are no instances of interfaces. A variable or expression whose
typeisan interface type can reference any object whose class implements (88.1.5)
that interface.

Sometimes a variable or expression is said to have a "run-time type". This refers
to the class of the object referred to by the value of the variable or expression at
run time, assuming that the valueisnot nul | .

The correspondence between compile-time types and run-time types isincomplete
for two reasons:

1. Atruntime, classesand interfacesareloaded by the JavaVirtual Machine using
class loaders. Each class loader defines its own set of classes and interfaces.
Asaresult, it is possible for two loaders to load an identical class or interface
definition but produce distinct classes or interfaces at run time. Consequently,
code that compiled correctly may fail at link timeif the class |oaders that load
it areinconsistent.

See the paper Dynamic Class Loading in the Java Virtual Machine, by Sheng Liang
and Gilad Bracha, in Proceedings of OOPSLA '98, published as ACM SIGPLAN
Notices, Volume 33, Number 10, October 1998, pages 36-44, and The Java Virtual
Machine Specification, Java SE 7 Edition for more details.

2. Type variables (84.4) and type arguments (84.5.1) are not reified at run
time. As aresult, the same class or interface at run time represents multiple
parameterized types (84.5) from compile-time. Specifically, all compile-time
invocations of a given generic type declaration (88.1.2, 89.1.2) share asingle
run-time representation.

412

83

412

Variables TYPES, VALUES, AND VARIABLES

Under certain conditions, it is possible that a variable of a parameterized type refers
to an object that is not of that parameterized type. This situation is known as heap
pollution (84.12.2). The variable will always refer to an object that is an instance of
aclass that represents the parameterized type.

Example 4.12.6-1. Type of a Variable ver sus Class of an Object

interface Col orable {
voi d setCol or(byte r, byte g, byte b);
}

class Point { int x, y; }

cl ass Col oredPoi nt extends Point inplenments Col orable {
byte r, g, b;
public void setColor(byte rv, byte gv, byte bv) {
r =rv; g =gv; b= bv;
}

}

class Test {
public static void main(String[] args) {
Point p = new Point();
Col oredPoi nt cp = new Col oredPoi nt ();
p = cp;
Col orable ¢ = cp;

}

In this example:

e Thelocal variable p of the method mai n of class Test hastype Poi nt and isinitialy
assigned a reference to a new instance of class Poi nt .

e Theloca variable cp similarly has asits type Col or edPoi nt , and isinitially assigned
areference to a new instance of class Col or edPoi nt .

¢ The assignment of the value of cp to the variable p causes p to hold a reference
to a Col or edPoi nt object. This is permitted because Col or edPoi nt is a subclass
of Poi nt, so the class Col or edPoi nt is assignment-compatible (85.2) with the type
Poi nt . A Col or edPoi nt object includes support for all the methods of a Poi nt . In
additiontoitsparticular fieldsr , g, and b, it hasthefieldsof classPoi nt , namely x andy .

e The local variable ¢ has as its type the interface type Col or abl e, so it can hold a
reference to any object whose class implements Col or abl e; specificaly, it can hold a
reference to a Col or edPoi nt .

Note that an expression such as new Col or abl e() isnot valid because it is not possible
to create an instance of an interface, only of a class. However, the expression new
Colorable() { public void setColor... } isvalid because it declares an
anonymous class (815.9.5) that implements the Col or abl e interface.

CHAPTER5

Conversions and Promotions

EVERY expression written in the Java programming language has a type that
can be deduced from the structure of the expression and the types of the literals,
variables, and methods mentioned in the expression. It is possible, however, to
write an expression in acontext where the type of the expression is not appropriate.
In some cases, thisleadsto an error at compiletime. In other cases, the context may
beableto accept atypethat isrelated to thetype of the expression; asaconvenience,
rather than requiring the programmer to indicate a type conversion explicitly, the
Java programming language performs an implicit conversion from the type of the
expression to atype acceptable for its surrounding context.

A specific conversion from type s to type T allows an expression of type s to be
treated at compile time asif it had type T instead. In some cases this will require
a corresponding action at run time to check the validity of the conversion or to
translate the run-time value of the expression into a form appropriate for the new
typeT.

Example 5.0-1. Conversionsat Compile Time and Run Time

* A conversion from type Obj ect totype Thr ead requiresarun-time check to make sure
that the run-time value is actually an instance of class Thr ead or one of its subclasses;
if itisnot, an exception is thrown.

« A conversion from type Thr ead to type Obj ect requires no run-time action; Thr ead
isasubclass of Obj ect, so any reference produced by an expression of type Thr ead is
avalid reference value of type oj ect .

« A conversion from typei nt totypel ong requires run-time sign-extension of a 32-bit
integer value to the 64-bit | ong representation. No information is lost.

« A conversion from type doubl e to type | ong requires a nontrivia trandation from a
64-bit floating-point val ue to the 64-bit integer representation. Depending on the actual
run-time value, information may be lost.

85

86

CONVERS ONS AND PROMOTIONS

In every conversion context, only certain specific conversions are permitted. For
convenience of description, the specific conversions that are possible in the Java
programming language are grouped into several broad categories:

* |dentity conversions

» Widening primitive conversions
» Narrowing primitive conversions
» Widening reference conversions
» Narrowing reference conversions
* Boxing conversions

» Unboxing conversions
 Unchecked conversions
 Capture conversions

 String conversions

» Vaue set conversions

There are five conversion contexts in which conversion of expressions may occur.
Each context allows conversions in some of the categories named above but not
others. The term "conversion" is also used to describe the process of choosing a
specific conversion for such a context. For example, we say that an expression
that is an actual argument in amethod invocation is subject to "method invocation
conversion,” meaning that a specific conversion will be implicitly chosen for that
expression according to the rules for the method invocation argument context.

One conversion context is the operand of a numeric operator such as + or *. The
conversion process for such operands is called numeric promotion. Promotion is
specia in that, in the case of binary operators, the conversion chosen for one
operand may depend in part on the type of the other operand expression.

This chapter first describes the eleven categories of conversions (85.1), including
the specia conversionsto st ri ng alowed for the string concatenation operator +
(815.18.1). Then the five conversion contexts are described:

» Assignment conversion (85.2, §15.26) converts the type of an expression to the
type of a specified variable.

Assignment conversion may cause an Qut Of MenoryError (as a result of
boxing conversion (85.1.7)), aNul | Poi nt er Except i on (asaresult of unboxing

CONVERS ONS AND PROMOTIONS

conversion (85.1.8)), or a Cl assCast Except i on (as a result of an unchecked
conversion (85.1.9)) to be thrown at run time.

Method invocation conversion (85.3, §15.9, §15.12) is applied to each argument
in amethod or constructor invocation and, except in one case, performsthe same
conversions that assignment conversion does.

Method invocation conversion may cause an Qut O Menor yError (as aresult of
boxing conversion (85.1.7)), aNul | Poi nt er Except i on (asaresult of unboxing
conversion (85.1.8)), or a d assCast Excepti on (as a result of an unchecked
conversion (85.1.9)) to be thrown at run time.

Casting conversion (85.5) converts the type of an expression to atype explicitly
specified by a cast operator (815.16).

It is more inclusive than assignment or method invocation conversion, allowing
any specific conversion other than a string conversion, but certain casts to a
reference type may cause an exception at run time.

String conversion (85.4) applies only to an operand of the binary + operator
whichisnot astri ng when the other operandisastri ng.

String conversion may cause an Qut o Merror yEr r or (asaresult of classinstance
creation (812.5)) to be thrown at run time.

Numeric promotion (85.6) brings the operands of a numeric operator to a
common type so that an operation can be performed.

Example 5.0-2. Conversion Contexts

class Test {
public static void main(String[] args) {
/] Casting conversion (5.4) of a float literal to
/1 type int. Wthout the cast operator, this would
/! be a conpile-time error, because this is a
/'l narrow ng conversion (5.1.3):

int i = (int)12. 5f;
/1 String conversion (5.4) of i's int value:
Systemout.println("(int)12.5f==" +i);

/'l Assignnent conversion (5.2) of i's value to type
/1 float. This is a wi dening conversion (5.1.2):

float f = 1i;
/1 String conversion of f's float val ue:
Systemout.printin("after float widening: " + f);

/1 Numeric pronotion (5.6) of i's value to type
// float. This is a binary nuneric pronotion.

/] After pronotion, the operation is float*float:
Systemout. print(f);

f=1f*i,

/1l Two string conversions of i and f:

87

51

88

Kinds of Conversion CONVERS ONS AND PROMOTIONS

Systemout.println("*" + i + "==" + f);

/1 Method invocation conversion (5.3) of f's value

/1 to type doubl e, needed because the nethod Math.sin
/'l accepts only a doubl e argunent:

double d = Math.sin(f);

/1 Two string conversions of f and d:
Systemout.println("Math.sin(" + f + ")==" + d);

}
This program produces the outpuit:

(int)12.5f==12

after float w dening: 12.0
12.0%*12==144.0

Mat h. si n(144. 0) ==- 0. 49102159389846934

5.1 Kindsof Conversion

Specific type conversions in the Java programming language are divided into 13
categories.

5.1.1 Identity Conversion

A conversion from atype to that same typeis permitted for any type.

This may seem trivial, but it has two practical consequences. Firgt, it is aways permitted
for an expression to have the desired type to begin with, thus allowing the simply stated rule
that every expression is subject to conversion, if only atrivia identity conversion. Second,
itimpliesthat it is permitted for a program to include redundant cast operators for the sake
of clarity.

5.1.2 Widening Primitive Conversion

19 specific conversions on primitive types are caled the widening primitive
conversions:

* bytetoshort,int,long,float, Or doubl e
e short toint,I|ong,float, Or doubl e

e char toint,long,fl oat, Or doubl e

* int tolong, fl oat, Or doubl e

* longtofl oat Or doubl e

CONVERS ONS AND PROMOTIONS Kinds of Conversion

e f| oat todoubl e

A widening primitive conversion does not lose information about the overall
magnitude of a numeric value.

A widening primitive conversion from an integral type to another integral type,
or from float to double in astrictfp expression (815.4), does not lose any
information at all; the numeric value is preserved exactly.

A widening primitive conversion fromf | oat to doubl e that isnot stri ct f p may
lose information about the overall magnitude of the converted value.

A widening conversion of ani nt or al ong valuetof | oat, or of al ong value to
doubl e, may result in loss of precision - that is, the result may lose some of the
least significant bits of the value. In this case, the resulting floating-point value
will be a correctly rounded version of the integer value, using |EEE 754 round-to-
nearest mode (84.2.4).

A widening conversion of asigned integer value to an integral type T simply sign-
extends the twao's-complement representation of the integer value to fill the wider
format.

A widening conversion of a char to an integra type T zero-extends the
representation of the char valueto fill the wider format.

Despite the fact that loss of precision may occur, awidening primitive conversion
never resultsin arun-time exception (811.1.1).

Example 5.1.2-1. Widening Primitive Conversion
class Test {
public static void main(String[] args) {
int big = 1234567890;
float approx = big;
Systemout.println(big - (int)approx);
}
This program prints:
-46

thusindicating that information waslost during the conversion fromtypei nt totypef | oat
because values of typef | oat are not precise to nine significant digits.

51

89

51

90

Kinds of Conversion CONVERS ONS AND PROMOTIONS

5.1.3 Narrowing Primitive Conversion

22 specific conversions on primitive types are called the narrowing primitive
conversions:

* short tObyte Or char

e char tobyte Or short

* int tobyte, short, Or char

* |ong tobyte, short, char, Orint

e float tobyte, short,char,int,Orl ong

* doubl e tO byt e, short, char,int,long, Of fl oat

A narrowing primitive conversion may lose information about the overal
magnitude of a numeric value and may also lose precision and range.

A narrowing primitive conversion from doubl e tof | oat isgoverned by the IEEE
754 rounding rules (84.2.4). Thisconversion can lose precision, but also loserange,
resulting in afl oat zerofrom anonzero doubl e and afl oat infinity from afinite
doubl e. A doubl e NaN is converted to afl oat NaN and a doubl e infinity is
converted to the same-signed f | oat infinity.

A narrowing conversion of a signed integer to an integral type T simply discards
al but the n lowest order bits, where n is the number of bits used to represent type
T. In addition to a possible loss of information about the magnitude of the numeric
value, this may cause the sign of the resulting value to differ from the sign of the
input value.

A narrowing conversion of achar to an integral type T likewise simply discards
all but the n lowest order bits, where n is the number of bits used to represent type
T. In addition to a possible loss of information about the magnitude of the numeric
value, this may cause the resulting value to be a negative number, even though
chars represent 16-bit unsigned integer values.

A narrowing conversion of afloating-point number to an integral type T takes two
steps:

1. Inthefirst step, the floating-point number is converted either to al ong, if Tis
long,ortoanint,if Tisbyte, short, char, orint, asfollows:

* If thefloating-point number isNaN (84.2.3), the result of thefirst step of the
conversionisanint orlong 0.

CONVERS ONS AND PROMOTIONS Kinds of Conversion

» Otherwise, if the floating-point number is not an infinity, the floating-point
valueisrounded to an integer value v, rounding toward zero using | EEE 754
round-toward-zero mode (84.2.3). Then there are two cases:

a. If Tisl ong, and thisinteger value can be represented asal ong, thenthe
result of the first step isthel ong value v.

b. Otherwise, if this integer value can be represented as an i nt , then the
result of thefirst stepisthei nt valuev.

» Otherwise, one of the following two cases must be true:

a. The value must be too small (a negative value of large magnitude
or negative infinity), and the result of the first step is the smallest
representable value of typei nt or | ong.

b. The value must be too large (a positive value of large magnitude
or positive infinity), and the result of the first step is the largest
representable value of typei nt or | ong.

2. Inthe second step:
» If Tisint orl ong, theresult of the conversion isthe result of the first step.

» |f Tisbyte, char, or short, the result of the conversion is the result of a
narrowing conversion to type T (85.1.3) of the result of the first step.

Example 5.1.3-1. Narrowing Primitive Conversion

class Test {
public static void main(String[] args) {
float fmn = Fl oat. NEGATI VE_| NFI NI TY;
float fmax = Fl oat. PCSI TI VE_I NFI NI TY;

Systemout.printin("long: " + (long)fmn +
".." + (long)fmax);
Systemout.printin("int: " + (int)fmn +
"'+ (int)fmax);
Systemout.println("short: " + (short)fmn +
" + (short)fmax);
Systemout.println("char: " + (int)(char)fmn +

" + (int)(char)fnmax);
Systemout.printin("byte: " + (byte)fmn +
" + (byte)fmax);
}

This program produces the output:

51

91

51 Kinds of Conversion CONVERS ONS AND PROMOTIONS

I ong: -9223372036854775808. .9223372036854775807
int: -2147483648..2147483647

short: 0..-1

char: 0..65535

byte: 0..-1

The results for char, int, and | ong are unsurprising, producing the minimum and
maximum representable values of the type.

The results for byt e and short lose information about the sign and magnitude of the
numeric values and also lose precision. The results can be understood by examining the
low order bits of the minimum and maximum i nt . The minimum i nt is, in hexadecimal,
0x80000000, andthemaximumintisox7f f f f f f f . Thisexplainstheshort results, which
arethelow 16 hits of these values, namely, 0x0000 and 0xf f f f ; it explainsthe char results,
which also are the low 16 hits of these values, namely, ' \ u0000' and ' \uffff'; andit
explains the byte results, which are the low 8 bits of these values, namely, 0x00 and Oxf f .

Despite the fact that overflow, underflow, or other loss of information may occur,
anarrowing primitive conversion never results in arun-time exception (811.1.1).

Example 5.1.3-2. Narrowing Primitive Conversionsthat lose information

class Test {
public static void main(String[] args) {
/1 A narrowing of int to short loses high bits
Systemout. println("(short)0x12345678==0x" +
I nteger.toHexString((short)0x12345678))
/1 An int value too big for byte changes sign and nagnitude
System out. println("(byte)255==" + (byte)255);
/1l A float value too big to fit gives largest int value
Systemout. println("(int)le20f==" + (int)1e20f)
/1 A NaN converted to int yields zero:
Systemout. println("(int)NaN==" + (int)Fl oat.NaN)
/1 A double value too large for float yields infinity:
Systemout.println("(float)-1e100==" + (float)-1el00);
/1 A double value too snall for float underflows to zero
Systemout.println("(float)le-50==" + (float)le-50)

}
This program produces the outpuit:

(short)0x12345678==0x5678
(byte) 255==-1

(int)1e20f ==2147483647

(i nt) NaN==0
(float)-1e100==-Infinity
(float)le-50==0.0

92

CONVERS ONS AND PROMOTIONS Kinds of Conversion

5.1.4 Widening and Narrowing Primitive Conversion

The following conversion combines both widening and narrowing primitive
conversions:

* bytetochar

First, the byt e is converted to ani nt viawidening primitive conversion (85.1.2),
andthentheresultingi nt isconvertedtoachar by narrowing primitive conversion
(85.1.3).

5.1.5 Widening Reference Conversion

A widening reference conversion exists from any reference type s to any reference
type T, provided s is a subtype (84.10) of T.

Widening reference conversions never require a specia action at run time and
therefore never throw an exception at run time. They consist simply in regarding
a reference as having some other type in a manner that can be proved correct at
compiletime.

5.1.6 Narrowing Reference Conversion

Six kinds of conversions are called the narrowing reference conversions:

» From any reference type s to any reference type T, provided that S is a proper
supertype of T (84.10).

An important special caseisthat thereisanarrowing reference conversion from
the class type Obj ect to any other reference type (84.12.4).

» From any class type C to any non-parameterized interface type K, provided that
cisnotfinal and does not implement K.

» Fromany interfacetypeJ to any non-parameterized classtypecthatisnotfi nal .

» From any interface type J to any non-parameterized interface type K, provided
that J is not a subinterface of K.

» From the interface types C oneabl e and j ava. i o. Seri al i zabl e to any array
type T[] .

» From any array type sC[] to any array type T[], provided that sc and TC are
reference types and there is a narrowing reference conversion from scto TC.

51

93

51

94

Kinds of Conversion CONVERS ONS AND PROMOTIONS

Such conversions require atest at run timeto find out whether the actual reference
value is alegitimate value of the new type. If not, then ad assCast Excepti on is
thrown.

5.1.7 Boxing Conversion

Boxing conversion converts expressions of primitive type to corresponding
expressions of reference type. Specificaly, the following nine conversions are
called the boxing conversions:

* From typebool ean to type Bool ean
e From type byt e to type Byt e

* Fromtypeshort totype Short

* Fromtypechar to type Char act er

* Fromtypeint totypel nteger

* From typel ong to type Long

* Fromtypefl oat totypeFl oat

e From type doubl e to type Doubl e

» From the null type to the null type

This rule is necessary because the conditional operator (815.25) applies boxing
conversion to the types of its operands, and uses the result in further calculations.

At run time, boxing conversion proceeds as follows:

* If pisavaueof typebool ean, then boxing conversion convertsp into areference
r of class and type Bool ean, suchthat r. bool eanval ue() == p

 If p isavalue of type byt e, then boxing conversion converts p into a reference
r of class and type Byt e, such that r. byt eVal ue() == p

* If pisavalue of type char, then boxing conversion converts p into a reference
r of classand type Char acter, suchthat r. char val ue() == p

 If pisavaueof typeshort, then boxing conversion converts p into areference
r of classand type Short, suchthatr. shortval ue() == p

* If pisavalue of typei nt, then boxing conversion converts p into areferencer
of classand typel nt eger, suchthatr.intvalue() == p

* If pisavalue of typel ong, then boxing conversion converts p into a reference
r of classand type Long, such thatr. 1 ongval ue() == p

CONVERS ONS AND PROMOTIONS Kinds of Conversion

* If pisavalueof typefl oat then:

+ If p isnot NaN, then boxing conversion convertsp into areferencer of class
and typeFl oat , such that r . f | oat Val ue() evaluatestop

+ Otherwise, boxing conversion converts p into areferencer of class and type
Fl oat suchthatr.isNaN() evaluatestotrue

 If pisavalue of typedoubl e, then:

*+ If p isnot NaN, boxing conversion converts p into areferencer of class and
type Doubl e, such that r . doubl eval ue() evaluatesto p

+ Otherwise, boxing conversion converts p into areferencer of class and type
Doubl e suchthatr. i sNaN() evaluatestotrue

 If p isavalue of any other type, boxing conversion is equivalent to an identity
conversion (85.1.1).

If the value p being boxed istrue, f al se, abyte, Or achar inthe range\ uo000
to\ u007f, or anint or short number between - 128 and 127 (inclusive), then let
r, and r , be the results of any two boxing conversions of p. It is always the case
that rpy==ro.

Ideally, boxing a given primitive value p, would always yield an identical reference. In
practice, thismay not be feasible using existing implementation techniques. Therulesabove
are a pragmatic compromise. The final clause above requires that certain common values
alwaysbeboxed intoindistinguishabl e objects. Theimplementation may cachethese, lazily
or eagerly. For other values, this formulation disallows any assumptions about the identity
of the boxed values on the programmer’s part. This would allow (but not require) sharing
of some or all of these references.

This ensures that in most common cases, the behavior will be the desired one, without
imposing an undue performance penalty, especially on small devices. Less memory-limited
implementations might, for example, cache all char and short values, aswell asi nt and
I ong valuesin the range of -32K to +32K.

A boxing conversion may result in an cut O Menor yEr r or if a new instance of one
of the wrapper classes (Bool ean, Byt e, Char act er, Short, | nt eger, Long, Fl oat ,
or Doubl e) needs to be allocated and insufficient storage is available.

5.1.8 Unboxing Conversion

Unboxing conversion converts expressions of reference type to corresponding
expressions of primitive type. Specificaly, the following eight conversions are
called the unboxing conversions:

* From type Bool ean to type bool ean

51

95

51

96

Kinds of Conversion

From type Byt e to type byt e
From type Short to typeshort
From type Char act er to type char
From type | nt eger totypei nt
From type Long to typel ong
From type Fl oat totypef| oat

From type Doubl e to type doubl e

At run time, unboxing conversion proceeds as follows:

If r is areference of type Bool ean, then unboxing conversion converts r
r. bool eanVal ue()

If r is a reference of type Byt e, then unboxing conversion converts r
r. byt eVal ue()

If r isareference of type Char act er , then unboxing conversion convertsr
r. char Val ue()

If r is a reference of type short, then unboxing conversion converts r
r.short Val ue()

If r is areference of type I nt eger, then unboxing conversion converts r
r.intVal ue()

If r is a reference of type Long, then unboxing conversion converts r
r.longVal ue()

If r is a reference of type Float, unboxing conversion converts r
r.fl oat Val ue()

If r is a reference of type Doubl e, then unboxing conversion converts r
r. doubl eVal ue()

If r isnul I, unboxing conversion throwsaNul | Poi nt er Except i on

CONVERS ONS AND PROMOTIONS

into

into

into

into

into

into

into

into

A typeissaidto be convertibleto anumerictypeif itisanumerictype(84.2), oritis
areference type that may be converted to a numeric type by unboxing conversion.

A typeissaid to be convertible to an integral typeif itisan integral type, oritisa
reference type that may be converted to an integral type by unboxing conversion.

CONVERS ONS AND PROMOTIONS Kinds of Conversion

5.1.9 Unchecked Conversion

Let G name a generic type declaration with n type parameters.

There is an unchecked conversion from the raw class or interface type (84.8) Gto
any parameterized type of the form GeTy,...,T>.

There is an unchecked conversion from the raw array type] to any array type
type of the form G<Ty,...,T,>[] .

Use of an unchecked conversion causes a compile-time unchecked warning unless
G<...> isaparameterized typein which all type arguments are unbounded wildcards
(84.5.1), or the unchecked warning is suppressed by the SuppressWar ni ngs
annotation (89.6.3.5).

Unchecked conversion is used to enable a smooth interoperation of legacy code, written
before the introduction of generic types, with libraries that have undergone a conversion
to use genericity (a process we call generification). In such circumstances (most notably,
clients of the Collections Framework in j ava. uti |), legacy code uses raw types (e.g.
Col | ecti on instead of Col | ecti on<St ri ng>). Expressions of raw types are passed as
arguments to library methods that use parameterized versions of those same types as the
types of their corresponding formal parameters.

Such calls cannot be shown to be statically safe under the type system using generics.
Rejecting such callswould invalidate large bodies of existing code, and prevent them from
using newer versions of the libraries. Thisin turn, would discourage library vendors from
taking advantage of genericity. To prevent such an unwelcome turn of events, araw type
may be converted to an arbitrary invocation of the generic type declaration to which the raw
type refers. While the conversion is unsound, it is tolerated as a concession to practicality.
An unchecked warning isissued in such cases.

5.1.10 Capture Conversion

Let G name a generic type declaration (88.1.2, §89.1.2) with n type parameters
Aq,...,A, With corresponding bounds Uy,...,U,.

There exists a capture conversion from a parameterized type G<Ty,...,Tn> (84.5) to
a parameterized type G<S,...,Sh>, Where, for 1L <i<n:

» If T; isawildcard type argument (84.5.1) of the form 2, then s; is afresh type
variable whose upper boundisU [A: =S4, .. ., Ax: =S,] and whose lower bound
isthe null type (84.1).

» If T, isawildcard type argument of the form ? extends B, then S; is afresh
type variable whose upper boundisglb(g;, U A:: =S1, . . ., Ay =S,]) and whose
lower bound isthe null type.

glb(Vy,...,Vn) isdefined as vy & ... & Vi

51

97

51

98

Kinds of Conversion

Capture conversion on any type other than a parameterized type (84.5) acts as an

It is a compile-time error if, for any two classes (not interfaces) vi and v, V; is

not a subclass of v; or vice versa

If T; isawildcard type argument of the form ? super Bj, then's; isafresh type
variable whose upper boundisu [A;: =S, . .

iSB;.

Otherwise, s, =T, .

identity conversion (85.1.1).

Capture conversion is not applied recursively.

Capture conversion never requires a specia action at run time and therefore never

throws an exception at run time.

Capture conversion is designed to make wildcards more useful. To understand the
motivation, let's begin by looking at the method j ava. util. Col | ecti ons. reverse():

public static void reverse(List<?> list);

Themethod reversesthelist provided asaparameter. It worksfor any typeof list, and so the
useof thewildcard typeLi st <?> asthetype of theformal parameter isentirely appropriate.

Now consider how one would implement r ever se() :

public static void reverse(List<?> list) { rev(list); }
private static <T> void rev(List<T> list) {
List<T> tnp = new ArrayLi st<T>(list);
for (int i =0; i < list.size(); i++) {
list.set(i, tnp.get(list.size() - i - 1));
}
}

The implementation needs to copy the list, extract elements from the copy, and insert them
into the original. To do thisin atype-safe manner, we need to giveaname, T, to the element
type of theincoming list. We do thisin the private service method r ev() . Thisrequires us
to passtheincoming argument list, of typeLi st <?>, asan argumenttor ev() . In general,
Li st <?>isalist of unknowntype. Itisnot asubtypeof Li st <T>, for any type T. Allowing
such a subtype relation would be unsound. Given the method:

public static <T> void fill(List<T>1, T obj)
the following code would undermine the type system:

List<String> I's = new ArraylList<String>();
List<?> 1| = 1s;
Collections.fill(l, new Object()); // not legal - but assume it was!

CONVERS ONS AND PROMOTIONS

., Ap: =S5] and whose lower bound

CONVERS ONS AND PROMOTIONS Kinds of Conversion 51

String s = Is.get(0); // O assCastException - |s contains
/'l ojects, not Strings.

So, without some special dispensation, we can see that the call fromr everse() torev()
would be disallowed. If this were the case, the author of rever se() would be forced to
write its signature as.

public static <T> void reverse(List<T> |ist)

This is undesirable, as it exposes implementation information to the caller. Worse, the
designer of an APl might reason that the signature using awildcard is what the callers of
the API require, and only later realize that a type safe implementation was precluded.

The call fromreverse() torev() isin fact harmless, but it cannot be justified on the
basis of ageneral subtyping relation between Li st <?> and Li st <T>. Thecall isharmless,
because the incoming argument is doubtless alist of sometype (albeit an unknown one). If
we can capture this unknown type in atype variable X, we can infer T to be X. That is the
essence of capture conversion. The specification of course must cope with complications,
like non-trivia (and possibly recursively defined) upper or lower bounds, the presence of
multiple arguments etc.

Mathematically sophisticated readers will want to relate capture conversion to established
type theory. Readers unfamiliar with type theory can skip this discussion - or else study a
suitable text, such as Types and Programming Languages by Benjamin Pierce, and then
revisit this section.

Here then is a brief summary of the relationship of capture conversion to established
type theoretical notions. Wildcard types are a restricted form of existential types. Capture
conversion corresponds loosely to an opening of a value of existential type. A capture
conversion of an expression e can be thought of as an open of e in a scope that comprises
thetop level expression that enclosese.

The classical open operation on existentials requires that the captured type variable must
not escape the opened expression. The open that corresponds to capture conversion is
always on a scope sufficiently large that the captured type variable can never be visible
outside that scope. The advantage of this scheme is that there is no need for a cl ose
operation, as defined in the paper On Variance-Based Subtyping for Parametric Types by
Atsushi Igarashi and Mirko Virali, in the proceedings of the 16th European Conference on
Object Oriented Programming (ECOOP 2002). For aformal account of wildcards, see Wild
FJ by Mads Torgersen, Erik Ernst and Christian Plesner Hansen, in the 12th workshop on
Foundations of Object Oriented Programming (FOOL 2005).

5.1.11 String Conversion

Any type may be converted to type St ri ng by string conversion.

A value x of primitive type T isfirst converted to areference value as if by giving
it as an argument to an appropriate class instance creation expression (815.9):

* |f Tisbool ean, then use new Bool ean(x).

99

51

100

Kinds of Conversion CONVERS ONS AND PROMOTIONS

e If Tischar, thenusenew Character (x).

* If Tisbyte, short,orint,thenusenew I nteger(x).

e If Tisl ong, then usenew Long(x).

e |[f Tisfloat,then usenew Fl oat (x).

e |f Tisdoubl e, then use new Doubl e(x).

This reference value is then converted to type St ri ng by string conversion.
Now only reference values need to be considered:

* If thereferenceisnul I, itisconvertedtothestring "nul 1 " (four ASCII characters
n,u,l,1).

» Otherwise, the conversion is performed as if by an invocation of thetoStri ng
method of the referenced object with no arguments; but if the result of invoking
thet oSt ri ng method isnul |, then the string "nul | " is used instead.

The t oSt ring method is defined by the primordia class bj ect (84.3.2). Many
classes override it, notably Bool ean, Char acter, | nt eger, Long, Fl oat, Doubl e,
and String.

See 85.4 for details of the string conversion context.

5.1.12 Forbidden Conversions

Any conversion that is not explicitly allowed is forbidden.

5.1.13 Value Set Conversion

Value set conversion is the process of mapping a floating-point value from one
value set to another without changing its type.

Within an expression that is not FP-strict (815.4), value set conversion provides
choices to an implementation of the Java programming language:

« If the value is an element of the float-extended-exponent value set, then the
implementation may, at its option, map the value to the nearest element of the
float value set. This conversion may result in overflow (in which case the value
isreplaced by an infinity of the same sign) or underflow (in which casethevalue
may lose precision because it is replaced by a denormalized number or zero of
the same sign).

CONVERSIONS AND PROMOTIONS Assignment Conversion

* If the value is an element of the double-extended-exponent value set, then the
implementation may, at its option, map the value to the nearest element of the
doublevalueset. Thisconversion may resultin overflow (in which casethevalue
isreplaced by an infinity of the same sign) or underflow (in which casethevalue
may lose precision because it is replaced by a denormalized number or zero of
the same sign).

Within an FP-strict expression (815.4), value set conversion does not provide any
choices; every implementation must behave in the same way:

* If thevalueisof typefl oat andisnot an element of the float value set, then the
implementation must map the value to the nearest element of the float value set.
This conversion may result in overflow or underflow.

« If thevalueisof type doubl e and is not an element of the double value set, then
theimplementation must map the valueto the nearest element of the doublevalue
set. This conversion may result in overflow or underflow.

Within an FP-strict expression, mapping values from the float-extended-exponent
value set or double-extended-exponent value set is necessary only when a method
isinvoked whose declaration is not FP-strict and the implementation has chosen to
represent the result of the method invocation asan element of an extended-exponent
value set.

Whether in FP-strict code or code that is not FP-strict, value set conversion aways
leaves unchanged any value whose type is neither f | oat nor doubl e.

5.2 Assignment Conversion

Assignment conver sion occurswhen the value of an expression isassigned (815.26)
to a variable: the type of the expression must be converted to the type of the
variable.

Assignment contexts allow the use of one of the following:
* anidentity conversion (85.1.1)

» awidening primitive conversion (85.1.2)

» awidening reference conversion (85.1.5)

» a boxing conversion (85.1.7) optionally followed by a widening reference
conversion

5.2

101

5.2

102

Assignment Conversion CONVERS ONS AND PROMOTIONS

* an unboxing conversion (85.1.8) optionaly followed by a widening primitive
conversion.

If, after the conversions listed above have been applied, the resulting typeisaraw
type (84.8), unchecked conversion (85.1.9) may then be applied.

It is a compile-time error if the chain of conversions contains two parameterized
types that are not in the subtype relation.
An example of such anillegal chain would be:

I nt eger, Conpar abl e<l nt eger>, Conpar abl e, Conpar abl e<Stri ng>

The first three elements of the chain are related by widening reference conversion, while
the last entry is derived from its predecessor by unchecked conversion. However, this is
not a valid assignment conversion, because the chain contains two parameterized types,
Conpar abl e<I nt eger > and Conpar abl e<St ri ng>, that are not subtypes.

Inaddition, if the expression isaconstant expression (815.28) of typebyt e, short,
char,orint:

* A narrowing primitive conversion may be used if thetype of thevariableisbyt e,
short, or char, and the value of the constant expression is representable in the
type of the variable.

A narrowing primitive conversion followed by aboxing conversion may be used
if the type of the variableis:

* Byt e andthevalue of the constant expression isrepresentableinthetypebyt e.

+ short and the value of the constant expression is representable in the type
short.

* Charact er andthevalue of the constant expression isrepresentablein thetype
char.

The compile-time narrowing of constants means that code such as:
byte theAnswer = 42;

is allowed. Without the narrowing, the fact that the integer literal 42 hastypei nt would
mean that a cast to byt e would be required:

byte theAnswer = (byte)42; // cast is permtted but not required

A value of the null type (the null referenceis the only such value) may be assigned
to any reference type, resulting in anull reference of that type.

CONVERSIONS AND PROMOTIONS Assignment Conversion

If the type of the expression cannot be converted to the type of the variable by a
conversion permitted in an assignment context, then a compile-time error occurs.

If thetype of an expression can be converted to thetype of avariable by assignment
conversion, we say the expression (or its value) is assignable to the variable or,
equivalently, that the type of the expression is assignment compatible with the type
of the variable.

If the type of the variableisf1 oat or doubl e, then value set conversion (85.1.13)
is applied to the value v that is the result of the type conversion:

» Ifvisof typefloat andisan element of the float-extended-exponent value set,
then the implementation must map v to the nearest element of the float val ue set.
This conversion may result in overflow or underflow.

 If visof typedoubl e and is an element of the double-extended-exponent value
set, then the implementation must map v to the nearest element of the double
value set. This conversion may result in overflow or underflow.

The only exceptions that an assignment conversion may cause are:

» A d assCast Excepti on if, after the type conversions above have been applied,
the resulting value is an object which is not an instance of a subclass or
subinterface of the erasure (84.6) of the type of the variable.

This circumstance can only arise as a result of heap pollution (84.12.2). In practice,
implementations need only perform casts when accessing afield or method of an object
of parametized type, when the erased type of the field, or the erased result type of the
method differ from their unerased type.

* Ancut O Menor yEr ror asaresult of aboxing conversion.

* A Nul | Poi nterException as a result of an unboxing conversion on a null
reference.

* An ArrayStoreException in special cases involving array elements or field
access (810.5, §15.26.1).

Example 5.2-1. Assignment Conversion for Primitive Types

class Test {
public static void main(String[] args) {

short s = 12; /1 narrow 12 to short

float f = s; /1 w den short to float
Systemout.println("f=" + f);

char ¢ = "\u0123';

long I = c; /1 wi den char to |ong

Systemout. println("l=0x" + Long.toString(l, 16));
f = 1.23f;

double d = f; /1 widen float to double

5.2

103

5.2 Assignment Conversion CONVERS ONS AND PROMOTIONS

Systemout. println("d=" + d);
}
This program produces the outpuit:

f=12.0
| =0x123
d=1.2300000190734863

The following program, however, produces compile-time errors:

class Test {
public static void main(String[] args) {
short s = 123;
char ¢ = s; /1 error: would require cast
s = c; /'l error: would require cast

}

becausenot all short valuesarechar values, and neither areall char valuesshort vaues.

Example 5.2-2. Assignment Conversion for Reference Types

class Point { int x, y; }
class Point3D extends Point { int z; }
interface Colorable { void setColor(int color); }

cl ass Col oredPoi nt extends Point inplenments Col orable {
int color;
public void setColor(int color) { this.color = color; }

}

class Test {
public static void main(String[] args) {

/1 Assignnents to variables of class type:

Point p = new Point();

p = new Point 3D();
/1 OK because Point3D is a subclass of Point

Poi nt 3D p3d = p;
/1 Error: will require a cast because a Point
/1 mght not be a Point3D (even though it is,
/1 dynamically, in this exanple.)

/1 Assignnents to variables of type Object:

Object o = p; /1l OK: any object to Object
int[] a = new int[3];
Obj ect 02 = a; /1 OK an array to Object

/] Assignments to variables of interface type:
Col oredPoi nt cp = new Col oredPoi nt ();
Col orable ¢ = cp;

104

CONVERS ONS AND PROMOTIONS Assignment Conversion 5.2

/1 OK: Col oredPoint inplenments Col orable

/1 Assignnents to variables of array type:
byte[] b = new byte[4];
a = b;
/] Error: these are not arrays of the sane prinitive type
Poi nt 3D[] p3da = new Poi nt 3D[3] ;
Point[] pa = p3da;
/1 OK: since we can assign a Point3D to a Point
p3da = pa;
/1 Error: (cast needed) since a Point
/1 can't be assigned to a Point3D

}

Thefollowing test program illustrates assignment conversions on reference val ues, but fails
to compile, asdescribed initscomments. Thisexample should be compared to the preceding
one.

class Point { int x, y; }
interface Col orable { void setColor(int color); }
cl ass Col oredPoi nt extends Point inplenments Col orable {
int color;
public void setColor(int color) { this.color = color; }

}

class Test {

public static void main(String[] args) {
Point p = new Point();
Col oredPoi nt cp = new Col oredPoi nt();
/1 Okay because Col oredPoint is a subclass of Point:
p = cp;
/1l Okay because Col oredPoi nt inplenments Col orabl e:
Col orable ¢ = cp;
/1 The followi ng cause conpile-tine errors because
/1l we cannot be sure they will succeed, depending on
/'l the run-tine type of p; a run-tine check will be
/'l necessary for the needed narrow ng conversion and
/'l must be indicated by including a cast:

cp = p; /1 p mght be neither a Col oredPoi nt
/1 nor a subclass of Col oredPoint
c =p; /1 p mght not inplenent Colorable

}
Example 5.2-3. Assignment Conversion for Array Types

class Point { int x, y; }
cl ass Col oredPoi nt extends Point { int color; }

class Test {

public static void main(String[] args) {
long[] veclong = new | ong[100];

105

5.3

106

Method Invocation Conversion

Obj ect o = vecl ong; 11
Long | = veclong; /1
short[] vecshort = veclong; //
Point[] pvec = new Point[100];

CONVERS ONS AND PROMOTIONS

okay
conpile-time error
conpile-tine error

Col oredPoi nt[] cpvec = new Col oredPoi nt[100] ;

pvec = cpvec; I
pvec[0] = new Point(); 11
/1

okay
okay at conpile tine,
but would throw an

/] exception at run tine
cpvec = pvec; /1 conpile-tine error

}

In this example:

The value of vecl ong cannot be assigned to a Long variable, because Long is a class
type other than Cbj ect . An array can be assigned only to a variable of a compatible
array type, or to avariable of type Obj ect, O oneabl e or j ava. i o. Seri al i zabl e.

The value of vecl ong cannot be assigned to vecshort, because they are arrays of
primitive type, and short and | ong are not the same primitive type.

The value of cpvec can be assigned to pvec, because any reference that could be the
value of an expression of type Col or edPoi nt can be the value of a variable of type
Poi nt . The subsequent assignment of the new Poi nt to a component of pvec then
would throw an Arr ay St or eExcept i on (if the program were otherwise corrected so
that it could be compiled), because a Col or edPoi nt array cannot have an instance of
Poi nt asthe value of a component.

The value of pvec cannot be assigned to cpvec, because not every reference that could
be the value of an expression of type Col or edPoi nt can correctly be the value of a
variable of typePoi nt . If thevalueof pvec at runtimewereareferenceto an instance of
Poi nt [] , and theassignment to cpvec werealowed, asimplereferenceto acomponent
of cpvec, say, cpvec[0], could return aPoi nt , and aPoi nt isnot aCol or edPoi nt .
Thus to alow such an assignment would alow a violation of the type system. A cast
may be used (85.5, §15.16) to ensure that pvec referencesa Col or edPoi nt [] :
cpvec = (ColoredPoint[])pvec; // OK but may throw an

/] exception at run tinme

5.3 Method Invocation Conver sion

Method invocation conversion is applied to each argument value in a method
or constructor invocation (88.8.7.1, 815.9, §15.12): the type of the argument
expression must be converted to the type of the corresponding parameter.

Method invocation contexts allow the use of one of the following:

 anidentity conversion (85.1.1)

CONVERS ONS AND PROMOTIONS Method Invocation Conversion

» awidening primitive conversion (85.1.2)

awidening reference conversion (85.1.5)

* a boxing conversion (85.1.7) optionaly followed by widening reference
conversion

* an unboxing conversion (85.1.8) optionally followed by a widening primitive
conversion.

If, after the conversions listed above have been applied, the resulting typeisaraw
type (84.8), an unchecked conversion (85.1.9) may then be applied.

It is a compile-time error if the chain of conversions contains two parameterized
typesthat are not in the subtype relation.

A value of the null type (the null referenceisthe only such value) may be converted
to any reference type.

If the type of the expression cannot be converted to the type of the parameter by
aconversion permitted in a method invocation context, then a compile-time error
occurs.

If the type of an argument expression is either f1 oat or doubl e, then value set
conversion (85.1.13) is applied after the type conversion:

« |If an argument value of typef | oat isan element of the float-extended-exponent
value set, then the implementation must map the value to the nearest element of
the float value set. This conversion may result in overflow or underflow.

 If an argument value of type doubl e is an element of the double-extended-
exponent value set, then the implementation must map the value to the nearest
element of the double value set. This conversion may result in overflow or
underflow.

The only exceptions that an method invocation conversion may cause are:

* A d assCast Excepti on if, after the type conversions above have been applied,
the resulting value is an object which is not an instance of a subclass or
subinterface of the erasure (84.6) of the corresponding formal parameter type.

This circumstance can only arise as aresult of heap pollution (84.12.2).

* Ancut Of Menor yEr ror asaresult of aboxing conversion.

* A Nul | Poi nter Exception as a result of an unboxing conversion on a null
reference.

5.3

107

5.4

108

String Conversion CONVERS ONS AND PROMOTIONS

Method invocation conversions specifically do not include the implicit narrowing of
integer constants which is part of assignment conversion (85.2). The designers of the Java
programming language felt that including these implicit narrowing conversions would add
additional complexity to the overloaded method matching resolution process (815.12.2).

Thus, the program:

class Test {
static int m(byte a, int b) { return a+b; }
static int m(short a, short b) { return a-b; }
public static void main(String[] args) {
Systemout.println(m(12, 2)); [// conpile-tine error

}
}

causes a compile-time error because the integer literals 12 and 2 have type i nt, sO
neither method mmatches under the rules of (§15.12.2). A language that included implicit
narrowing of integer constants would need additional rules to resolve cases like this
example.

5.4 String Conversion

String conversion applies only to an operand of the binary + operator which is not
astri ng when the other operandisa stri ng.

Inthissingle special case, thenon-st ri ng operand tothe + isconvertedtoast ri ng
(85.1.11) and evaluation of the + operator proceeds as specified in §15.18.1.

5.5 Casting Conversion

Casting conversion is applied to the operand of a cast operator (815.16): the type
of the operand expression must be converted to the type explicitly named by the
cast operator.

Casting contexts allow the use of one of:
 anidentity conversion (85.1.1)

» awidening primitive conversion (85.1.2)
* anarrowing primitive conversion (85.1.3)

» awidening and narrowing primitive conversion (85.1.4)

CONVERS ONS AND PROMOTIONS Casting Conversion 55

» a widening reference conversion (85.1.5) optionally followed by either an
unboxing conversion (85.1.8) or an unchecked conversion (85.1.9)

» a narrowing reference conversion (85.1.6) optionally followed by either an
unboxing conversion (85.1.8) or an unchecked conversion (85.1.9)

» a boxing conversion (85.1.7) optionally followed by a widening reference
conversion (85.1.5)

* an unboxing conversion (85.1.8) optionaly followed by a widening primitive
conversion (85.1.2).

Value set conversion (85.1.13) is applied after the type conversion.
The compile-time legality of acasting conversion is asfollows:

» An expression of a primitive type may undergo casting conversion to another
primitive type, by an identity conversion (if the types are the same), or by a
widening primitive conversion, or by a narrowing primitive conversion, or by a
widening and narrowing primitive conversion.

» Anexpression of aprimitive type may undergo casting conversion to areference
type without error, by boxing conversion.

» Anexpression of areference type may undergo casting conversion to aprimitive
type without error, by unboxing conversion.

* An expression of a reference type may undergo casting conversion to another
reference type if no compile-time error occurs given therulesin 85.5.1.

The following tables enumerate which conversions are used in certain casting
conversions. Each conversion is signified by a symbol:

* - signifies no casting conversion allowed

» = signifiesidentity conversion (85.1.1)

* w signifies widening primitive conversion (85.1.2)

* n signifies narrowing primitive conversion (85.1.3)

* wn signifies widening and narrowing primitive conversion (85.1.4)
« 1+ signifies widening reference conversion (85.1.5)

| signifies narrowing reference conversion (85.1.6)

* [signifies boxing conversion (85.1.7)

* LU signifies unboxing conversion (85.1.8)

109

55

110

Casting Conversion

In the tables, a comma between symbols indicates that a casting conversion uses
one conversion followed by another. The type Gbj ect means any reference type
other than the eight wrapper classes Bool ean, Byt e, Short, Char act er, | nt eger,

Long, Fl oat , Doubl e.

Tableb5.1. Casting conversionsto primitive types

CONVERS ONS AND PROMOTIONS

To- byte short char i nt long float double boolean
From |

byte = w wn w w w w -
short n = n w w w w -
char n n = w w w w -
i nt n n n = w w w -
I ong n n n n = w w -
fl oat n n n n n = w -
doubl e n n n n n n = -
bool ean - - - - - - - =
Byt e u U,w - U,w U,w U,w U,w -
Shor t - u - U,w U,w U,w U,w -
Character - - u U,w U,w U,w U,w -

I nt eger - - - u U,w U,w U,w -
Long - - - - u u,w U,w -
Fl oat - - - - - u U,w -
Doubl e - - - - - - u -
Bool ean - - - - - - - u
hj ect y,u u,u y,u y,u y,u y,u J,u ¢,u

CONVERS ONS AND PROMOTIONS

Casting Conversion

Table5.2. Casting conversionsto refer ence types

To- Byte Short Character | nteger Long Fl oat Doubl e Bool ean Obj ect
From {

byte ol - - - G,
short - - - - G,
char - - - - G,
i nt - - - - G, n
| ong - - - - G0
f1 oat - ol - - &,n
doubl e - - o - &,n
bool ean - - - - - - - o &,n
Byt e = - - - - - - - n
Short - = - - - - - - f
Character - - = - - - - - il
I nteger - - - = - - - - "
Long - - - - = - - - fn
Fl oat - - - - - = - -)
Doubl e - - - - - - = - f
Bool ean - - - - - - - = f
oj ect U U U U U U U U =

5.5.1 Reference Type Casting

Given acompile-time reference type s (source) and a compile-time reference type
T (target), a casting conversion exists from s to T if no compile-time errors occur
dueto the following rules.

If sisaclasstype:

» If Tisaclasstype, then either |s] <: [T], or |T| <: |S]. Otherwise, a compile-time
Error OCccurs.

Furthermore, if there exists a supertype X of T, and a supertype Y of s, such
that both X and Y are provably distinct parameterized types (84.5), and that the
erasures of X and Y are the same, a compile-time error occurs.

55

111

55

112

Casting Conversion CONVERS ONS AND PROMOTIONS

* If Tisaninterface type:

+ If sisnot afinal class(88.1.1), then, if there exists a supertype x of T, and
asupertype Y of s, such that both X and Y are provably distinct parameterized
types, and that the erasures of X and Y arethe same, acompile-timeerror occurs.

Otherwise, the cast isalways|egal at compiletime (because even if s does not
implement T, a subclass of s might).

+ If sisafinal class(88.1.1), then s mustimplement T, or acompile-timeerror
occurs.

» If Tisatype variable, then this algorithm is applied recursively, using the upper

bound of T in place of T.

» If Tisan array type, then s must be the class bj ect , or a compile-time error

Ooccurs.

If sisan interfacetype:

o If T is an array type, then S must be the type java.io. Serializable or

d oneabl e (the only interfaces implemented by arrays), or acompile-time error
occurs.

If Tisatypethat isnot final (88.1.1), then if there exists a supertype X of T,
and asupertypeY of s, such that both X and Y are provably distinct parameterized
types, and that the erasures of X and Y are the same, a compile-time error occurs.

Otherwise, the cast is always legal at compile time (because even if T does not
implement s, a subclass of T might).

If Tisatypethatisfi nal , then:

*+ If sisnot a parameterized type or a raw type, then T must implement s, or a
compile-time error occurs.

* Otherwise, s is either a parameterized type that is an invocation of some
generic type declaration G, or a raw type corresponding to a generic type
declaration G. Then there must exist a supertype x of T, such that X is an
invocation of G, or acompile-time error occurs.

Furthermore, if s and X are provably distinct parameterized types then a
compile-time error occurs.

If sisatype variable, then this algorithm is applied recursively, using the upper
bound of s in place of s.

CONVERS ONS AND PROMOTIONS Casting Conversion 55

If SisanintersectiontypeA; & ... & Ay, then itisacompile-time error if there exists
anA (1<i<n)suchthat scannotbecasttoa by thisalgorithm. Thatis, the success
of the cast is determined by the most restrictive component of the intersection type.

If sisan array typesd], that is, an array of components of type SC:

» If T isaclass type, then if T is not j ect, then a compile-time error occurs
(because vj ect isthe only class type to which arrays can be assigned).

* If T is an interface type, then a compile-time error occurs unless T is the type
java.io. Serial i zabl e or thetyped oneabl e (theonly interfacesimplemented

by arrays).
» If Tisatypevariable, then:

* If the upper bound of T is bj ect Orjava.io. Seri al i zabl e Or O oneabl e,
or atype variable that s could undergo casting conversion to, then the cast is
legal (though unchecked).

* If the upper bound of T isan array type TC[] , then acompile-time error occurs
unlessthetype sC[] can undergo casting conversionto 1C] .

*+ Otherwise, a compile-time error occurs.

« If Tisan array type T[], that is, an array of components of type TC, then a
compile-time error occurs unless one of the following istrue:

+ TCand Sc are the same primitive type.

+ Tcand scarereferencetypesand type Sc can undergo casting conversionto TC.

Example 5.5.1-1. Casting Conversion for Reference Types

class Point { int x, y; }
interface Colorable { void setColor(int color); }
cl ass Col oredPoi nt extends Point inplenments Col orable {
int color;
public void setColor(int color) { this.color = color; }

}

final class EndPoi nt extends Point {}

class Test {

public static void main(String[] args) {
Point p = new Point();
Col oredPoi nt cp = new Col oredPoi nt ();
Col orabl e c;
/1 The following may cause errors at run tinme because
/1 we cannot be sure they will succeed; this possibility
/'l is suggested by the casts:
cp = (ColoredPoint)p; // p mght not reference an

/1 object which is a Col oredPoi nt

113

55 Casting Conversion CONVERS ONS AND PROMOTIONS

/'l or a subcl ass of Col oredPoi nt
¢ = (Col orabl e)p; /1 p might not be Col orable
/1 The following are incorrect at conpile tine because
/1 they can never succeed as explained in the text:

Long | = (Long)p; /1 conpile-time error #1
EndPoi nt e = new EndPoint ();
c = (Col orable)e; /1 conpile-tine error #2

}

Here, the first compile-time error occurs because the class types Long and Poi nt are
unrelated (that is, they are not the same, and neither is a subclass of the other), so a cast
between them will always fail.

The second compile-time error occurs because a variable of type EndPoi nt can never
reference a value that implements the interface Col or abl e. Thisis because EndPoi nt is
afinal type and avariable of afinal type always holds a value of the same run-time
type as its compile-time type. Therefore, the run-time type of variable e must be exactly
the type EndPoi nt , and type EndPoi nt does not implement Col or abl e.

Example 5.5.1-2. Casting Conversion for Array Types

class Point {
int x, vy;
Point(int x, int y) { this.x = x; this.y = vy; }
public String toString() { return "("+x+","+y+")"; }
}
interface Colorable { void setColor(int color); }
cl ass Col oredPoi nt extends Point inplenments Col orable {
int color;
Col oredPoint(int x, int y, int color) {
super(x, y); setColor(color);

public void setColor(int color) { this.color = color; }
public String toString() {
return super.toString() + "@ + color;
}
}

class Test {

public static void main(String[] args) {
Point[] pa = new Col oredPoint[4];
pa[0] = new Col oredPoint (2, 2, 12);
pa[1] = new Col oredPoi nt (4, 5, 24);
Col oredPoi nt[] cpa = (Col oredPoint[]) pa;
Systemout.print("cpa: {");
for (int i =0; i < cpa.length; i++)

Systemout.print((i ==0?2" " : ", ") + cpalil]);

Systemout.printin(" }");

114

CONVERS ONS AND PROMOTIONS Casting Conversion

This program compiles without errors and produces the output:

cpa: { (2,2)@z2, (4,5 @4, null, null }

5.5.2 Checked Casts and Unchecked Casts

A cast from atype S to atype T is statically known to be correct if and only if S
< T(84.10).

A cast from atype s to a parameterized type (84.5) T is unchecked unless at |east
one of the following conditions holds:

e S< T
* All of the type arguments (84.5.1) of T are unbounded wildcards

* T<: sands hasno subtype X other than T where the type arguments of X are not
contained in the type arguments of T.

A cast from atype s to atype variable T isunchecked unless s <: T.

An unchecked cast from s to T is completely unchecked if the cast from |s| to [T| is
statically known to be correct. Otherwise, it is partially unchecked.

An unchecked cast causes a compile-time unchecked warning, unless suppressed
by the Suppr essWar ni ngs annotation (89.6.3.5).

A cast is checked if it is not statically known to be correct and it is not unchecked.
If acast to areferencetypeisnot acompile-time error, there are several cases:
» The cast is statically known to be correct.
No run-time action is performed for such a cast.
» The cast isacompletely unchecked cast.
No run-time action is performed for such a cast.
* Thecast isapartially unchecked cast.

Such a cast requires arun-time validity check. The check is performed asiif the
cast had been a checked cast between |s| and [T|, as described below.

* The cast is a checked cast.

Such a cast requires a run-time validity check. If the value at run timeisnul I,
then the cast is allowed. Otherwise, let R be the class of the object referred to by
the run-time reference value, and let T be the erasure (84.6) of the type named in

55

115

55

116

Casting Conversion CONVERS ONS AND PROMOTIONS

the cast operator. A cast conversion must check, at run time, that the classRis
assignment compatible with the type T, viathe algorithm in 85.5.3.

Notethat R cannot be an interface when these rules arefirst applied for any given
cast, but R may be an interface if the rules are applied recursively because the
run-time reference value may refer to an array whose element typeisan interface

type.

55.3 Checked Castsat Run Time

Here is the algorithm to check whether the run-time type R of an object is
assignment compatiblewith thetype T whichisthe erasure (84.6) of thetype named
inthe cast operator. If arun-time exceptionisthrown, itisad assCast Except i on.

If Risan ordinary class (not an array class):

* If Tisaclasstype, then Rmust be either the same class (84.3.4) as T or asubclass
of T, or arun-time exception is thrown.

» If T isan interface type, then R must implement (88.1.5) interface T, or a run-
time exception is thrown.

 If Tisan array type, then arun-time exception is thrown.
If Risan interface:

» If Tisaclasstype, then T must be bj ect (84.3.2), or a run-time exception is
thrown.

« If T is an interface type, then R must be either the same interface as T or a
subinterface of T, or arun-time exception is thrown.

 If Tisan array type, then arun-time exception is thrown.

If Risaclass representing an array type RC[], that is, an array of components of
type RC:

» If Tisaclasstype, then T must be bj ect (84.3.2), or a run-time exception is
thrown.

 If Tisaninterfacetype, then arun-time exception isthrown unless T is the type
java.io. Seri al i zabl e or thetyped oneabl e (theonly interfacesimplemented

by arrays).

This case could dlip past the compile-time checking if, for example, a reference to an
array were stored in avariable of type oj ect .

CONVERS ONS AND PROMOTIONS Numeric Promotions

» If Tisanarray typeTd 1, that is, an array of components of type TC, then arun-
time exception is thrown unless one of the following is true:

* TCand RC are the same primitive type.

* TC and RC are reference types and type RC can be cast to TC by a recursive
application of these run-time rules for casting.

Example 5.5.3-1. Incompatible Typesat Run Time

class Point { int x, vy; }
interface Colorable { void setColor(int color); }
cl ass Col oredPoi nt extends Point inplements Col orable {
int color;
public void setColor(int color) { this.color = color; }

}
class Test {
public static void main(String[] args) {
Point[] pa = new Point[100];
/1 The following line will throw a Cl assCast Excepti on:
Col oredPoi nt[] cpa = (Col oredPoint[]) pa;
Systemout. println(cpa[0]);
int[] shortvec = newint[2];
Obj ect o = shortvec;
/1 The following line will throw a Cl assCast Excepti on:

Col orabl e ¢ = (Col orabl e) o;
c.setCol or(0);

}

This program uses casts to compile, but it throws exceptions at run time, because the types
areincompatible.

5.6 Numeric Promotions

Numeric promotion is applied to the operands of an arithmetic operator.
Numeric promation contexts allow the use of:

 anidentity conversion (85.1.1)

» awidening primitive conversion (85.1.2)

* an unboxing conversion (85.1.8)

5.6

117

5.6

118

Numeric Promotions CONVERS ONS AND PROMOTIONS

Numeric promotions are used to convert the operands of a numeric operator to a
common type so that an operation can be performed. The two kinds of numeric
promotion are unary numeric promotion (85.6.1) and binary numeric promotion
(85.6.2).

5.6.1 Unary Numeric Promotion

Some operators apply unary numeric promotion to a single operand, which must
produce a value of a numeric type:

« If the operand is of compile-time type Byt e, Short, Character, Or | nt eger , it
is subjected to unboxing conversion (85.1.8). The result is then promoted to a
value of type i nt by a widening primitive conversion (85.1.2) or an identity
conversion (85.1.1).

» Otherwise, if the operand is of compile-time type Long, Fl oat , Of Doubl e, it is
subjected to unboxing conversion (85.1.8).

» Otherwise, if the operand is of compile-time type byt e, short, Of char, it is
promoted to avalue of typei nt by awidening primitive conversion (85.1.2).

» Otherwise, aunary numeric operand remains asis and is not converted.

In any case, value set conversion (85.1.13) is then applied.

Unary numeric promotion is performed on expressions in the following situations:
» Each dimension expression in an array creation expression (815.10)

» Theindex expression in an array access expression (815.13)

» The operand of aunary plus operator + (§15.15.3)

» The operand of aunary minus operator - (815.15.4)

» The operand of a bitwise complement operator ~ (815.15.5)

» Each operand, separately, of a shift operator >>, >>>, or << (§15.19).

A 1 ong shift distance (right operand) does not promote the value being shifted
(left operand) to | ong.

Example 5.6.1-1. Unary Numeric Promotion

class Test {
public static void main(String[] args) {

byte b = 2;

int a[] = newint[b]; // dimension expression pronotion
char ¢ = '"\u0001';

afc] = 1; /'l index expression pronotion

CONVERS ONS AND PROMOTIONS Numeric Promotions

a[0] = -c; /1 unary - pronotion
Systemout.printin("a: " + a[0] + "," + a[1]);

b = -1,

int i = ~b; /1 bitwi se conpl ement pronotion

Systemout. println("~0x" + |Integer.toHexString(b)

+ "==0x" + Integer.toHexString(i));
i = b << 4L; /1 shift pronmotion (left operand)
Systemout. println("0x" + |Integer.toHexString(b)

+ "<<4L==0x" + Integer.toHexString(i));

}
This program produces the outpult:

a -1,1
~Oxffffffff==0x0
Oxffffffff<<dL==OxfffffffO

5.6.2 Binary Numeric Promaotion

When an operator applies binary numeric promotion to a pair of operands, each
of which must denote a value that is convertible to a numeric type, the following
rules apply, in order:

1. If any operand is of a reference type, it is subjected to unboxing conversion
(85.1.8).

2. Widening primitive conversion (85.1.2) is applied to convert either or both
operands as specified by the following rules:

« If either operand is of type doubl e, the other is converted to doubl e.

» Otherwise, if either operand isof typef | oat , theother isconvertedtof oat .
» Otherwise, if either operand is of typel ong, the other is converted to | ong.
» Otherwise, both operands are converted to typei nt .

After the type conversion, if any, value set conversion (85.1.13) is applied to each
operand.

Binary numeric promotion is performed on the operands of certain operators.
» The multiplicative operators*, / and %(815.17)

» The addition and subtraction operators for numeric types+ and - (§15.18.2)
» The numerical comparison operators <, <=, >, and >= (8§15.20.1)

* The numerical equality operators==and! = (815.21.1)

5.6

119

5.6

120

Numeric Promotions CONVERS ONS AND PROMOTIONS

* Theinteger bitwise operators &, ~, and | (815.22.1)

* In certain cases, the conditional operator ? : (815.25)

Example 5.6.2-1. Binary Numeric Promotion

class Test {

}

public static void main(String[] args) {

int i
float f 0
doubl e d 0
/Il First int*float is pronoted to float*float, then
/1 float==double is pronoted to doubl e==doubl e:

if (i *f ==d) Systemout.println("oops");

f,

0;
1.
2.

/1 A char&byte is pronpted to int&nt:

byte b = Ox1f;

char ¢ ='G;

int control = c & b;

Systemout. println(lnteger.toHexString(control));

/!l Here int:float is pronpoted to float:float:
f = (b==0) ? i : 4.0f;
Systemout.println(1.0/f);

This program produces the outpuit:

7
0.

The example convertsthe ASCII character Gto the ASCII control-G (BEL), by masking off
all but the low 5 bits of the character. The 7 is the numeric value of this control character.

CHAPTER6

Names

N AMES are used to refer to entities declared in a program.

A declared entity (86.1) is a package, class type (hormal or enum), interface
type (normal or annotation type), member (class, interface, field, or method) of
a reference type, type parameter (of a class, interface, method or constructor),
parameter (to a method, constructor, or exception handler), or local variable.

Names in programs are either simple, consisting of asingle identifier, or qualified,
consisting of a sequence of identifiers separated by "." tokens (86.2).

Every declaration that i ntroduces aname has a scope (86.3), which isthe part of the
program text within which the declared entity can be referred to by asimple name.

A qualified name N. x may be used to refer to amember of a package or reference
type, where N is a simple or qualified name and x is an identifier. If N names a
package, then x is a member of that package, which is either a class or interface
type or a subpackage. If N names areference type or avariable of areference type,
then x names a member of that type, which is either a class, an interface, afield,
or amethod.

In determining the meaning of aname (86.5), the context of the occurrenceis used
to disambiguate among packages, types, variables, and methods with the same
name.

Access control (86.6) can be specified in a class, interface, method, or field
declaration to control when access to a member is allowed. Access is a different
concept from scope. Access specifies the part of the program text within which the
declared entity can be referred to by a qualified name, a field access expression
(815.11), or amethod invocation expression (815.12) in which the method is not
specified by a simple name. The default access is that a member can be accessed
anywhere within the package that contains its declaration; other possibilities are
public, protected,andprivate.

121

6.1

122

Declarations NAMES

Fully qualified and canonical names (86.7) are also discussed in this chapter.

6.1 Declarations

A declaration introduces an entity into a program and includes an identifier (83.8)
that can be used in aname to refer to this entity.

A declared entity is one of the following:

A package, declared in apackage declaration (87.4)

Animported type, declared in asingle-type-import declaration (87.5.1) or atype-
import-on-demand declaration (87.5.2)

A class, declared in a class type declaration (88.1)
Aninterface, declared in an interface type declaration (89.1)

A type variable (84.4), declared as a type parameter of a generic class (88.1.2),
interface (89.1.2), method (88.4.4), or constructor (§8.8.1).

A member of areference type (88.2, §9.2, 810.7), one of the following:
* A member class (88.5, §9.5)
* A member interface (88.5, 89.5)
* An enum constant (88.9)
+ A field, one of the following:
+ A field declared in aclass type (88.3)
+ A field declared in an interface type (89.3)
+ Thefield I engt h, whichisimplicitly a member of every array type (§10.7)
+ A method, one of the following:
+ A method (abst ract or otherwise) declared in a class type (88.4)
+ A method (always abst r act) declared in an interface type (89.4)
A parameter, one of the following:
+ A parameter of amethod or constructor of aclass (§8.4.1, §8.8.1)
+ A parameter of an abstract method of an interface (89.4)

NAMES Declarations 6.1

+ A parameter of an exception handler declared in a catch clause of atry
statement (§14.20)

» A local variable, one of the following:
* A local variable declared in ablock (§14.4)
* A local variable declared in af or statement (814.14)

Constructors (88.8) are also introduced by declarations, but use the name of the
classin which they are declared rather than introducing a new name.

Theclasslibraries of the Java SE platform attempt to use, whenever possible, names chosen
according to the conventions presented bel ow. These conventions help to make code more
readable and avoid certain kinds of name conflicts.

We recommend these conventionsfor usein al programs written in the Java programming
language. However, these conventions should not be followed davishly if long-held
conventional usage dictates otherwise. So, for example, the si n and cos methods of
the classj ava. | ang. Mat h have mathematically conventional names, even though these
method names flout the convention suggested here because they are short and are not verbs.

Package Names

Developers should take steps to avoid the possibility of two published packages having the
same name by choosing unique package names for packages that are widely distributed.
This alows packages to be easily and automatically installed and catalogued. This
section specifies a suggested convention for generating such unique package names.
Implementations of the Java SE platform are encouraged to provide automatic support for
converting a set of packages from local and casual package names to the unique name
format described here.

If unique package names are not used, then package name conflicts may arise far from the
point of creation of either of the conflicting packages. This may create a situation that is
difficult or impossible for the user or programmer to resolve. The classCl assLoader can
be used to isolate packages with the same name from each other in those cases where the
packages will have constrained interactions, but not in away that is transparent to a naive
program.

Y ou form a unique package name by first having (or belonging to an organization that has)
an Internet domain name, such as or acl e. com You then reverse this name, component
by component, to obtain, in this example, com or acl e, and use this as a prefix for
your package names, using a convention developed within your organization to further
administer package names. Such a convention might specify that certain package name
components be division, department, project, machine, or login names.

123

6.1 Declarations NAMES

Example 6.1-1. Unique Package Names

com ni ght hacks. j ava. j ag. scrabbl e
org. openj dk. t ool s. conpi | er
net.jcip.annotations

edu. cru. ¢s. bovi k. cheese

gov. whi t ehouse. socks. nousefi nder

The first component of a unique package name is always written in all-lowercase ASCII
letters and should be one of the top level domain names, such ascom edu, gov, ni | , net,
or or g, or one of the English two-letter codes identifying countries as specified in 1SO
Sandard 3166.

Thenameof apackageisnot meant toimply wherethe packageisstored onthelnternet. The
suggested convention for generating unique package names is merely away to piggyback
a package naming convention on top of an existing, widely known unique name registry
instead of having to create a separate registry for package names.

For example, apackage named edu. cnu. cs. bovi k. cheese isnot necessarily obtainable
from Internet addresscnu. edu or cs. cnu. edu or bovi k. cs. cnu. edu.

In some cases, the Internet domain name may not be avalid package name. Here are some
suggested conventions for dealing with these situations:

« |If the domain name contains a hyphen, or any other special character not allowed in an
identifier (83.8), convert it into an underscore.

* If any of the resulting package name components are keywords (§3.9), append an
underscore to them.

« If any of theresulting package name components start with adigit, or any other character
that is not allowed as an initia character of an identifier, have an underscore prefixed
to the component.

Names of packagesintended only for local use should have afirstidentifier that beginswith
a lowercase letter, but that first identifier specifically should not be the identifier j ava;
package names that start with the identifier j ava are reserved for package of the Java SE
platform.

Class and Interface Type Names

Names of classtypes should be descriptive nouns or noun phrases, not overly long, in mixed
case with thefirst letter of each word capitalized.

Example 6.1-2. Descriptive Class Names

Cl assLoader

Securit yManager

Thr ead

Di ctionary

Buf f er edl nput St ream

124

NAMES Declarations 6.1

Likewise, names of interface types should be short and descriptive, not overly long, in
mixed case with the first letter of each word capitalized. The name may be a descriptive
noun or noun phrase, which is appropriate when aninterfaceis used asif it were an abstract
superclass, such asinterfacesj ava. i o. Dat al nput andj ava. i 0. Dat aQut put ; or it may
be an adjective describing a behavior, as for the interfaces Runnabl e and C oneabl e.

Type Variable Names

Type variable names should be pithy (single character if possible) yet evocative, and should
not include lower case letters. This makes it easy to distinguish type parameters from
ordinary classes and interfaces.

Container types should use the name E for their element type. Maps should use K for the
type of their keysand V for the type of their values. The name X should be used for arbitrary
exception types. We use T for type, whenever thereis not anything more specific about the
type to distinguish it. (This is often the case in generic methods.)

If there are multiple type parameters that denote arbitrary types, one should use letters
that neighbor T in the alphabet, such as S. Alternately, it is acceptable to use numeric
subscripts (e.g., T1, T2) to distinguish among the different type variables. In such cases, al
the variables with the same prefix should be subscripted.

If a generic method appears inside a generic class, it is a good idea to avoid using the
same names for the type parameters of the method and class, to avoid confusion. The same
appliesto nested generic classes.

Example 6.1-3. Conventional Type Variable Names

public class HashSet <E> extends AbstractSet<kE> { ... }
public class HashMap<K, V> extends Abstract Map<K, V> { ... }
public class ThreadLocal <T> { ... }
public interface Functor<T, X extends Throwabl e> {

T eval () throws X;

}

When type parameters do not fall conveniently into one of the categories mentioned, names
should be chosen to be as meaningful as possible within the confines of asingle letter. The
names mentioned above (E, K, V, X, T) should not be used for type parameters that do not
fall into the designated categories.

Method Names
Method names should be verbs or verb phrases, in mixed case, with thefirst letter lowercase
and the first letter of any subsequent words capitalized. Here are some additional specific

conventions for method names:

« Methods to get and set an attribute that might be thought of as a variable V should be
named get V and set V. An example is the methods get Pri ority andsetPriority
of class Thr ead.

125

6.1 Declarations NAMES

¢ A method that returns the length of something should be named | engt h, as in class
String.

« A method that tests a boolean condition V about an object should be named i sv. An
exampleisthe method i sI nt er r upt ed of class Thr ead.

« A method that converts its object to a particular format F should be named
toF. Examples are the method toString of class Object and the methods
toLocal eString andtoGWTSt ri ng of classj ava. uti | . Dat e.

Whenever possible and appropriate, basing the names of methods in a new class on names
in an existing class that is similar, especially a class from the Java SE platform API, will
makeit easier to use.

Field Names

Names of fields that are not f i nal should be in mixed case with a lowercase first letter
and the first letters of subsequent words capitalized. Note that well-designed classes have
very few publ i ¢ or pr ot ect ed fields, except for fieldsthat are constants (st ati ¢ fi nal
fields).

Fields should have names that are nouns, noun phrases, or abbreviations for nouns.

Examples of this convention are the fields buf, pos, and count of the class
java.io.ByteArrayl nput Stream and the field bytesTransferred of the class
java.io. | nterruptedl OExcepti on.

Constant Names

The names of constants in interface types should be, and fi nal variables of class types
may conventionally be, a sequence of one or more words, acronyms, or abbreviations,
all uppercase, with components separated by underscore "_" characters. Constant names
should be descriptive and not unnecessarily abbreviated. Conventionally they may be any
appropriate part of speech.

Examples of names for constants include M N_VALUE, MAX_VALUE, M N_RADI X, and
MAX_RADI X of the class Char act er .

A group of constants that represent alternative values of a set, or, less frequently, masking
bits in an integer value, are sometimes usefully specified with a common acronym as a
name prefix.

For example:

interface ProcessStates {
int PS_RUNNI NG 0;
int PS_SUSPENDED = 1,

}

Local Variable and Parameter Names

126

NAMES Names and Identifiers

Local variable and parameter names should be short, yet meaningful. They are often short
sequences of lowercase letters that are not words, such as:

« Acronyms, that is the first |etter of a series of words, asin cp for avariable holding a
reference to a Col or edPoi nt
« Abbreviations, asin buf holding apointer to a buffer of some kind

* Mnemonic terms, organized in some way to aid memory and understanding, typically
by using a set of local variables with conventional names patterned after the names of
parameters to widely used classes. For example:

.

i n and out , whenever some kind of input and output are involved, patterned
after thefields of Syst em

of f and | en, whenever an offset and length are involved, patterned after the
parameters to the r ead and wr i t e methods of the interfaces Dat al nput and
Dat aQut put of j ava.io

One-character |ocal variable or parameter names should be avoided, except for temporary
and looping variables, or where a variable holds an undistinguished value of a type.
Conventional one-character names are:

e bforabyte

e cforachar

e dforadoubl e

e e foranException

f forafl oat

e i,j,andk forints

« | foralong

¢ o for an Obj ect

e sforastring

« v for an arbitrary value of sometype

Local variable or parameter namesthat consist of only two or threelowercase | etters should

not conflict with the initial country codes and domain names that are the first component
of unique package names.

6.2 Namesand |Identifiers

A nameis used to refer to an entity declared in a program.
There are two forms of names: simple names and qualified names.

A simple nameisasingleidentifier.

6.2

127

6.2

128

Names and Identifiers NAMES

A qualified name consists of aname, a". " token, and an identifier.

In determining the meaning of aname (86.5), the context in which the name appears
istaken into account. The rules of §6.5 distinguish among contexts where a name
must denote (refer to) a package (86.5.3), atype (86.5.5), avariable or valuein an
expression (86.5.6), or amethod (86.5.7).

Packages and reference types have members which may be accessed by qualified names.
As background for the discussion of qualified names and the determination of the meaning
of names, see the descriptions of membership in 84.4, 84.5.2, §4.8, 84.9, 87.1, §8.2, §9.2,
and 8§10.7.

Not al identifiersin a program are a part of a name. Identifiers are also used in
the following situations:

* In declarations (86.1), where an identifier may occur to specify the name by
which the declared entity will be known.

* Aslabelsin labeled statements (814.7) and in br eak and cont i nue Statements
(814.15, 814.16) that refer to statement labels.

* Infield access expressions (815.11), where an identifier occurs after a”. " token
toindicateamember of an object that isthe value of an expression or the keyword

non

super that appears beforethe". " token

* In some method invocation expressions (815.12), where an identifier may occur
after a". " token and before a"(" token to indicate a method to be invoked for
an object that is the value of an expression or the keyword super that appears
beforethe ™. " token

 In qualified class instance creation expressions (815.9), where an identifier
occurs immediately to the right of the leftmost new token to indicate a type that
must be amember of the compile-time type of the primary expression preceding
the". " preceding the leftmost new token.

In this program:

class Test {
public static void main(String[] args) {
Class ¢ = Systemout.getd ass();
Systemout.println(c.toString().length() +
args[0].length() + args.length);

}

the identifiers Test, mai n, and the first occurrences of args and ¢ are not names.
Rather, they are used in declarations to specify the names of the declared entities. The
namesString, C ass, System out. get Cl ass, System out. println,c.toString,

NAMES

args, and args.length appear in the example. The occurrence of |ength in
args[0].length() is not a name, but rather an identifier appearing in a method
invocation expression (815.12). The occurrence of | engt h in args. | engt h is a name
because ar gs. | engt h is a qualified name (§6.5.6.2) and not a field access expression
(815.11). (A field access expression, like amethod invocation expression, uses an identifier
rather than a name to denote the member of interest.)

One might wonder why these kinds of expression use an identifier rather than a smple
name, which is after all just an identifier. The reason is that a smple expression name
is defined in terms of the lexical environment; that is, a simple expression name must be
in the scope of a variable declaration. But field access, and method invocation qualified
by a Primary, and qualified class instance creation al denote members whose names are
not in the lexical environment. By definition, such names are bound only in the context
provided by the Primary of the field access expression, method invocation expression, or
class instance creation expression. Therefore, we denote such members with identifiers
rather than simple names.

To complicate things further, a field access expression is not the only way to denote a
field of an object. For parsing reasons, a qualified name is used to denote afield of anin-
scope variable. (The variable itself is denoted with a simple name, alluded to above)) It is
necessary for access control (86.6) to capture both mechanisms for denoting afield.

Names and Identifiers

The identifiers used in labeled statements (814.7) and their associated br eak and
cont i nue statements (8§14.15, 814.16) are completely separate from those used in

declarations.

Example 6.2-1. | dentifiers and Obscuring

Thefollowing code wastaken from aversion of theclass St ri ng and itsmethod i ndexOf ,
where the label was originally called t est . Changing the label to have the same name as
the local variablei does not obscure (86.4.2) the label in the scope of the declaration of
i . Thus, the codeisvalid.

class Test {
char[] val ue;
int offset, count;
int indexOF (TestString str, int from ndex) {
char[] vl = value, v2 = str.val ue;
int max = offset + (count - str.count);
int start = offset + ((from ndex < 0) ? 0 : from ndex);

for (int i = start; i <= max; i++) {
int n =str.count, j =i, k = str.offset;
while (n-- !'=0) {
if (vi[j++] !'= v2[k++])
continue i;
}
return i - offset;
}
return -1,

6.2

129

6.3

130

Scope of a Declaration NAMES

}

The identifier max could also have been used as the statement label; the label would not
obscure the local variable max within the labeled statement.

6.3 Scope of a Declaration

The scope of a declaration is the region of the program within which the entity
declared by the declaration can be referred to using a ssmple name, provided it is
visible (86.4.1).

A declaration is said to be in scope at a particular point in a program if and only
if the declaration's scope includes that point.

The scope of the declaration of an observable (87.4.3) top level package is al
observable compilation units (§7.3).

The declaration of a package that is not observable is never in scope.
The declaration of a subpackage is never in scope.
The packagej ava isawaysin scope.

The scope of a type imported by a single-type-import declaration (87.5.1) or
a type-import-on-demand declaration (87.5.2) is al the class and interface type
declarations (87.6) in the compilation unitinwhich thei mpor t declaration appears,
as well as any annotations on the package declaration (if any) of the compilation
unit .

The scope of a member imported by a single-static-import declaration (87.5.3) or
a static-import-on-demand declaration (87.5.4) is al the class and interface type
declarations (87.6) inthe compilation unitinwhich thei npor t declaration appears,
as well as any annotations on the package declaration (if any) of the compilation
unit .

The scope of atop level type (87.6) isall type declarationsin the package in which
the top level typeis declared.

The scope of a declaration of amember mdeclared in or inherited by a classtype C
(88.1.6) isthe entire body of ¢, including any nested type declarations.

The scope of a declaration of a member mdeclared in or inherited by an interface
type ! (89.1.4) isthe entire body of 1, including any nested type declarations.

The scope of an enum constant € declared in an enum type T is the body of T, and
any case label of aswi t ch statement whose expression is of enum type T.

NAMES Scope of a Declaration

The scope of aformal parameter of amethod (88.4.1) or constructor (88.8.1) isthe
entire body of the method or constructor.

The scope of a class's type parameter (88.1.2) is the type parameter section of the
class declaration, the type parameter section of any superclass or superinterface of
the class declaration, and the class body.

The scope of an interface's type parameter (89.1.2) is the type parameter section
of the interface declaration, the type parameter section of any superinterface of the
interface declaration, and the interface body.

The scope of a method's type parameter (88.4.4) is the entire declaration of the
method, including the type parameter section, but excluding the method modifiers.

The scope of a constructor's type parameter (88.8.4) is the entire declaration of
the constructor, including the type parameter section, but excluding the constructor
modifiers.

The scope of alocal class declaration immediately enclosed by ablock (814.2) is
the rest of the immediately enclosing block, including its own class declaration.

The scope of alocal class declaration immediately enclosed by a switch block
statement group (814.11) is the rest of the immediately enclosing switch block
statement group, including its own class declaration.

The scope of alocal variable declaration in a block (814.4) isthe rest of the block
inwhich the declaration appears, starting with its own initializer and including any
further declaratorsto the right in the local variable declaration statement.

The scope of alocal variable declared in the Forlnit part of abasic f or statement
(814.14.1) includes all of the following:

* Itsowninitiaizer

» Any further declarators to the right in the ForInit part of thef or statement
» The Expression and ForUpdate parts of the f or statement

» The contained Satement

The scope of alocal variable declared in the Formal Parameter part of an enhanced
for statement (814.14.2) is the contained Statement.

The scope of aparameter of an exception handler that isdeclared inacat ch clause
of atry statement (814.20) isthe entire block associated with the cat ch.

The scope of a variable declared in the ResourceSpecification of a try-with-
resources statement (814.20.3) isfrom the declaration rightward over the remainder

6.3

131

6.3 Scope of a Declaration NAMES

of the Resour ceSpecification and the entiret ry block associated with thet r y-with-
resources statement.

The trandation of at r y-with-resources statement implies the rule above.
Example 6.3-1. Scope and Type Declarations

These rulesimply that declarations of class and interface types need not appear before uses
of the types. In the following program, the use of Poi nt Li st in class Poi nt is valid,
because the scope of the class declaration Poi nt Li st includes both class Poi nt and class
Poi nt Li st , aswell as any other type declarations in other compilation units of package
poi nts.

package points;
class Point {

int x, vy;
Poi nt Li st list;
Poi nt next;

}

class PointList {
Point first;

}

Example 6.3-2. Scope of Local Variable Declarations

class Testl {
static int x;
public static void main(String[] args) {
int x = x;
}
}

This program causes a compile-time error because theinitialization of x iswithin the scope
of the declaration of x asalocal variable, and thelocal variable x does not yet have avalue
and cannot be used.

The following program does compile:

class Test2 {
static int x;
public static void main(String[] args) {
int x = (x=2)*2;
System out. println(x);

}
because the local variable x is definitely assigned (816) beforeit is used. It prints:

4

132

NAMES Shadowing and Obscuring

In the following program, the initializer for t hr ee can correctly refer to the variable t wo
declared in an earlier declarator, and the method invocation in the next line can correctly
refer to the variablet hr ee declared earlier in the block.

class Test3 {
public static void main(String[] args) {
Systemout. print ("2+1=");
int two =2, three = tw + 1
System out. println(three)

}
This program produces the output:

2+1=3

6.4 Shadowing and Obscuring

A local variable (814.4), formal parameter (88.4.1), exception parameter (814.20),
and local class (814.3) can only be referred to using a simple name (86.2), not a
qualified name (86.6).

Some declarations are not permitted within the scope of a local variable, formal
parameter, exception parameter, or local class declaration because it would be
impossible to distinguish between the declared entities using only simple names.

For example, if the name of aformal parameter of amethod could be redeclared asthe name
of alocal variable in the method body, then the local variable would shadow the formal
parameter and the formal parameter would no longer be visible - an undesirable outcome.

It isacompile-time error if the name of aformal parameter isredeclared asaloca
variable of the method or constructor; or as an exception parameter of a cat ch
clauseinat ry statement in the body of the method or constructor; or asaresource
in at ry-with-resources statement in the body of the method or constructor.

It is a compile-time error if the name of alocal variable v is redeclared as aloca
variable of the directly enclosing method, constructor, or initializer block within
the scope of v; or as an exception parameter of acat ch clausein atry statement
of the directly enclosing method, constructor or initializer block within the scope
of v; or asaresource in at ry-with-resources statement of the directly enclosing
method, constructor or initializer block within the scope of v.

6.4

133

6.4

134

Shadowing and Obscuring NAMES

Itisacompile-timeerror if the name of alocal classcisredeclared asalocal class
of the directly enclosing method, constructor, or initializer block within the scope
of C.

Itisacompile-timeerror if the name of an exception parameter isredeclared within
the Block of the cat ch clause as alocal variable of the directly enclosing method,
constructor, or initializer block; or asan exception parameter of acat ch clauseina
t ry statement of the directly enclosing method, constructor or initializer block; or
asaresourcein at ry-with-resources statement of the directly enclosing method,
constructor or initializer block.

It is a compiletime eror if the name of a variable declared in a
ResourceSpecification of at ry-with-resources statement (814.20.3) is redeclared
within the try Block as a local variable of the directly enclosing method,
constructor, or initializer block, or as an exception parameter of acat ch clausein
at ry statement of the directly enclosing method or initializer block.

The trandation of at r y-with-resources statement implies the rule above.

Despite the above rules against redeclaration of variables, the rules of shadowing (86.4.1)
allow redeclaration in certain nested class declarations (i.e. local classes (814.3) and
anonymous classes (§15.9)) as follows:

« A formal parameter of a method or constructor may be shadowed anywhere inside a
class declaration nested within that method or constructor.

¢ A locd variable of a method, constructor, or initializer may be shadowed anywhere
inside a class declaration nested within the scope of the local variable.

« A locd class declaration may be shadowed anywhere inside a class declaration nested
within the local class declaration's scope.

e An exception parameter may be shadowed anywhere inside a class declaration nested
within the Block of the cat ch clause.

« A variable declared in a ResourceSpecification may be shadowed anywhere inside a
class declaration nested within thet r y Block.

Example 6.4-1. Attempted Shadowing Of A Local Variable

Because a declaration of an identifier as a local variable of a method, constructor, or
initializer block must not appear within the scope of a parameter or local variable of the
same name, a compile-time error occurs for the following program:

class Testl {
public static void main(String[] args) {
int i;
for (int i =0; i < 10; i++)
Systemout.printin(i);

NAMES Shadowing and Obscuring

}

This restriction helps to detect some otherwise very obscure bugs. A similar restriction on
shadowing of members by local variables was judged impractical, because the addition of
amember in asuperclass could cause subclasses to have to renamelocal variables. Related
considerations make restrictions on shadowing of local variables by members of nested
classes, or on shadowing of local variables by local variables declared within nested classes
unattractive as well.

Hence, the following program compiles without error:

class Test2 {
public static void main(String[] args) {

int i;
class Local {
{
for (int i =0; i < 10; i++)
Systemout.printin(i);
}

new Local ();
}

On the other hand, local variables with the same name may be declared in two separate
blocks or f or statements, neither of which contains the other:

class Test3 {
public static void main(String[] args) {

for (int i =0; i < 10; i++)
Systemout.print(i + " ");
for (int i =10; i >0; i--)

Systemout.print(i + " ");
Systemout. println();

}
This program compiles without error and, when executed, produces the output:

012345678910987654321

6.4.1 Shadowing

Some declarations may be shadowed in part of their scope by another declaration of
the same name, in which case asimple name cannot be used to refer to the declared
entity.

6.4

135

6.4

136

Shadowing and Obscuring NAMES

Shadowing is distinct from hiding (88.3, §8.4.8.2, 88.5, §9.3, §9.5), which applies
only to members which would otherwise be inherited but are not because of a
declaration in a subclass. Shadowing is also distinct from obscuring (86.4.2).

A declarationd issaid to bevisibleat point p in a programif the scope of d includes
p, and d is not shadowed by any other declaration at p.

When the program point we are discussing is clear from context, we will often
simply say that adeclaration isvisible.

A declaration d of a type named n shadows the declarations of any other types
named n that are in scope at the point where d occurs throughout the scope of d.

A declaration d of afield or forma parameter named n shadows, throughout the
scope of d, the declarations of any other variables named n that are in scope at the
point where d occurs.

A declaration d of alocal variable or exception parameter named n shadows,
throughout the scope of d, (a) the declarations of any other fields named n that are
in scope at the point whered occurs, and (b) the declarations of any other variables
named n that are in scope at the point where d occurs but are not declared in the
innermost classin which d is declared.

A declarationd of amethod named n shadowsthe declarations of any other methods
named n that are in an enclosing scope at the point where d occurs throughout the
scope of d.

A package declaration never shadows any other declaration.

A type-import-on-demand declaration never causes any other declaration to be
shadowed.

A static-import-on-demand declaration never causes any other declaration to be
shadowed.

A single-type-import declaration d in acompilation unit ¢ of package p that imports
atype named n shadows, throughout ¢, the declarations of:

* any top level type named n declared in another compilation unit of p
* any type named n imported by a type-import-on-demand declarationin ¢
* any type named n imported by a static-import-on-demand declaration in c

A single-static-import declaration d in a compilation unit ¢ of package p that
imports a field named n shadows the declaration of any static field named n
imported by a static-import-on-demand declaration in ¢, throughout c.

NAMES Shadowing and Obscuring

A single-static-import declaration d in a compilation unit ¢ of package p that
imports a method named n with signature s shadows the declaration of any
static method named n with signature s imported by a static-import-on-demand
declaration in ¢, throughout c.

A single-static-import declaration d in a compilation unit ¢ of package p that
imports atype named n shadows, throughout c, the declarations of:

* any static type named n imported by a static-import-on-demand declarationinc;

 any top level type (87.6) named n declared in another compilation unit (87.3)
of p;

 any type named n imported by atype-import-on-demand declaration (87.5.2) in
C.

Example 6.4.1-1. Shadowing of a Field Declaration by a Local Variable Declaration

class Test {
static int x = 1;
public static void main(String[] args) {
int x =0;
Systemout. print("x=" + X);
Systemout.println(", Test.x=" + Test.X);

}

This program produces the output:
x=0, Test.x=1

This program declares:

* aclassTest

e aclass(static) variable x that isamember of the class Test

» aclass method nai n that is a member of the class Test

¢ aparameter ar gs of the mai n method

» aloca variablex of the mai n method

Since the scope of a class variable includes the entire body of the class (88.2), the class
variable x would normally be available throughout the entire body of the method mai n.

In this example, however, the class variable x is shadowed within the body of the method
mai n by the declaration of the local variable x.

A loca variable has as its scope the rest of the block in which it is declared (86.3); in
this case thisis the rest of the body of the nai n method, namely itsinitializer "0" and the
invocations of Syst em out . pri nt and System out. println.

6.4

137

6.4 Shadowing and Obscuring NAMES

This means that:

¢ The expression x in the invocation of pri nt refers to (denotes) the value of the local
variablex.

* Theinvocation of pri nt | n usesaqualified name (86.6) Test . x, which uses the class
type name Test to access the class variable x, because the declaration of Test. x is
shadowed at this point and cannot be referred to by its simple name.

The keyword t hi s can also be used to access a shadowed field x, using theformt hi s. x.
Indeed, thisidiom typically appearsin constructors (§8.8):

class Pair {
Obj ect first, second,
public Pair(Object first, Object second) {
this.first = first;
thi s. second = second;

}

Here, the constructor takes parameters having the same names asthefieldsto beinitialized.
This is simpler than having to invent different names for the parameters and is not too
confusing in this stylized context. In general, however, it is considered poor style to have
local variables with the same names as fields.

Example 6.4.1-2. Shadowing of a Type Declaration by Another Type Declaration
import java.util.*;
class Vector {
int val[] ={ 1, 2};
}

class Test {
public static void main(String[] args) {
Vector v = new Vector();
Systemout.println(v.val[0]);
}
The program compiles and prints:

1

using the class Vector declared here in preference to the generic class
java.util.Vector (88.1.2) that might be imported on demand.

6.4.2 Obscuring

A simple name may occur in contexts where it may potentialy be interpreted as
the name of a variable, atype, or a package. In these situations, the rules of 86.5

138

NAMES Shadowing and Obscuring

specify that a variable will be chosen in preference to a type, and that a type will
be chosen in preference to a package. Thus, it is may sometimes be impossible to
refer to avisible type or package declaration viaits simple name. We say that such
adeclaration is obscured.

Obscuring is distinct from shadowing (86.4.1) and hiding (88.3, §8.4.8.2, §8.5,
§9.3, §9.5).

The naming conventions of 86.1 help reduce obscuring, but if it does occur, here are some
notes about what you can do to avoid it.

When package names occur in expressions:

¢ If apackage name is obscured by a field declaration, then i nport declarations (8§7.5)
can usually be used to make available the type names declared in that package.

« If apackage nameis obscured by adeclaration of a parameter or local variable, then the

name of the parameter or local variable can be changed without affecting other code.

Thefirst component of apackage nameisnormally not easily mistaken for atypename, asa
type namenormally beginswith asingle uppercase letter. (The Java programming language
does not actually rely on case distinctions to determine whether a name is a package name
or atype name.)

Obscuring involving class and interface type names is rare. Names of fields, parameters,
and local variables normally do not obscure type names because they conventionally begin
with alowercase |etter whereas type names conventionally begin with an uppercase letter.

Method names cannot obscure or be obscured by other names (86.5.7).
Obscuring involving field names is rare; however:
« If afield name obscures a package name, then ani npor t declaration (§7.5) can usually

be used to make available the type names declared in that package.

« If afield name obscures atype name, then afully qualified namefor the type can be used
unless the type name denotes aloca class (§14.3).

« Field names cannot obscure method names.
« If afield name is shadowed by a declaration of a parameter or local variable, then the
name of the parameter or local variable can be changed without affecting other code.

Obscuring involving constant namesisrare:

¢ Constant names normally have no lowercase letters, so they will not normally obscure
names of packages or types, nor will they normally shadow fields, whose namestypically
contain at least one lowercase |etter.

e Constant names cannot obscure method names, because they are distinguished
syntactically.

6.4

139

6.5

140

Determining the Meaning of a Name NAMES

6.5 Determining the Meaning of a Name

The meaning of a name depends on the context in which it is used. The
determination of the meaning of a name requires three steps:

First, context causes a hame syntacticaly to fal into one of
six categories. PackageName, TypeName, ExpressionName, MethodName,
PackageOr TypeName, or AmbiguousName.

Second, anamethat isinitially classified by its context as an AmbiguousName or
asaPackageOrTypeNameisthen reclassified to be a PackageName, TypeName,
or ExpressionName.

Third, the resulting category then dictates thefinal determination of the meaning
of the name (or a compile-time error if the name has no meaning).

PackageName:
Identifier
PackageName . Identifier

TypeName:
Identifier
PackageOr TypeName . Identifier

ExpressionName:
Identifier
AmbiguousName . | dentifier

MethodName:
Identifier
AmbiguousName . |dentifier

PackageOr TypeName:
Identifier
PackageOr TypeName . Identifier

AmbiguousName:
Identifier
AmbiguousName . | dentifier

The use of context helps to minimize name conflicts between entities of different
kinds. Such conflicts will be rare if the naming conventions described in 86.1 are
followed. Nevertheless, conflicts may arise unintentionally as types developed by different

NAMES Determining the Meaning of a Name

programmers or different organizations evolve. For example, types, methods, and fields
may have the same name. It is always possible to distinguish between amethod and afield
with the same name, since the context of a use always tells whether a method is intended.

6.5.1 Syntactic Classification of a Name According to Context

A nameis syntactically classified as a PackageName in these contexts:
 In apackage declaration (8§7.4)

» Totheleft of the". " in aqualified PackageName

A nameis syntactically classified as a TypeName in these contexts:

» Inasingle-type-import declaration (§7.5.1)

» Totheleft of the". " in asingle-static-import declaration (87.5.3)

e Totheleft of the". " in a static-import-on-demand declaration (87.5.4)
» Totheleft of the"<" in a parameterized type (84.5)

* Inatype argument list (84.5.1) of a parameterized type

* Inan explicit type argument list in amethod or constructor invocation
* Inanextends clausein atype variable declaration (88.1.2)

* Inanext ends clause of awildcard type argument (84.5.1)
 Inasuper clause of awildcard type argument (84.5.1)

* Inanextends clausein aclass declaration (88.1.4)

* Inani npl ement s clause in aclass declaration (88.1.5)

* Inanextends clausein an interface declaration (89.1.3)

» Afterthe"@ signinan annotation (89.7)

» Asa Type (or the part of a Type that remains after all brackets are deleted) in
any of the following contexts:

* Inafield declaration (88.3, §9.3)
+ Astheresult type of amethod (88.4, §9.4)

+ Asthetype of aforma parameter of a method or constructor (88.4.1, 88.8.1,
89.4)

+ As the type of an exception that can be thrown by a method or constructor
(88.4.6, 88.8.5, §9.4)

6.5

141

6.5

142

Determining the Meaning of a Name NAMES

.

.

Asthetype of alocal variable (§14.4)

As the type of an exception parameter in acatch clause of atry statement
(814.20)

Asthetypein aclassliteral (815.8.2)
Asthe qualifying type of aqualifiedt hi s expression (§15.8.4).

As the class type which is to be instantiated in an unqualified class instance
creation expression (815.9)

As the direct superclass or direct superinterface of an anonymous class
(815.9.5) which is to be instantiated in an unqualified class instance creation
expression (815.9)

As the element type of an array to be created in an array creation expression
(815.10)

Asthe qualifying type of field access using the keyword super (§15.11.2)

As the qualifying type of a method invocation using the keyword super
(815.12)

Asthe type mentioned in the cast operator of a cast expression (815.16)
Asthe type that follows thei nst anceof relational operator (815.20.2)

A nameis syntactically classified as an ExpressionName in these contexts:

» As the qualifying expression in a qualified superclass constructor invocation

(88.8.7.1)
» As the qualifying expression in a qualified class instance creation expression
(815.9)

» Asthe array reference expression in an array access expression (815.13)
» AsaPostfixExpression (815.14)
» Astheleft-hand operand of an assignment operator (815.26)

A nameis syntactically classified as a MethodName in these contexts:

» Beforethe"(" in amethod invocation expression (815.12)

» Totheleft of the"=" sign in an annotation's element value pair (89.7)

A nameis syntactically classified as a PackageOr TypeName in these contexts:

» Totheleft of the". " inaqualified TypeName

NAMES Determining the Meaning of a Name 6.5

* In atype-import-on-demand declaration (87.5.2)

A nameis syntactically classified as an AmbiguousName in these contexts:
» Totheleft of the". " in aqualified ExpressionName

To the left of the™. " in aqualified MethodName

Totheleft of the". " in aqualified AmbiguousName

In the default value clause of an annotation type element declaration (89.6)

To theright of an "=" in an an element value pair (89.7)

The effect of syntactic classification is to restrict certain kinds of entities to certain parts
of expressions:

¢ Thenameof afield, parameter, or local variable may be used asan expression (§15.14.1).
* The name of amethod may appear in an expression only as part of a method invocation
expression (815.12).

¢ The name of a class or interface type may appear in an expression only as part of a
class literal (815.8.2), aqualified t hi s expression (815.8.4), a class instance creation
expression (815.9), an array creation expression (815.10), acast expression (815.16), an
i nst anceof expression (815.20.2), an enum constant (88.9), or as part of a qudified
name for afield or method.

« The name of a package may appear in an expression only as part of a qualified name
for aclass or interface type.

6.5.2 Reclassification of Contextually Ambiguous Names

An AmbiguousName is then reclassified as follows.
If the AmbiguousName is a simple name, consisting of asingle Identifier:

* If the Identifier appears within the scope (86.3) of aloca variable declaration
(814.4) or parameter declaration (88.4.1, §8.8.1, §14.20) or field declaration
(88.3) with that name, then the AmbiguousName is reclassified as an
ExpressionName.

e Otherwise, if afield of that name is declared in the compilation unit (87.3)
containing the Identifier by a single-static-import declaration (87.5.3), or by
a static-import-on-demand declaration (87.5.4) then the AmbiguousName is
reclassified as an ExpressionName.

» Otherwise, if the Identifier appears within the scope (86.3) of atop level class
(88) or interface type declaration (89), a local class declaration (§14.3) or

143

6.5

144

Determining the Meaning of a Name NAMES

member type declaration (88.5, 89.5) with that name, then the AmbiguousName
isreclassified as a TypeName.

» Otherwise, if a type of that name is declared in the compilation unit (87.3)
containing the Identifier, either by a single-type-import declaration (§7.5.1), or
by a type-import-on-demand declaration (87.5.2), or by a single-static-import
declaration (87.5.3), or by a static-import-on-demand declaration (87.5.4), then
the AmbiguousName is reclassified as a TypeName.

» Otherwise, the AmbiguousName is reclassified as a PackageName. A later step
determines whether or not a package of that name actually exists.

If the AmbiguousName is a qualified name, consisting of a name, a". ", and an
Identifier, then the name to the |eft of the". " isfirst reclassified, for it isitself an
AmbiguousName. Thereisthen achoice:

« |f the nameto theleft of the". " is reclassified as a PackageName, then:

* If there is a package whose name is the name to the left of the "." and
that package contains a declaration of a type whose name is the same as the
Identifier, then this AmbiguousName is reclassified as a TypeName.

+ Otherwise, this AmbiguousName is reclassified as a PackageName. A later
step determines whether or not a package of that name actually exists.

* If the nameto the left of the". " isreclassified as a TypeName, then:

+ If the Identifier is the name of a method or field of the type denoted by
TypeName, this AmbiguousName is reclassified as an ExpressionName.

+ Otherwise, if the Identifier is the name of a member type of the type denoted
by TypeName, this AmbiguousName is reclassified as a TypeName.

*+ Otherwise, a compile-time error occurs.

* If the nameto theleft of the". " isreclassified as an ExpressonName, then let T
be the type of the expression denoted by ExpressionName.

+ If the Identifier is the name of a method or field of the type denoted by T, this
AmbiguousName is reclassified as an ExpressionName.

+ Otherwise, if the Identifier is the name of a member type (88.5, §9.5) of the
type denoted by T, then this AmbiguousName is reclassified as a TypeName.

+ Otherwise, a compile-time error occurs.
Example 6.5.2-1. Reclassification of Contextually Ambiguous Names

Consider the following contrived "library code":

NAMES

package org. rpgpoet;
import java.util.Random
public interface Music { Randon{] w zards = new Randoni4]; }

and then consider this example code in another package:

package bazol a;
class Gabriel {
static int n = org.rpgpoet.Msic.w zards. | ength;

}

First of al, the name org. r pgpoet. Musi c. wi zards. | engt h is classified as an
ExpressionName because it functions as a PostfixExpression. Therefore, each of the names:

org. rpgpoet. Musi c. W zards
org. rpgpoet. Musi c

org. r pgpoet
org

isinitially classified as an AmbiguousName. These are then reclassified:

The simple name or g is reclassified as a PackageName (since there is no variable or
type named org in scope).

Next, assuming that thereisno classor interfacenamedr pgpoet inany compilation unit
of packageor g (and weknow that thereisno such classor interface because packageor g
has a subpackage named r pgpoet), the qualified name or g. r pgpoet isreclassified as
a PackageName.

Next, because package or g. r pgpoet has an accessible (86.6) interface type named
Musi ¢, the qualified nameor g. r pgpoet . Musi ¢ isreclassified as a TypeName.

Finally, because the name or g. r pgpoet . Musi c is a TypeName, the qualified name
org. rpgpoet. Musi c. wi zar ds isreclassified as an ExpressionName.

6.5.3 Meaning of Package Names

The meaning of a name classified as a PackageName is determined as follows.

6.5.3.1 Smple Package Names

If a package name consists of a single ldentifier, then this identifier denotes a top

level package named by that identifier.

If no top level package of that name is in scope (86.3), then a compile-time error

occurs.

Determining the Meaning of a Name

6.5

145

6.5

146

Determining the Meaning of a Name NAMES

6.5.3.2 Qualified Package Names

If a package name is of the form Q. 1 d, then Q must also be a package name. The
package name Q 1 d names a package that is the member named 1 d within the
package named by Q

If Qdoes not name an observable package (87.4.3), or I d is hot the simple hame of
an observable subpackage of that package, then a compile-time error occurs.

6.5.4 Meaning of PackageOrTypeNames

6.5.4.1 Smple PackageOr TypeNames

If the PackageOrTypeName, Q occurs in the scope of atype named Q, then the
PackageOr TypeName is reclassified as a TypeName.

Otherwise, the PackageOrTypeName is reclassified as a PackageName. The
meaning of the PackageOr TypeName is the meaning of the reclassified name.
6.5.4.2 Qualified PackageOr TypeNames

Given a qualified PackageOrTypeName of the form Q. 1 d, if the type or package
denoted by Qhasamember typenamed | d, then the qualified PackageOr TypeName
nameisreclassified as a TypeName.

Otherwisg, it is reclassified as a PackageName. The meaning of the qualified
PackageOr TypeName is the meaning of the reclassified name.

6.5.5 Meaning of Type Names

The meaning of aname classified as a TypeName is determined as follows.

6.5.5.1 Smple Type Names

If atype name consists of a single Identifier, then the identifier must occur in the
scope of exactly onevisible declaration of atypewith this name, or acompile-time
error occurs. The meaning of the type name is that type.

6.5.5.2 Qualified Type Names

If atype nameisof theform Q 1 d, then Qmust be either atype name or a package
name.

NAMES Determining the Meaning of a Name

If 1 d names exactly one accessible type (86.6) that is a member of the type or
package denoted by Q, then the qualified type name denotes that type.

If I d does not name amember type (88.5, 89.5) within @, or thereisnot exactly one
accessible (86.6) member type named | d within Q, or I d names a static member
type (88.5.1) within Qand Qis parameterized, then a compile-time error occurs.

Example 6.5.5.2-1. Qualified Type Names

class Test {
public static void main(String[] args) {
java.util.Date date =
new java. util.Date(SystemcurrentTimeMI1lis());
System out. println(date.tolLocal eString())

}

This program produced the following output the first time it was run:
Sun Jan 21 22:56:29 1996

In this example, the name j ava. uti | . Date must denote a type, so we first use the
procedure recursively to determineif j ava. uti | isan accessibletype or a package, which
itis, and then look to see if the type Dat e isaccessiblein this package.

6.5.6 Meaning of Expression Names

The meaning of a name classified as an ExpressionName is determined as follows.

6.5.6.1 Smple Expression Names

If an expression name consists of asingle Identifier, then there must be exactly one
declaration denoting either a local variable, parameter, or field visible (86.4.1) at
the point at which the Identifier occurs. Otherwise, a compile-time error occurs.

If the declaration denotes an instance variable (88.3), the expression name
must appear within the declaration of an instance method (88.4), constructor
(88.8), instance initializer (88.6), or instance variable initializer (§88.3.2.2). If the
expression name appears within a static method (88.4.3.2), static initializer (88.7),
or initializer for a static variable (88.3.2.1, 812.4.2), then a compile-time error
OCCUrS.

If the declaration declares afi nal variable which is definitely assigned before the
simple expression, the meaning of the nameisthe value of that variable. Otherwise,
the meaning of the expression name is the variable declared by the declaration.

6.5

147

6.5

148

Determining the Meaning of a Name NAMES

If the expression name appears in a context where it is subject to assignment
conversion or method invocation conversion or casting conversion, then the type
of the expression nameisthe declared type of thefield, local variable, or parameter
after capture conversion (85.1.10).

Otherwise, the type of the expression name is the declared type of the field, local
variable or parameter.

That is, if the expression name appears " on theright hand side”, itstypeis subject to capture
conversion. If the expression nameisavariable that appears"on theleft hand side", itstype
is not subject to capture conversion.

Example 6.5.6.1-1. Simple Expression Names

class Test {
static int v;
static final int f = 3;
public static void main(String[] args) {
int i;
i 1;

v = 2;
f =33; [// conpile-tinme error
Systemout.println(i +" " +v +" " + f);

}

In this program, the names used as the left-hand-sides in the assignments to i , v, and f
denote the local variablei , thefield v, and the value of f (not the variable f , becausef is
afinal variable). The example therefore produces an error at compile time because the
last assignment does not have a variable as its left-hand side. If the erroneous assignment
is removed, the modified code can be compiled and it will produce the output:

123

6.5.6.2 Qualified Expression Names

If an expression name is of the form Q I d, then Q has already been classified as a
package name, a type name, or an expression name.

If Qis apackage name, then a compile-time error occurs.
If Qisatype name that names a class type (88), then:

« If there is not exactly one accessible (86.6) member of the class type that is a
field named 1 d, then a compile-time error occurs.

» Otherwise, if the single accessible member field is not aclassvariable (that is, it
isnot declared st at i ¢), then a compile-time error occurs.

NAMES Determining the Meaning of a Name

Otherwise, if the class variable is declared f i nal , then Q 1 d denotes the value
of the class variable.

The type of the expression Q | d is the declared type of the class variable after
capture conversion (85.1.10).

If Q 1d appears in a context that requires a variable and not a value, then a
compile-time error occurs.

Otherwise, Q | d denotes the class variable.

The type of the expression Q 1 d is the declared type of the class variable after
capture conversion (85.1.10).

Note that this clause covers the use of enumconstants (88.9), since these always have
acorresponding f i nal classvariable.

If Qisatype name that names an interface type (89), then:

If there is not exactly one accessible (86.6) member of the interface type that is
afield named 1 d, then a compile-time error occurs.

Otherwise, Q 1 d denotes the value of the field.

The type of the expression Q 1 d is the declared type of the field after capture
conversion (85.1.10).

If Q 1d appears in a context that requires a variable and not a value, then a
compile-time error occurs.

If Qisan expression name, let T be the type of the expression Q

« If Tisnot areference type, a compile-time error occurs.

« If there is not exactly one accessible (86.6) member of the type T that is afield

named | d, then a compile-time error occurs.

» Otherwise, if thisfield is any of the following:

+ Afield of an interface type

* A final field of a class type (which may be either a class variable or an
instance variable)

* Thefinal field I engt h of an array type

thenQ | d denotesthevalueof thefield, unlessit appearsin acontext that requires
avariable and the field is a definitely unassigned blank fi nal field, in which
caseit yiddsavariable.

6.5

149

6.5

150

Determining the Meaning of a Name NAMES

The type of the expression Q 1 d is the declared type of the field after capture
conversion (85.1.10).

If Q | d appearsin acontext that requires avariable and not avalue, and thefield
denoted by Q I d is definitely assigned, then a compile-time error occurs.

Otherwise, Q | d denotes avariable, thefield | d of class T, which may be either
aclass variable or an instance variable.

The type of the expression Q 1d is the type of the field member after capture
conversion (85.1.10).

Example 6.5.6.2-1. Qualified Expression Names
class Point {
int x, vy;

static int nPoints;

}

class Test {
public static void main(String[] args) {
int i =0;
i X+t /1 conpile-tine error
Point p = new Point();
p.nPoints(); // conpile-tine error

}

This program encounters two compile-time errors, because the i nt variable i has no
members, and because nPoi nt s is not amethod of class Poi nt .

Example 6.5.6.2-2. Qualifying an Expression with a Type Name

Note that expression names may be qualified by type names, but not by typesin general. A
consequenceisthat it isnot possibleto access aclass variable through aparameterized type.

For example, given the code:

cl ass Foo<T> {
public static int classVar = 42;

}
the following assignment isillegal:
Foo<String>.classVar = 91; // illegal
Instead, one writes

Foo. cl assVar = 91;

NAMES Determining the Meaning of a Name

This does not restrict the Java programming language in any meaningful way. Type
parameters may not be used in the types of static variables, and so the type arguments
of a parameterized type can never influence the type of a static variable. Therefore, no
expressive power is lost. Technically, the type name Foo above isaraw type, but this use
of raw typesis harmless, and does not give rise to warnings

6.5.7 Meaning of Method Names

The meaning of a name classified as a MethodName is determined as follows.

6.5.7.1 Smple Method Names
A simple method name may appear as the element name in an element-value pair.

In that case, the Identifier in an ElementValuePair must be the simple name of one
of the elements of the annotation type identified by TypeName in the containing
annotation, or a compile-time error occurs.

In other words, the identifier in an element-value pair must also be a method name in the
interface identified by TypeName.

Otherwise, a simple method name necessarily appears in the context of a method
invocation expression. Inthat case, if amethod name consists of asingle Identifier,
then Identifier isthe method name to be used for method invocation.

The Identifier must name at least one method that is visible at the point where
the Identifier appears (86.4.1), or a method imported by a single-static-import
declaration (87.5.3) or static-import-on-demand declaration (87.5.4) within the
compilation unit within which the Identifier appears, or else a compile-time error
occurs by the rules of §15.12.

Example 6.5.7.1-1. Simple Method Names and Visibility

The following program demonstrates the role of method visibility when determining which
method to invoke.

cl ass Super {
void f2(String s) {}
void f3(String s) {}
void f3(int i1, int i2) {}
}

class Test {
void f1(int i) {}
void f2(int i) {}
void f3(int i) {}

void m) {

6.5

151

6.5

152

Determining the Meaning of a Name NAMES

new Super () {

f1(0); [// OK, resolves to Test.f1(int)
f2(0); [// conpile-tine error
f3(0); [// conpile-tine error

}

For the invocation f 1(0), only one method named f1 is visible. It is the method
Test. f 1(i nt), whose declaration is in scope throughout the body of Test including the
anonymousclassdeclaration. §15.12.1 choosesto searchinclassTest sincetheanonymous
class declaration has no member named f 1. Eventually, Test . f 1(i nt) isresolved.

For the invocation f 2(0) , two methods named f 2 are visible. First, the declaration of
the method Super . f 2(St ri ng) isin scope throughout the anonymous class declaration.
Second, the declaration of the method Test . f 2(i nt) isin scope throughout the body of
Test including theanonymous class declaration. §15.12.1 choosesto searchin class Super
because it has a member named f 2. However, Super. f 2(St ri ng) is not applicable to
f 2(0) , so acompile-time error occurs. Note that class Test isnot searched.

For the invocation f 3(0), three methods named f 3 are visible. First and second,
the declarations of the methods Super. f3(String) and Super.f3(int,int) arein
scope throughout the anonymous class declaration. Third, the declaration of the method
Test . f3(int) isin scope throughout the body of Test including the anonymous class
declaration. 815.12.1 chooses to search in class Super because it has amember named f 3.
However, Super . f 3(String) and Super. f3(int,int) arenotapplicabletof 3(0), so
acompile-time error occurs. Note that class Test is not searched.

Choosing to search anested class's superclass hierarchy before than the lexically enclosing
scopeiscalled the “comb rule” (815.12.1).

6.5.7.2 Qualified Method Names

A qualified method name can only appear in the context of a method invocation
expression.

If amethod nameisof theformQ I d, then Qhasalready been classified asapackage
name, a type name, or an expression name:

* If Qisapackage name, then a compile-time error occurs.
» Otherwise, Qisatype name or an expression hame.
I d isthe method name to be used for method invocation.

If Qisatype name, then| d must name at least one st at i ¢ method of the type @
or acompile-time error occurs by the rules of §15.12.

NAMES Access Control

If Qis an expression name, then let T be the type of the expression Q. I d must
name at least one method of the type T, or a compile-time error occurs by the
rules of 815.12.

Like expression names, method names may be qualified by type names, but not by typesin
general. Theimplicationsare similar to those for expression names as discussed in 86.5.6.2.

6.6 Access Control

The Java programming language provides mechanisms for access control, to
prevent the users of apackage or classfrom depending on unnecessary detailsof the
implementation of that package or class. If access is permitted, then the accessed
entity is said to be accessible.

Note that accessibility is a static property that can be determined at compile time;
it depends only on types and declaration modifiers.

Qualified names are a means of access to members of packages and reference
types. When the name of such a member isclassified from its context (86.5.1) asa
qualified type name (denoting a member of a package or reference type, 86.5.5.2)
or aqualified expression name (denoting a member of a reference type, §86.5.6.2),
access control is applied.

For example, a single-type-import statement (87.5.1) must use a qualified type name, so
the type name being imported must be accessible from the compilation unit containing the
import statement. As another example, a class declaration may use a qualified type name
for asuperclass (88.1.5), and again the qualified type name must be accessible.

Some obvious expressions are "missing” from context classification in 86.5.1: field access
on a Primary (815.11.1), method invocation on a Primary (815.12), and the instantiated
class in a qualified class instance creation (815.9). Each of these expressions uses
identifiers, rather than names, for the reason given in 86.2. Consequently, access control to
members (whether fields, methods, types) is applied explicitly by field access expressions,
method invocation expressions, and qualified classinstance creation expressions. (Notethat
accessto afield may also be denoted by aqualified name occuring as a postfix expression.)

Note that qualified names, field access expressions, method invocation expressions, and
qualified class instance creation expressions are syntactically similar in that a". " token
appears, preceded by some indication of a package, type, or expression having a type,
and followed by an Identifier that names a member of the package or type. (A new token
intercedesbetweenthe. andtheldentifier inaqualified classinstance creation expression.)

Many statements and expressions allow the use of types rather than type names. For
example, a class declaration may use a parameterized type (84.5) to denote a superclass.
Because a parameterized type is not a qualified type name, it is necessary for the class

6.6

153

6.6

154

Access Control NAMES

declaration to explicitly perform access control for the denoted superclass. Consequently,
most of the statements and expressions that provide contexts in 86.5.1 to classify a
TypeName must also perform their own access control checks.

Beyond access to members of a package or reference type, there is the matter of access
to constructors of a reference type. Access control must be checked when a constructor
isinvoked explicitly or implicitly. Consequently, access control is checked by an explicit
constructor invocation statement (88.8.7.1) and by a class instance creation expression
(815.9.3). These"manua" checks are necessary because 86.5.1 ignores explicit constructor
invocation statements (because they reference constructor namesindirectly) and isunaware
of the distinction between the class type denoted by an unqualified class instance creation
expression and a constructor of that class type. Also, constructors do not have qualified
names, so we cannot rely on access control being checked during classification of qualified
type names.

Accessibility affects inheritance of class members (88.2), including hiding and method
overriding (§8.4.8.1).

6.6.1 Determining Accessibility

A package is always accessible.

If a class or interface type is declared public, then it may be accessed by
any code, provided that the compilation unit (87.3) in which it is declared is
observable.

If atop level class or interface type is not declared publ i ¢, then it may be
accessed only from within the package in which it is declared.

An array typeisaccessibleif and only if its element typeis accessible.

A member (class, interface, field, or method) of a reference (class, interface,
or array) type or a constructor of a class type is accessible only if the type is
accessi ble and the member or constructor is declared to permit access:

+ If the member or constructor is declared publ i ¢, then accessis permitted.
All members of interfaces areimplicitly publ i c.

+ Otherwiseg, if the member or constructor is declared pr ot ect ed, then accessis
permitted only when one of the following is true:

+ Access to the member or constructor occurs from within the package
containing the class in which the protected member or constructor is
declared.

+ Accessis correct as described in §6.6.2.

NAMES Access Control 6.6

+ Otherwise, if the member or constructor is declared pri vat e, then accessis
permitted if and only if it occurs within the body of the top level class (87.6)
that encloses the declaration of the member or constructor.

+ Otherwise, we say there is default access, which is permitted only when the
access occurs from within the package in which the type is declared.

Example 6.6-1. Access Control

Consider the two compilation units:

package poi nts;
class PointVec { Point[] vec; }

and:

package poi nts;
public class Point {
protected int x, vy;
public void nove(int dx, int dy) { x += dx; y += dy; }
public int getX() { return x; }
public int getY() { returny; }

}
which declare two class types in the package poi nt s:
e The class type Poi nt Vec is not publ i ¢ and not part of the publ i ¢ interface of the

package poi nt s, but rather can be used only by other classes in the package.

¢ The classtype Poi nt isdeclared publ i ¢ and is available to other packages. It is part
of the publ i c interface of the package poi nt s.

« Themethodsnove, get X, and get Y of the class Poi nt are declared publ i ¢ and so are
available to any code that uses an object of type Poi nt .

e The fields x and y are declared prot ect ed and are accessible outside the package
poi nt s only in subclasses of class Poi nt , and only when they are fields of objects that
are being implemented by the code that is accessing them.

See 86.6.2 for an example of how the pr ot ect ed access modifier limits access.
Example 6.6-2. Accessto publ i ¢ Fields, Methods, and Constructors

A publ i c class member or constructor is accessible throughout the package where it is
declared and from any other package, provided the package in which it is declared is
observable (8§7.4.3). For example, in the compilation unit:

package points;

public class Point {
int x, vy;

155

6.6 Access Control NAMES

public void nove(int dx, int dy) {
x += dx; y += dy;
noves++,;

}

public static int noves = 0;

}

the publ i ¢ class Poi nt has as publ i ¢ members the nove method and the noves field.
These publ i c members are accessible to any other package that has access to package
poi nts. Thefieldsx andy are not publ i ¢ and therefore are accessible only from within
the package poi nt s.

Example 6.6-3. Accessto publ i ¢ and Non-publ i ¢ Classes

If aclasslacksthepubl i ¢ modifier, accessto the classdeclaration islimited to the package
inwhich it is declared (86.6). In the example:

package points;
public class Point {
public int x, vy;
public void nove(int dx, int dy) { x += dx; y +=dy; }
}
class PointList {
Poi nt next, prev;

}

two classes are declared in the compilation unit. The class Poi nt is available outside
the package poi nt s, while the class Poi nt Li st is available for access only within the
package. Thus acompilation unit in another package can accesspoi nt s. Poi nt , either by
using its fully qualified name:

package pointsUser;
class Testl {
public static void main(String[] args) {
poi nts. Point p = new points. Point();
Systemout.printin(p.x +" " + p.y);

}

or by using asingle-type-import declaration (§7.5.1) that mentionsthefully qualified name,
so that the simple name may be used thereafter:

package pointsUser;
i mport points. Point;
class Test2 {
public static void main(String[] args) {
Point p = new Point();
Systemout.printin(p.x +" " + p.y);

156

NAMES Access Control

However, this compilation unit cannot use or import poi nt s. Poi nt Li st, which is not
declared publ i ¢ and is therefore inaccessible outside package poi nt s.

Example 6.6-4. Accessto Default-Access Fields, M ethods, and Constructors

If none of the access modifiers publ i c, protect ed, or pri vat e are specified, a class
member or constructor is accessible throughout the package that contains the declaration
of the class in which the class member is declared, but the class member or constructor is
not accessible in any other package.

If apublic class has a method or constructor with default access, then this method or
constructor is not accessible to or inherited by a subclass declared outside this package.

For example, if we have:

package points;
public class Point {
public int x, vy;
void move(int dx, int dy) { x +=dx; y += dy; }
public void noveAl so(int dx, int dy) { nove(dx, dy); }
}

then a subclass in another package may declare an unrelated move method, with the same
signature (88.4.2) and return type. Because the origina nove method isnot accessible from
package mor epoi nt s, super may not be used:

package norepoints;
public class PlusPoint extends points. Point {
public void nove(int dx, int dy) {
super. move(dx, dy); [// conpile-tine error
noveAl so(dx, dy);

}

Because nove of Poi nt isnot overridden by nove in Pl usPoi nt , the method noveAl so
in Poi nt never calsthe method nove in Pl usPoi nt . Thusif you deletethe super . nove
call from Pl usPoi nt and execute the test program:

i mport points. Point;
i mport norepoints. Pl usPoi nt;
class Test {
public static void main(String[] args) {
Pl usPoint pp = new PlusPoint();
pp. move(1, 1);

}

it terminates normally. If nove of Poi nt were overridden by nove in Pl usPoi nt , then
this program would recurse infinitely, until a St ackOver f | owEr r or occurred.

6.6

157

6.6 Access Control NAMES

Example 6.6-5. Accessto pri vat e Fields, Methods, and Constructors

A pri vat e class member or constructor is accessible only within the body of the top level
class (87.6) that encloses the declaration of the member or constructor. It is not inherited
by subclasses. In the example:

class Point {
Point () { setMasterID(); }
int x, vy;
private int ID;
private static int masterlD = 0;
private void setMasterID() { ID = master| D++; }

}

the private members| D, mast er | D, and set Mast er | D may be used only within the body
of class Poi nt . They may not be accessed by qualified names, field access expressions, or
method invocation expressions outside the body of the declaration of Poi nt .

See §8.8.8 for an example that usesapri vat e constructor.

6.6.2 Detailson protected Access

A prot ect ed member or constructor of an object may be accessed from outside
the package in which it is declared only by code that is responsible for the
implementation of that object.

6.6.2.1 Accessto apr ot ect ed Member

Let C be the class in which apr ot ect ed member is declared. Access is permitted
only within the body of a subclass s of C.

In addition, if 1d denotes an instance field or instance method, then:

* If the access is by a qualified name Q | d, where Qis an ExpressionName, then
the accessispermitted if and only if the type of the expression Qis s or asubclass
of s.

» |If the access is by a field access expression E. 1 d, where E is a Primary
expression, or by a method invocation expression E. 1d(. . .),whereEisa
Primary expression, then the access is permitted if and only if the type of E is
S or asubclass of s.

More information about accessto pr ot ect ed members can be found in Checking Access
to Protected Members in the Java Virtual Machine by Alessandro Coglio, in the Journal
of Object Technology, October 2005.

158

NAMES Access Control 6.6

6.6.2.2 Qualified Accessto apr ot ect ed Constructor

Let ¢ be the class in which a pr ot ect ed constructor is declared and let s be the
innermost class in whose declaration the use of the pr ot ect ed constructor occurs.
Then:

* If the access is by a superclass constructor invocation super (. . .) or by a
qualified superclass constructor invocation of theform E. super (. . .), where
E isaPrimary expression, then the access is permitted.

« |f the accessis by an anonymous class instance creation expression of the form

new C(. . .){...} orbyaqualified classinstance creation expression of the
formE new (. . .){...},whereEisaPrimary expression, then the access
is permitted.

» Otherwise, if the accessis by a simple class instance creation expression of the
formnew C(. . .) or by aqualified class instance creation expression of the
formE. new C(. . .),whereEisaPrimary expression, then the access is not
permitted.

A pr ot ect ed constructor can be accessed by a classinstance creation expression
(that does not declare an anonymous class) only from within the package in
which it is defined.

Example 6.6.2-1. Accessto prot ect ed Fields, Methods, and Constructors

Consider this example, where the poi nt s package declares:

package points;
public class Point {
protected int x, y;
voi d war p(threePoint.Point3d a) {
if (a.z >0) // conpile-time error: cannot access a.z
a.delta(this);

}
and thet hr eePoi nt package declares:

package threePoint;
i mport points. Point;
public class Point3d extends Point {
protected int z;
public void delta(Point p) {
p.x +=this.x; // conpile-time error: cannot access p.X
p.y += this.y; [// conpile-tine error: cannot access p.y

}
public void delta3d(Point3d q) {
gq.X += this.x

159

6.7

160

Fully Qualified Names and Canonical Names NAMES

g.y += this.y;
g.z += this.z;

}

A compile-time error occurs in the method del t a here: it cannot access the pr ot ect ed
members x and y of its parameter p, because while Poi nt 3d (the class in which the
references to fields x and y occur) is a subclass of Poi nt (the classin whichx andy are
declared), it isnot involved in the implementation of aPoi nt (thetype of the parameter p).
The method del t a3d can access the pr ot ect ed members of its parameter q, because the
classPoi nt 3d isasubclass of Poi nt and isinvolved in theimplementation of aPoi nt 3d.

The method del t a could try to cast (85.5, §15.16) its parameter to be aPoi nt 3d, but this
cast would fail, causing an exception, if the class of p at run time were not Poi nt 3d.

A compile-time error also occurs in the method war p: it cannot access the pr ot ect ed
member z of itsparameter a, becausewhilethe classPoi nt (theclassinwhichthereference
tofield z occurs) isinvolved in theimplementation of aPoi nt 3d (the type of the parameter
a), itisnot asubclass of Poi nt 3d (the classin which z is declared).

6.7 Fully Qualified Names and Canonical Names

Every primitive type, named package, top level class, and top level interface has

afully qualified name:

» The fully qualified name of a primitive type is the keyword for that primitive

type, namely byt e, short, char,int,|ong,fl oat, doubl e, Or bool ean.

» Thefully qualified name of anamed packagethat is not a subpackage of anamed

packageisits simple name.

» The fully qualified name of a named package that is a subpackage of another

named package consists of the fully qualified name of the containing package,
followed by ". ", followed by the smple (member) name of the subpackage.

» Thefully qualified name of atop level classor top level interfacethat is declared

in an unnamed package is the simple name of the class or interface.

» Thefully qualified name of atop level classor top level interfacethat is declared

in anamed package consists of the fully qualified name of the package, followed
by ". ", followed by the simple name of the class or interface.

Each member class, member interface, and array type may have a fully qualified
name:

* A member class or member interface Mof another class or interface c hasafully
qualified nameif and only if c hasafully qualified name.

NAMES Fully Qualified Names and Canonical Names 6.7

In that case, the fully qualified name of Mconsists of the fully qualified name of
C, followed by ". ", followed by the smple name of M

* An array type has a fully qualified name if and only if its element type has a
fully qualified name.

In that case, the fully qualified name of an array type consists of the fully
gualified name of the component type of the array type followed by "[]1".

A local class does not have afully qualified name.

Example 6.7-1. Fully Qualified Names

e Thefully qualified name of thetypel ong is"l ong".

¢ The fully qualified name of the package j ava. | ang is "j ava. | ang" because it is
subpackage| ang of packagej ava.

e The fully qualified name of the class Obj ect, which is defined in the package
j ava. |l ang, is"j ava. | ang. Qbj ect".

¢ Thefully qualified name of theinterface Enumer at i on, which isdefined in the package
java.util,is"java. util.Enuneration".

¢ Thefully qualified name of the type "array of doubl e" is"doubl e[]".
e The fully qualified name of the type "array of array of array of array of String" is
“java.lang. String[]1[1[1[]".

In the code:

package points;
cl ass Poi nt {int x, vy; }
class PointVec { Point[] vec; }

the fully qualified name of the type Poi nt is"poi nt s. Poi nt "; the fully qualified name
of the type Poi nt Vec is"poi nt s. Poi nt Vec"; and the fully qualified name of the type of
thefield vec of class Poi nt Vec is"poi nt's. Poi nt[]".

Every primitive type, named package, top level class, and top level interface has
acanonical name:

* For every primitive type, named package, top level class, and top level interface,
the canonical name is the same as the fully qualified name.

Each member class, member interface, and array type may have a canonical name:

* A member class or member interface Mmdeclared in another class ¢ has acanonical
nameif and only if C has a canonical name.

161

6.7 Fully Qualified Names and Canonical Names NAMES

Inthat case, the canonical name of Mconsists of the canonical nameof ¢, followed
by ". ", followed by the simple name of M

» An array type has a canonical name if and only if its component type has a
canonical name.

In that case, the canonical name of the array type consists of the canonical name
of the component type of the array type followed by "[]1".

A local class does not have a canonical name.
Example 6.7-2. Fully Qualified Namesv. Canonical Name

The difference between a fully qualified name and a canonical name can be seen in code
such as:

package p;
class OL { class | {} }
class 2 extends OL {}

Both p. OL. 1 and p. 2. | are fully qualified names that denote the member class I, but
only p. OL. | isitscanonical name.

162

CHAPTER ;

Packages

PROGRAM S are organized as sets of packages. Each package has its own set of
names for types, which helps to prevent name conflicts.

A top level typeis accessible (86.6) outside the package that declaresit only if the
typeisdeclared publ i c.

Thenaming structurefor packagesishierarchical (87.1). The membersof apackage
are class and interface types (87.6), which are declared in compilation units of the
package, and subpackages, which may contain compilation units and subpackages
of their own.

A package can be stored in afile system or in a database (87.2). Packages that are
stored in a file system may have certain constraints on the organization of their
compilation units to allow a simple implementation to find classes easily.

A package consists of a number of compilation units (87.3). A compilation unit
automatically has accessto all types declared in its package and al so automatically
imports all of the publ i ¢ types declared in the predefined packagej ava. | ang.

For small programs and casual development, a package can be unnamed (87.4.2) or
have asimple name, but if codeisto be widdly distributed, unigue package names
should be chosen using qualified names. This can prevent the conflicts that would
otherwise occur if two development groups happened to pick the same package
name and these packages were later to be used in a single program.

7.1 Package Members

The members of a package are its subpackages and all the top level class types
(87.6, 88) and top level interface types (89) declared in al the compilation units
(87.3) of the package.

163

7.1

164

Package Members PACKAGES

For example, in the Java SE platform API:

« The package j ava has subpackages awt , appl et , i o, | ang, net, and uti | , but no
compilation units.

e The package j ava. awt has a subpackage named i nage, as well as a number of
compilation units containing declarations of class and interface types.

If the fully qualified name (86.7) of a package is P, and Qs a subpackage of P,
then p. Qis the fully qualified name of the subpackage, and furthermore denotes
a package.

A package may not contain two members of the same name, or a compile-time
error results.

Here are some examples:

¢ Because the package j ava. awt has a subpackage i mage, it cannot (and does not)
contain a declaration of aclass or interface type named i nage.

« If thereis a package named mouse and a member type But t on in that package (which
then might bereferred to asnouse. But t on), then there cannot be any package with the
fully qualified name mouse. But t on or nouse. Butt on. O i ck.

e If com ni ght hacks. j ava. j ag isthe fully qualified name of atype, then there cannot
be any package whose fully qualified name is either com ni ght hacks. j ava. j ag or
com ni ght hacks. j ava. j ag. scrabbl e.

It is however possible for members of different packages to have the same simple name.
For example, it is possible to declare a package:

package vector;
public class Vector { bject[] vec; }

that hasasamember apubl i ¢ classnamed Vect or , even though the packagej ava. utii |
also declares a class named Vect or . These two class types are different, reflected by the
fact that they have different fully qualified names (86.7). The fully qualified name of this
example Vect or isvect or. Vect or, whereasj ava. uti | . Vect or isthefully qualified
name of the Vect or classincluded in the Java SE platform. Because the package vect or
contains a class named Vect or , it cannot also have a subpackage named Vect or .

The hierarchical naming structure for packages is intended to be convenient for
organizing related packages in a conventional manner, but has no significance in
itself other than the prohibition against a package having a subpackage with the
same simple name as atop level type (87.6) declared in that package.

For example, thereis no special access relationship between apackage named ol i ver and
another package named ol i ver . t wi st , or between packages named evel yn. wood and
evel yn. waugh. That is, the codein apackagenamed ol i ver . t wi st has no better access
to the types declared within package ol i ver than codein any other package.

PACKAGES Host Support for Packages

7.2 Host Support for Packages

Each host system determines how packages and compilation units are created and
stored.

Each host system also determines which compilation units are observable (§87.3) in
aparticular compilation. The observability of compilation unitsin turn determines
which packages are observable, and which packages are in scope.

In simpleimplementations of the Java SE platform, packages and compilation units
may be stored in alocal file system. Other implementations may store them using
adistributed file system or some form of database.

If a host system stores packages and compilation units in a database, then the
database must not impose the optional restrictions (87.6) on compilation units
permissible in file-based implementations.

For example, a system that uses a database to store packages may not enforce a maximum
of one public class or interface per compilation unit.

Systems that use a database must, however, provide an option to convert a
program to aform that obeys the restrictions, for purposes of export to file-based
implementations.

As an extremely simple example of storing packages in a file system, all the packages
and source and binary code in a project might be stored in a single directory and its
subdirectories. Each immediate subdirectory of this directory would represent a top level
package, that is, one whose fully qualified name consists of a single ssimple name. Each
further level of subdirectory would represent a subpackage of the package represented by
the containing directory, and so on.

The directory might contain the following immediate subdirectories:

com
gls
j ag
java
wnj

where directory j ava would contain the Java SE platform packages; the directoriesj ag,
gl s, andwnj might contain packages that three of the authors of this specification created
for their personal use and to share with each other within this small group; and the directory
comwould contain packages procured from companies that used the conventions described
in §86.1 to generate unique names for their packages.

Continuing the example, the directory j ava would contain, anong others, the following
subdirectories:

7.2

165

7.2 Host Support for Packages PACKAGES

appl et
awt

io

| ang
net
util

corresponding to the packages j ava. appl et, java.aw, java.io, java.lang,
java. net,andj ava. util that are defined as part of the Java SE platform API.

Still continuing the example, if we were to look inside the directory uti | , we might see
the following files:

BitSet.java bservabl e. j ava
Bit Set.cl ass Observabl e. cl ass
Date.j ava Observer.java
Dat e. cl ass Observer. cl ass

where each of the. j ava files containsthe source for acompilation unit (§87.3) that contains
the definition of a class or interface whose binary compiled form is contained in the
corresponding . cl ass file.

Under this simple organization of packages, an implementation of the Java SE platform
would transform a package name into a pathname by concatenating the components of
the package name, placing a file name separator (directory indicator) between adjacent
components.

For example, if this simple organization were used on an operating system where the file
name separator is/ , the package name:

j ag. scrabbl e. board
would be transformed into the directory name:
j ag/ scrabbl e/ board

A package name component or class name might contain a character that cannot correctly
appear in a host file system's ordinary directory name, such as a Unicode character on a
system that allows only ASCII charactersin file names. As aconvention, the character can
be escaped by using, say, the @character followed by four hexadecimal digits giving the
numeric value of the character, asin the\ uxxxx escape (83.3).

Under this convention, the package name:
children.activities.crafts. papi er M u0Oe2ch\ u00e9
which can also be written using full Unicode as:

children.activities.crafts. papi er Maché

166

PACKAGES Compilation Units

might be mapped to the directory name:
children/activities/crafts/papi er M@0e2ch@0e9

If the @character is not a valid character in a file name for some given host file system,
then some other character that is not valid in aidentifier could be used instead.

7.3 Compilation Units

CompilationUnit isthe goa symbol (82.1) for the syntactic grammar (82.3) of Java
programs. It is defined by the following productions:

CompilationUnit:
PackageDeclarationg, |mportDeclarationsy,: TypeDeclarationsgp

ImportDeclarations:
ImportDeclaration
ImportDeclarations ImportDeclaration

TypeDeclarations:
TypeDeclaration
TypeDeclarations TypeDeclaration

A compilation unit consists of three parts, each of which is optional:

* A package declaration (87.4), giving the fully qualified name (86.7) of the
package to which the compilation unit belongs.

A compilation unit that has no package declaration is part of an unnamed
package (87.4.2).

* inport declarations (87.5) that allow types from other packages and stati ¢
members of types to be referred to using their simple names.

» Top level type declarations (87.6) of class and interface types.

Every compilation unit implicitly imports every publ i ¢ type name declared in
the predefined package j ava. | ang, as if the declaration i mport j ava.l ang. *;
appeared at the beginning of each compilation unitimmediately after any package
statement. As aresult, the names of all those types are available as simple names
in every compilation unit.

All the compilation units of the predefined packagej ava and its subpackages| ang
andi o are always observable.

7.3

167

7.4

168

Package Declarations PACKAGES

For all other packages, the host system determines which compilation units are
observable.

The observability of acompilation unit influences the observahility of its package (8§7.4.3).

Typesdeclared in different compilation units can depend on each other, circularly.
A Java compiler must arrange to compile al such types at the same time.

7.4 Package Declarations

A package declaration appears within a compilation unit to indicate the package
to which the compilation unit belongs.

7.4.1 Named Packages

A package declaration in a compilation unit specifies the name (86.2) of the
package to which the compilation unit belongs.

PackageDeclaration:
Annotationsyy package PackageName ;

The package name mentioned in apackage declaration must be the fully qualified
name (86.7) of the package.

The PackageName in a package declaration ensures there is an observable package with
the supplied canonical name, and that it is not subject to the rulesin §6.5.3 for determining
the meaning of a package name.

The scope and shadowing of a package declaration is specified in 86.3 and §6.4.

The keyword package may optionally be preceded by annotation modifiers.
If an annotation a (89.7) on a package declaration corresponds to an
annotation type T (89.6), and T has a (meta)annotation m that corresponds to
j ava. | ang. annot at i on. Tar get , then m must have an element whose vaue is
j ava. | ang. annot at i on. El ement Type. PACKAGE, Or a compile-time error occurs.

At most one annotated package declaration is permitted for a given package.

The manner in which this restriction is enforced must, of necessity, vary from
implementation to implementation. The following scheme is strongly recommended for
file-system-based implementations: The sole annotated package declaration, if it exists, is
placed in asourcefile called package- i nf 0. j ava in the directory containing the source
files for the package. This file does not contain the source for a class called package-

PACKAGES Package Declarations 7.4

i nfo.java; indeed it would be illegal for it to do so, as package-i nf o is not a legal
identifier. Typically package- i nf o. j ava containsonly apackage declaration, preceded
immediately by the annotations on the package. While the file could technically contain
the source code for one or more package-private (default-access) classes, it would be very
bad form.

It is recommended that package-info.java, if it is present, take the place of
package. ht i for j avadoc and other similar documentation generation systems. If
this file is present, the documentation generation tool should look for the package
documentation comment immediately preceding the (possibly annotated) package
declaration in package-i nfo.java. In this way, package-i nf 0. j ava becomes the
sole repository for package-level annotations and documentation. If, in future, it becomes
desirable to add any other package-level information, this file should prove a convenient
home for this information.

7.4.2 Unnamed Packages

A compilation unit that hasno package declaration is part of an unnamed package.

Unnamed packages are provided by the Java SE platform principaly for
convenience when developing small or temporary applications or when just
beginning devel opment.

Note that an unnamed package cannot have subpackages, since the syntax of a
package declaration always includes a reference to a named top level package.

As an example, the compilation unit:

class FirstCall {
public static void main(String[] args) {
Systemout.println("M. Watson, come here.
+ "l want you.");

}

defines a very simple compilation unit as part of an unnamed package.

An implementation of the Java SE platform must support at least one unnamed
package; it may support more than one unnamed package but is not required to do
so. Which compilation units are in each unnamed package is determined by the
host system.

In implementations of the Java SE platform that use a hierarchical file system for storing
packages, onetypical strategy isto associate an unnamed package with each directory; only
one unnamed package is observable at a time, namely the one that is associated with the
"current working directory". The precise meaning of "current working directory" depends
on the host system.

169

7.5

170

Import Declarations PACKAGES

7.4.3 Observability of a Package
A package is observableif and only if either:

A compilation unit containing a declaration of the package is observable (87.3).
A subpackage of the package is observable.

The packagesj ava, j ava. | ang, and j ava. i o are always observable.

One can conclude this from the rule above and from the rules of observable compilation
units, as follows. The predefined package j ava. | ang declares the class Obj ect , so the
compilationunit for Obj ect isalwaysobservable (87.3). Hence, thej ava. | ang packageis
observable (§7.4.3), and thej ava package also. Furthermore, since Obj ect isobservable,
the array type Qbj ect[] implicitly exists. Its superinterface j ava. i 0. Seri al i zabl e
(810.1) also exists, hencethej ava. i o package is observable.

7.5 Import Declarations

Animport declaration allows a named type or ast at i ¢ member to be referred to
by a simple name (86.2) that consists of asingle identifier.

Without the use of an appropriate i nport declaration, the only way to refer to a
type declared in another package, or ast ati ¢ member of ancther type, isto use
afully qualified name (86.7).

ImportDeclaration:
SngleTypelmportDeclaration
TypelmportOnDemandDeclaration
SingleSaticlmportDeclaration
SaticlmportOnDemandDeclaration

A single-type-import declaration (87.5.1) imports a single named type, by
mentioning its canonical name (86.7).

» A type-import-on-demand declaration (87.5.2) imports all the accessible types
(86.6) of anamed type or named package as needed, by mentioning the canonical
name of atype or package.

* A single-static-import declaration (87.5.3) imports al accessible static
members with a given name from atype, by giving its canonical name.

» A static-import-on-demand declaration (87.5.4) imports all accessible static
members of anamed type as needed, by mentioning the canonical name of atype.

PACKAGES Import Declarations

The scope and shadowing of atype or member imported by these declarations is
specified in §6.3 and 8§6.4.

Aninport declaration makes types or members available by their simple names only
within the compilation unit that actually containsthei nport declaration. The scope of the
type(s) or member(s) introduced by an i nport declaration specifically does not include
the PackageName of a package declaration, other i nport declarations in the current
compilation unit, or other compilation units in the same package.

A type in an unnamed package (87.4.2) has no canonical name, so the requirement for a
canonical name in every kind of import declaration implies that (a) types in an unnamed
package cannot be imported, and (b) st at i ¢ members of types in an unnamed package
cannot be imported. As such, §7.5.1, §7.5.2, §7.5.3, and §7.5.4 al require a compile-time
error on any attempt to import atype (or st at i ¢ member thereof) in an unnamed package.

7.5.1 Single-Type-Import Declarations

A single-type-import declaration imports a single type by giving its canonical
name, making it available under a simple name in the class and interface
declarations of the compilation unit in which the single-type-import declaration

appears.

SngleTypelmportDeclaration:
i nport TypeName;

The TypeName must be the canonical name (86.7) of a class type, interface type,
enum type, or annotation type.

It is acompile-time error if the named typeis not accessible (86.6).

Example 7.5.1-1. Single-Type-Import

import java.util.Vector;

causes the simple name Vect or to be available within the class and interface declarations
in acompilation unit. Thus, the simple name Vect or refersto the type declaration Vect or

in the package j ava. uti| in al places where it is not shadowed (86.4.1) or obscured
(86.4.2) by a declaration of afield, parameter, local variable, or nested type declaration
with the same name.

Note that j ava. util. Vector is declared as a generic type (88.1.2). Once imported,
the name Vect or can be used without qualification in a parameterized type such as
Vect or <Stri ng>, or asthe raw type Vect or . This highlights a limitation of thei nport

declaration: a type nested inside a generic type declaration can be imported, but its outer
typeisaways erased.

7.5

171

7.5

172

Import Declarations PACKAGES

If two single-type-import declarations in the same compilation unit attempt to
import types with the same simple name, then a compile-time error occurs, unless
the two types are the same type, in which case the duplicate declaration isignored.

If the type imported by the single-type-import declaration is declared in the
compilation unit that contains the i nport declaration, the i nport declaration is
ignored.

If asingle-type-import declaration imports atype whose simple nameisn, and the
compilation unit also declares a top level type (87.6) whose simple name isn, a
compile-time error occurs.

If acompilation unit contains both a single-type-import declaration that imports a
type whose ssmple name is n, and a single-static-import declaration (8§7.5.3) that
imports a type whose simple name is n, a compile-time error occurs.

Example 7.5.1-2. Duplicate Type Declarations
This program:

inmport java.util.Vector;
class Vector { nject[] vec; }

causes a compile-time error because of the duplicate declaration of Vect or , as does:

inmport java.util.Vector;
i mport nyVector. Vect or;

where nyVect or isapackage containing the compilation unit:

package myVector;
public class Vector { Object[] vec; }

Example 7.5.1-3. No Import of a Subpackage

Notethat ani nport statement cannot import a subpackage, only atype.

For example, it does not work to try to import j ava. util and then use the name
uti| . Randomto refer to thetypej ava. uti | . Randomt

import java.util;
class Test { util.Random generator; }
/'l incorrect: conpile-time error

Example 7.5.1-4. Importing a Type Name that is also a Package Name

Package names and type names are usually different under the naming conventions
described in 86.1. Nevertheless, in acontrived example where thereis an unconventionally-
named package Vect or , which declares a public class whose nameis Mosqui t o:

PACKAGES Import Declarations

package Vector;
public class Msquito { int capacity; }

and then the compilation unit:

package strange;
import java.util.Vector;
i mport Vector. Mdsquito;
class Test {
public static void main(String[] args) {
System out. println(new Vector().getd ass());
System out. println(new Msquito().getd ass());

}

the single-type-import declaration importing class Vect or from packagej ava. uti | does
not prevent the package name Vect or from appearing and being correctly recognized in
subsequent i npor t declarations. The example compiles and produces the output:

class java.util. Vector
cl ass Vector. Msquito

7.5.2 Typelmport-on-Demand Declarations

A type-import-on-demand declaration allows all accessible types of a named
package or type to be imported as needed.

Typel mportOnDemandDecl aration:
i mport PackageOrTypeName. * ;

The PackageOr TypeName must be the canonical name (86.7) of apackage, aclass
type, an interface type, an enum type, or an annotation type.

It isacompile-time error if the named package or type is not accessible (86.6).

It is not a compile-time error to name the current package or j ava. | ang in atype-
import-on-demand declaration. The type-import-on-demand declaration isignored
in such cases.

Example 7.5.2-1. Type-lmport-on-Demand
inmport java.util.*;

causes the simple names of all publ i ¢ types declared in the package j ava. util to be
available within the class and interface declarations of the compilation unit. Thus, the
simple name Vect or refers to the type Vect or in the package j ava. uti | inall places
in the compilation unit where that type declaration is not shadowed (86.4.1) or obscured
(86.4.2).

7.5

173

7.5

174

Import Declarations PACKAGES

The declaration might be shadowed by a single-type-import declaration of a type whose
simple nameisVect or ; by atype named Vect or and declared in the package to which the
compilation unit belongs; or any nested classes or interfaces.

The declaration might be obscured by a declaration of afield, parameter, or local variable
named Vect or .

(It would be unusual for any of these conditions to occur.)

Two or more type-import-on-demand declarations in the same compilation unit
may name the same type or package. All but one of these declarations are
considered redundant; the effect is asif that type was imported only once.

If a compilation unit contains both a type-import-on-demand declaration and a
static-import-on-demand declaration (87.5.4) that name the sametype, the effect is
asif the st ati ¢ member types of that type (88.5, 89.5) were imported only once.

7.5.3 Single-Static-lmport Declarations

A single-static-import declaration imports all accessible st ati ¢ members with a
given simple name from atype. Thismakesthesest at i ¢ membersavailable under
their smple name in the class and interface declarations of the compilation unit in
which the single-static-import declaration appears.

SngleSaticlmportDeclaration:
i nport static TypeName. ldentifier ;

The TypeName must be the canonical name (86.7) of a class type, interface type,
enum type, or annotation type.

It isacompile-time error if the named typeis not accessible (86.6).

The Identifier must name at least one st at i ¢ member of the named type. It isa
compile-timeerror if thereisnost at i ¢ member of that name, or if all of the named
members are not accessible.

Itis permissible for one single-static-import declaration to import several fields or
types with the same name, or several methods with the same name and signature.

If a single-static-import declaration imports a type whose simple name is n, and
the compilation unit also declares atop leve type (87.6) whose simple nameisn,
a compile-time error occurs.

If a compilation unit contains both a single-static-import declaration that imports
atype whose simple nameis n, and a single-type-import declaration (87.5.1) that
imports a type whose simple name isn, a compile-time error occurs.

PACKAGES Top Level Type Declarations

7.5.4 Static-lmport-on-Demand Declarations

A static-import-on-demand declaration alows all accessible st ati ¢ members of
anamed type to be imported as needed.

SaticlmportOnDemandDeclaration:
i nport static TypeName. * ;

The TypeName must be the canonical name (86.7) of a class type, interface type,
enum type, or annotation type.

It isacompile-time error if the named type is not accessible (86.6).

Two or more static-import-on-demand declarations in the same compilation unit
may name the same type; the effect isas if there was exactly one such declaration.

Two or more static-import-on-demand declarations in the same compilation unit
may name the same member; the effect is as if the member was imported exactly
once.

It is permissible for one static-import-on-demand declaration to import severa
fields or types with the same name, or several methods with the same name and
signature.

If a compilation unit contains both a static-import-on-demand declaration and a
type-import-on-demand declaration (87.5.2) that name the same type, the effect is
asif thest ati c member types of that type (88.5, §9.5) were imported only once.

7.6 Top Level TypeDeclarations

A top level type declaration declares a top level class type (88) or a top level
interface type (89).

TypeDeclaration:
ClassDeclaration
InterfaceDeclaration

By default, the top level types declared in a package are accessible only within the
compilation units of that package, but atype may be declared to bepubl i ¢ to grant
access to the type from code in other packages (86.6, §8.1.1, 89.1.1).

It is a compile-time error if atop level type declaration contains any one of the
following access modifiers: prot ect ed, pri vate, Or stati c.

7.6

175

7.6

176

Top Level Type Declarations PACKAGES

Itisacompile-timeerror if the name of atop level type appears as the name of any
other top level class or interface type declared in the same package.

It is a compile-time error if the name of atop level typeis aso declared as atype
by a single-type-import declaration (§7.5.1) in the compilation unit containing the
type declaration.

Example 7.6-1. Conflicting Top Level Type Declarations

package test;
import java.util.Vector;
class Point {

int x, vy;

}

interface Point { // conpile-time error #1
int getR();
int getTheta();

}

class Vector { Point[] pts; } [/ conpile-time error #2

Here, thefirst compile-time error is caused by the duplicate declaration of the name Poi nt
as both a class and an interface in the same package. A second compile-time error is the
attempt to declare the name Vect or both by a class type declaration and by a single-type-
import declaration.

Note, however, that it isnot an error for thenameof aclassto also name atypethat otherwise
might beimported by atype-import-on-demand declaration (87.5.2) in the compilation unit
(87.3) containing the class declaration. Thus, in this program:

package test;
inmport java.util.*;
class Vector {} // not a conpile-tinme error

the declaration of the class Vector is permitted even though there is aso a class
java. util . Vect or. Within this compilation unit, the simple name Vect or refersto the
classtest. Vector, nottojava. util. Vector (which can still be referred to by code
within the compilation unit, but only by its fully qualified name).

Example 7.6-2. Scope of Top Level Types

package points;
class Point {

int x, vy; /'l coordinates
Poi nt Col or col or; /1 color of this point
Poi nt next; /1 next point with this color
static int nPoints;
}
cl ass Poi nt Col or {

Point first; /1 first point with this color
Poi nt Col or (int color) { this.color = color; }

PACKAGES Top Level Type Declarations

private int color; [/ color conponents

}

This program defines two classes that use each other in the declarations of their class
members. Because the class types Poi nt and Poi nt Col or have all the type declarations
in package poi nt s, including al those in the current compilation unit, as their scope, this
program compiles correctly. That is, forward reference is not a problem.

The scope and shadowing of atop level typeis specified in 86.3 and §6.4.
Thefully qualified name of atop level typeis specified in 86.7.

Example 7.6-3. Fully Qualified Names

class Point { int x, y; }

In this code, the class Poi nt is declared in acompilation unit with no package statement,
and thus Poi nt isitsfully qualified name, whereasin the code:

package vi st a;
class Point { int x, y; }

the fully qualified name of the class Poi nt isvi st a. Poi nt . (The package name vi st a
is suitable for local or personal use; if the package were intended to be widely distributed,
it would be better to give it a unique package name (86.1).)

An implementation of the Java SE platform must keep track of types within
packages by their binary names (813.1). Multiple ways of naming a type must be
expanded to binary namesto make surethat such names are understood asreferring
to the same type.

For example, if acompilation unit contains the single-type-import declaration (87.5.1):
import java.util.Vector;

then within that compilation unit the simple name Vect or and the fully qualified name
java. util. Vector refer tothe sametype.

If and only if packages are stored in a file system (87.2), the host system may
chooseto enforce the restriction that it isa compile-time error if atypeisnot found
in afile under aname composed of the type name plus an extension (such as. j ava
or . j av) if either of the following istrue:

» Thetypeisreferred to by codein other compilation units of the packageinwhich
the typeis declared.

» Thetypeisdeclared publ i ¢ (and therefore is potentially accessible from code
in other packages).

7.6

177

7.6 Top Level Type Declarations PACKAGES

This restriction implies that there must be at most one such type per compilation unit.
This restriction makes it easy for a Java compiler to find a named class within a package.
In practice, many programmers choose to put each class or interface type in its own

compilation unit, whether or not it ispubl i c or isreferred to by code in other compilation
units.

For example, the source code for a publ i ¢ type wet . sprocket . Toad would be found
in afile Toad. j ava in the directory wet / spr ocket , and the corresponding object code
would be found in the file Toad. cl ass in the same directory.

178

CHAPTER8

Classes

CLASS declarations define new reference types and describe how they are
implemented (88.1).

A top level classisaclassthat is hot a nested class.

A nested class is any class whose declaration occurs within the body of another
class or interface.

This chapter discusses the common semantics of all classes - top level (8§7.6)
and nested (including member classes (88.5, §9.5), local classes (§14.3) and
anonymousclasses (815.9.5)). Detail sthat are specific to particular kinds of classes
are discussed in the sections dedicated to these constructs.

A named class may be declared abst ract (88.1.1.1) and must be declared abstract
if it isincompletely implemented; such a class cannot be instantiated, but can be
extended by subclasses. A classmay bedeclared fi nal (88.1.1.2), in which caseit
cannot have subclasses. If aclassisdeclared publ i ¢, thenit can bereferred to from
other packages. Each class except tbj ect isan extension of (that is, asubclass of)
asingle existing class (88.1.4) and may implement interfaces (88.1.5). Classes may
be generic (88.1.2), that is, they may declare type variables whose bindings may
differ among different instances of the class.

Classes may be decorated with annotations (89.7) just like any other kind of
declaration.

The body of a class declares members (fields and methods and nested classes
and interfaces), instance and static initializers, and constructors (88.1.6). The
scope (86.3) of a member (88.2) is the entire body of the declaration of the class
to which the member belongs. Field, method, member class, member interface,
and constructor declarations may include the access modifiers (86.6) public,
protected, or private. The members of a class include both declared and
inherited members (88.2). Newly declared fields can hide fields declared in a
superclassor superinterface. Newly declared class membersand interface members

179

180

CLASSES

can hide class or interface members declared in a superclass or superinterface.
Newly declared methods can hide, implement, or override methods declared in a
superclass or superinterface.

Field declarations (88.3) describe class variables, which are incarnated once, and
instance variables, which are freshly incarnated for each instance of the class. A
field may be declared fi nal (88.3.1.2), in which case it can be assigned to only
once. Any field declaration may include an initializer.

Member class declarations (88.5) describe nested classes that are members of the
surrounding class. Member classes may be st ati ¢, in which case they have no
access to the instance variables of the surrounding class; or they may be inner
classes (88.1.3).

Member interface declarations (88.5) describe nested interfaces that are members
of the surrounding class.

Method declarations (88.4) describe code that may be invoked by method
invocation expressions (815.12). A class method is invoked relative to the class
type; an instance method is invoked with respect to some particular object that is
an instance of a class type. A method whose declaration does not indicate how
it isimplemented must be declared abst ract . A method may be declared f i nal

(88.4.3.3), in which case it cannot be hidden or overridden. A method may be
implemented by platform-dependent native code (88.4.3.4). A synchroni zed
method (88.4.3.6) automatically locks an object before executing its body and
automatically unlocks the object on return, as if by use of a synchronized
statement (814.19), thus alowing its activities to be synchronized with those of
other threads (817).

Method hames may be overloaded (§8.4.9).

Instance initializers (88.6) are blocks of executable code that may be used to help
initialize an instance when it is created (815.9).

Static initializers (88.7) are blocks of executable code that may be used to help
initialize a class.

Constructors (88.8) are similar to methods, but cannot be invoked directly by a
method call; they are used to initialize new classinstances. Like methods, they may
be overloaded (§8.8.8).

CLASSES Class Declarations

8.1 ClassDeclarations

A class declaration specifies anew named reference type.

There are two kinds of class declarations; normal class declarations and enum
declarations.

ClassDeclaration:
Normal ClassDeclaration
EnumDeclaration

Normal ClassDeclaration:
ClassModifiersop cl ass Identifier TypeParameter sopt
Super opt I nterfacesyy: ClassBody

The rules in this section apply to al class declarations unless this specification
explicitly states otherwise. In many cases, specia restrictions apply to enum
declarations (88.9).

The Identifier in a class declaration specifies the name of the class.

Itisacompile-timeerror if aclass hasthe same simple name as any of itsenclosing
classes or interfaces.

The scope and shadowing of a class declaration is specified in 86.3 and §6.4.

8.1.1 ClassModifiers

A class declaration may include class modifiers.

ClassModifiers:
ClassModifier
ClassModifiers ClassModifier

ClassModifier: one of
Annotation publ i c protected private
abstract staticfinal strictfp

If an annotation a (89.7) on a class declaration corresponds to an annotation
type T (89.6), and T has a (meta)annotation m that corresponds to
j ava. | ang. annot at i on. Tar get, then m must have an element whose value is
j ava. | ang. annot at i on. El ement Type. TYPE, Or acompile-time error occurs.

8.1

181

8.1

182

Class Declarations CLASSES

The access modifier publ i ¢ (86.6) pertains only to top level classes (§7.6) and to
member classes (88.5), not to local classes (§14.3) or anonymous classes (815.9.5).

The access modifiers prot ect ed and private (86.6) pertain only to member
classes within adirectly enclosing class or enum declaration (88.5).

The modifier st ati ¢ pertains only to member classes (88.5.1), not to top level or
local or anonymous classes.

It is a compile-time error if the same modifier appears more than once in a class
declaration.

If two or more (distinct) class modifiers appear in a class declaration, then it is customary,
though not required, that they appear in the order consistent with that shown above in the
production for ClassModifier.

8.1.1.1 abstract Classes

Anabstract classisaclassthat isincomplete, or to be considered incomplete.

Normal classes may have abst ract methods (88.4.3.1, §9.4), that is, methods that
are declared but not yet implemented, only if they are abst ract classes.

If a normal class that is not abstract contains an abstract method, then a
compile-time error occurs.

An enum type (88.9) must not be declared abstract, or a compile-time error
occurs.

It is a compile-time error for an enum type E to have an abst ract method mas a
member unless E has one or more enum constants, and all of E's enum constants
have class bodies that provide concrete implementations of m

It is a compile-time error for the class body of an enum constant to declare an
abst ract method.

A class c hasabst ract methodsif any of the following istrue:
» cexplicitly contains a declaration of an abst r act method (88.4.3).

* Any of C's superclasses has an abstract method and C neither declares nor
inherits a method that implements (§8.4.8.1) it.

» A direct superinterface (88.1.5) of C declares or inherits a method (which is
therefore necessarily abst r act) and C neither declares nor inherits amethod that
implementsiit.

Itisacompile-timeerror if an attempt ismadeto create an instance of anabst r act
class using a class instance creation expression (815.9).

CLASSES Class Declarations

A subclass of an abst ract class that is not itself abstract may be instantiated,
resulting in the execution of a constructor for the abst ract class and, therefore,
the execution of the field initializers for instance variables of that class.

It is a compile-time error to declare an abst ract class type such that it is not
possible to create a subclass that implements all of its abst ract methods. This
situation can occur if the class would have as memberstwo abst r act methodsthat
have the same method signature (88.4.2) but return typesfor which thereisno type
which is return-type-substitutabl e (88.4.5) with both.

Example 8.1.1.1-1. Abstract Class Declaration

abstract class Point {
int x =1, y = 1;
void nove(int dx, int dy) {

X += dx;
y += dy;
alert();
}
abstract void alert();
}
abstract class Col oredPoi nt extends Point {
int color;
}

class Sinpl ePoi nt extends Point {
void alert() { }
}
Here, a class Poi nt is declared that must be declared abst ract, because it contains
a declaration of an abstract method named al ert. The subclass of Poi nt named
Col or edPoi nt inherits the abstract method al ert, so it must aso be declared

abst ract . On the other hand, the subclass of Poi nt named Si npl ePoi nt provides an
implementation of al ert , soit need not be abst r act .

The statement:
Point p = new Point();

would result in a compile-time error; the class Poi nt cannot be instantiated because it is

abstract . However, a Poi nt variable could correctly be initialized with a reference to

any subclass of Poi nt , and the class Si npl ePoi nt isnot abst r act , so the statement:
Point p = new Si npl ePoi nt () ;

would be correct. Instantiation of a Si npl ePoi nt causes the default constructor and field
initializersfor x andy of Poi nt to be executed.

Example 8.1.1.1-2. Abstract Class Declaration that Prohibits Subclasses

interface Col orable {

8.1

183

8.1

184

Class Declarations CLASSES

voi d setCol or(int color);

}

abstract class Colored inplenments Col orable {
public abstract int setColor(int color);

}

These declarations result in a compile-time error: it would be impossible for any subclass
of class Col or ed to provide an implementation of a method named set Col or , taking one
argument of typei nt , that can satisfy both abstract method specifications, because the one
ininterface Col or abl e requiresthe same method to return no value, whilethe onein class
Col or ed requires the same method to return avalue of typei nt (88.4).

A classtypeshould bedeclared abst r act only if theintent isthat subclasses can be created
to complete the implementation. If the intent is sSimply to prevent instantiation of a class,
the proper way to express thisis to declare a constructor (88.8.10) of no arguments, make
itprivat e, never invokeit, and declare no other constructors. A class of thisform usually
contains class methods and variables.

The class Mat h is an example of a class that cannot be instantiated; its declaration looks
likethis:

public final class Math {
private Math() { } // never instantiate this class
decl arations of class variables and nmethods .

8.1.1.2 final Classes

A class can be declared fi nal if its definition is complete and no subclasses are
desired or required.

Itisacompile-timeerror if thenameof af i nal classappearsintheext ends clause
(88.1.4) of another class declaration; this implies that afi nal class cannot have
any subclasses.

It isacompile-time error if aclassisdeclared both fi nal and abst r act , because
the implementation of such a class could never be completed (88.1.1.1).

Because af i nal class never has any subclasses, the methods of afi nal classare
never overridden (88.4.8.1).

8.1.1.3 strictfp Classes

The effect of the st ri ctfp modifier isto make all f1 oat or doubl e expressions
within the class declaration (including within variable initializers, instance
initializers, static initializers, and constructors) be explicitly FP-strict (§815.4).

Thisimpliesthat all methods declared in the class, and al nested types declared in
the class, areimplicitly stri ct f p.

CLASSES Class Declarations

8.1.2 Generic Classesand Type Parameters

A classisgenericif it declares one or more type variables (84.4).

These type variables are known as the type parameters of the class. The type
parameter section follows the class name and is delimited by angle brackets.

TypeParameters:
< TypeParameterList >

TypeParameterList:
TypeParameterList, TypeParameter
TypeParameter

In a class's type parameter section, a type variable T directly depends on a type
variable sif sisthebound of T, while T dependson s if either T directly dependson
sor T directly depends on atype variable U that depends on s (using this definition
recursively).

It is a compile-time error if a type variable in a classs type parameter section
depends on itself.

The scope and shadowing of a class's type parameter is specified in §6.3 and §6.4.

Example 8.1.2-1. Mutually Recursive Type Variable Bounds

interface Converti bl eTo<T> {
T convert();
}
cl ass Repr Change<T extends Converti bl eTo<S>,
S extends Converti bl eTo<T>> {

Tt,;
void set(Ss) { t = s.convert(); }
S get () { return t.convert(); }

}

A generic classdeclaration defines aset of parameterized types (84.5), onefor each
possible invocation of the type parameter section by type arguments. All of these
parameterized types share the same class at run time.

For instance, executing the code:

Vector<String> x new Vector<String>();
Vector<lnteger> vy new Vect or <l nteger>();
boolean b = x.getd ass() == y.getd ass();

will result in the variable b holding the valuet r ue.

8.1

185

8.1

186

Class Declarations CLASSES

It is a compile-time error if a generic class is a direct or indirect subclass of
Throwabl e (811.1.1).

This restriction is needed since the catch mechanism of the Java Virtual Machine works
only with non-generic classes.

Itisacompile-time error to refer to atype parameter of ageneric class C anywhere
in:

« the declaration of a static member of ¢ (88.3.1.1, 88.4.3.2, 88.5.1), or

* the declaration of a static member of any type declaration nested within c, or

» astaticinitializer of C(88.7), or

o adtaticinitializer of any class declaration nested within C.

Generic class declarations can be nested inside other declarations.

Example 8.1.2-2. Nested Generic Classes

cl ass Seq<T> {
T head;
Seq<T> tail;

Seq() { this(null, null); }
Seq(T head, Seq<T> tail) {
this. head = head;
this.tail = tail;

}

bool ean i sEnpty() { return tail == null; }

cl ass Zipper<S> {
Seq<Pai r<T, S>> zi p(Seq<S> that) {
if (iséEmpty() || that.isEmpty()) {
return new Seq<Pai r<T, S>>();
} else {
Seq<T>. Zi pper <S> tail Zi pper =
tail.new Zipper<S>();
return new Seq<Pair <T, S>>(
new Pai r <T, S>(head, that.head),
tail Zi pper.zip(that.tail));

}
}

}
}
class Pair<T, S> {

T fst; S snd;

Pair(T f, Ss) { fst =f; snd =s; }
}

class Test {
public static void main(String[] args) {

CLASSES Class Declarations 8.1

Seq<String> strs =
new Seq<Stri ng>(
"an,
new Seq<String>("b",
new Seq<String>()));
Seq<Nunber > nuns =
new Seqg<Nunber >(
new | nteger(1),
new Seq<Nunber >(new Doubl e(1.5),
new Seqg<Nunber>()));

Seq<Stri ng>. Zi pper <Nunber > zi pper =
strs. new Zi pper <Nurber >();

Seq<Pai r <Stri ng, Nunber >> conbi ned
zi pper. zi p(numns) ;

8.1.3 Inner Classes and Enclosing I nstances

Aninner classisanested classthat is not explicitly or implicitly declared st atii c.

Inner classes include local (814.3), anonymous (815.9.5) and non-static member
classes (88.5).

Inner classes may not declare static initializers (88.7) or member interfaces, or a
compile-time error occurs.

Inner classes may not declare static members, unless they are constant variables
(84.12.4), or a compile-time error occurs.

Inner classes may inherit static membersthat are not constant variables even though
they may not declare them.

Nested classes that are not inner classes may declare static members freely, in
accordance with the usual rules of the Java programming language. Member
interfaces (88.5) are implicitly stati ¢ so they are never considered to be inner
classes.

Example 8.1.3-1. Inner Class Declarations and Static Members

class HasStatic {
static int j = 100;
}
class Quter {
class Inner extends HasStatic {
static final int x =3; // OK conpile-time constant
static int y = 4; // Conpile-time error: an inner class

}

static class NestedBut Not!| nner{

187

8.1

188

Class Declarations CLASSES

static int z = 5; /1 OK: not an inner class

}

interface Neverlnner {} // Interfaces are never inner

}

A statement or expression occurs in a static context if and only if the innermost
method, constructor, instance initializer, static initializer, field initializer, or
explicit constructor invocation statement enclosing the statement or expression is
astatic method, a static initializer, the variable initializer of a static variable, or an
explicit constructor invocation statement (§8.8.7).

Aninner classcisadirect inner class of a class Oif oistheimmediately lexically
enclosing class of ¢ and the declaration of ¢ does not occur in a static context.

A class cis an inner class of class O if it is either a direct inner class of O or an
inner class of an inner class of o.

A class Oisthe zeroth lexically enclosing class of itself.

A class oisthe n'th lexically enclosing class of a class Cif it is the immediately
enclosing class of the n-1'th lexically enclosing class of C.

Aninstancei of adirect inner class C of aclass Ois associated with an instance of
0, known as the immediately enclosing instance of i . The immediately enclosing
instance of an abject, if any, is determined when the object is created (815.9.2).

An object o is the zeroth lexically enclosing instance of itself.

An object o is the n'th lexically enclosing instance of an instance i if it is the
immediately enclosing instance of the n-1'th lexically enclosing instance of i .

An instance of an inner class | whose declaration occurs in a static context has
no lexically enclosing instances. However, if | isimmediately declared within a
static method or static initializer then 1 does have an enclosing block, which isthe
innermost block statement lexically enclosing the declaration of 1 .

For every superclass s of cwhichisitself adirect inner class of aclass SO, thereis
an instance of so associated with i, known as the immediately enclosing instance
of i withrespect to s. Theimmediately enclosing instance of an object with respect
toitsclass direct superclass, if any, is determined when the superclass constructor
isinvoked viaan explicit constructor invocation statement.

When an inner class (whose declaration does not occur in a static context) refers
to an instance variable that is amember of alexically enclosing class, the variable
of the corresponding lexically enclosing instance is used.

Any local variable, formal parameter, or exception parameter used but not declared
inan inner class must be declared f i nal .

CLASSES Class Declarations

Any loca variable used but not declared in an inner class must be definitely
assigned (816) before the body of the inner class.

A blank final (84.12.4) field of alexicaly enclosing class may not be assigned
within an inner class, or a compile-time error occurs.

Example 8.1.3-2. Inner Class Declarations

class Quter {

int i = 100;
static void classMethod() {
final int | = 200;
class Local I nStaticContext {
int k =1i; [// Conpile-tine error
int m=1,; [// &K
}
}
void foo() {
class Local { // A local class
int j =i;
}
}

}

The declaration of class Local | nSt at i cCont ext occursin a static context due to being
within the static method cl assMet hod. Instance variables of classQut er arenot available
within the body of a static method. In particular, instance variables of Qut er are not
availableinside the body of Local I nSt at i cCont ext . However, local variables from the
surrounding method may be referred to without error (provided they are marked f i nal).

Inner classes whose declarations do not occur in a static context may freely refer to the
instance variables of their enclosing class. An instance variable is always defined with
respect to an instance. In the case of instance variables of an enclosing class, the instance
variable must be defined with respect to an enclosing instance of that class. For example,
the classLocal above has an enclosing instance of class Qut er . Asafurther example:

class WthDeepNesting {
bool ean t oBe;
W t hDeepNesti ng(bool ean b) { toBe = b; }

cl ass Nested {
bool ean t heQuesti on;
cl ass Deepl yNested {
Deepl yNest ed() {
theQuestion = toBe || !toBe;
}

8.1

189

8.1

190

Class Declarations CLASSES

Here, every instance of Wt hDeepNest i ng. Nest ed. Deepl yNest ed has an enclosing
instance of classW t hDeepNest i ng. Nest ed (itsimmediately enclosing instance) and an
enclosing instance of classW t hDeepNest i ng (its 2nd lexically enclosing instance).

8.1.4 Superclasses and Subclasses

The optional extends clause in a normal class declaration specifies the direct
superclass of the current class.

Super:
ext ends ClassType

The following is repeated from §4.3 to make the presentation here clearer:

ClassType:
TypeDecl Specifier TypeArgumentsypt

The ext ends clause must not appear in the definition of the class j ect, or a
compile-time error occurs, because it is the primordial class and has no direct
superclass.

The ClassType must name an accessible (86.6) class type, or a compile-time error
occurs.

If the specified ClassType names a class that isfi nal (88.1.1.2), then a compile-
time error occurs, asfi nal classes are not allowed to have subclasses.

It isacompile-time error if the ClassType names the class Enumor any invocation
of it.

If the TypeDecl Specifier is followed by any type arguments, it must be a correct
invocation of the type declaration denoted by TypeDecl Soecifier, and none of the
type arguments may be wildcard type arguments, or a compile-time error occurs.

Given a (possibly generic) class declaration for c<Fy,...,Fr> (n 2 0, C + Qbj ect),
the direct superclass of the class type C<F;,...,F,> is the type given in the ext ends
clause of the declaration of Cif an ext ends clauseis present, or j ect otherwise.

Let C<Fy,...,F,> (n > 0) be a generic class declaration. The direct superclass of the
parameterized class type C<Ty,...,To>, Where T; (L<i < n)isatype, isD<u; 6,...,U
0>, whereD<Uy,...,U> isthedirect superclass of c<Fy,...,F,>, and 8 isthe substitution
[F1: :T]_ Fn: :Tn] .

The direct superclass of an enum type E iS EnunxE>.

CLASSES Class Declarations

A classissaid to be adirect subclass of itsdirect superclass. The direct superclass
is the class from whose implementation the implementation of the current classis
derived.

Example 8.1.4-1. Direct Super classes and Subclasses
class Point { int x, y; }
final class Col oredPoint extends Point { int color; }
cl ass Col or ed3DPoi nt extends ColoredPoint { int z; } [// error

Here, the relationships are as follows:

Theclass Poi nt isadirect subclass of Qbj ect .

The class Obj ect isthe direct superclass of the class Poi nt .

The class Col or edPoi nt isadirect subclass of class Poi nt .

.

¢ TheclassPoi nt isthe direct superclass of class Col or edPoi nt .

The declaration of class Col or ed3dPoi nt causesacompile-time error becauseit attempts
to extend the final class Col or edPoi nt .

Thesubclassrelationship isthetransitive closure of the direct subclassrelationship.
A classAisasubclass of class cif either of the following istrue:

e Aisthedirect subclassof C

» There exists a class B such that A is a subclass of B, and B is a subclass of C,
applying this definition recursively.

Class cissaid to be a superclass of class A whenever A is asubclass of C.

Example 8.1.4-2. Superclasses and Subclasses

class Point { int x, y; }
cl ass Col oredPoint extends Point { int color; }
final class Col ored3dPoi nt extends Col oredPoint { int z; }

Here, the relationships are as follows:

¢ Theclass Poi nt isasuperclass of class Col or edPoi nt .

¢ TheclassPoi nt isasuperclass of class Col or ed3dPoi nt .

e Theclass Col or edPoi nt isa subclass of class Poi nt .

¢ Theclass Col or edPoi nt isasuperclass of class Col or ed3dPoi nt .
¢ Theclass Col or ed3dPoi nt isasubclass of class Col or edPoi nt .

¢ Theclass Col or ed3dPoi nt isasubclass of class Poi nt .

8.1

191

8.1 Class Declarations CLASSES

A class c directly depends on a type T if T is mentioned in the ext ends or
i npl enent s clause of C either as a superclass or superinterface, or asaqualifier of
a superclass or superinterface name.

A class c depends on areference type T if any of the following conditions hold:
» Cdirectly dependsonT.
 cdirectly depends on an interface | that depends (89.1.3) on T.

e C directly depends on a class D that depends on T (using this definition
recursively).

Itisacompile-time error if aclass depends on itself.

If circularly declared classes are detected at run time, as classes are loaded (812.2),
thenad assCircul ari tyError isthrown.

Example 8.1.4-3. Class Depends on Itself

class Point extends ColoredPoint { int x, vy; }
cl ass Col oredPoint extends Point { int color; }

This program causes a compile-time error.

8.1.5 Superinterfaces

The optional i npl ement s clausein aclass declaration lists the names of interfaces
that are direct superinterfaces of the class being declared.

Interfaces.
i npl enent s InterfaceTypelist

InterfaceTypelist:
InterfaceType
InterfaceTypelist, InterfaceType

The following is repeated from §4.3 to make the presentation here clearer:

ClassType:
TypeDecl Specifier TypeArgumentsopt

Each InterfaceType must name an accessible (86.6) interface type, or a compile-
time error occurs.

192

CLASSES Class Declarations 8.1

If the TypeName isfollowed by any type arguments, it must be a correct invocation
of the type declaration denoted by TypeName, and none of the type arguments may
be wildcard type arguments, or a compile-time error occurs.

It is a compile-time error if the same interface is mentioned as a direct
superinterface two or more timesin asinglei npl enent s clause's names. Thisis
true even if the interface is named in different ways.

Given a (possibly generic) class declaration for c<Fy,...,Fr> (n 2 0, C + Qbj ect),
the direct superinterfaces of the class type C<F;,...,F,> are the types given in the
i mpl enent s clause of the declaration of C, if ani npl enent s clauseis present.

Let C<Fy,...,Fn> (n > 0) be ageneric class declaration. The direct superinterfaces of
the parameterized classtype C<Ty,...,T,>, WhereT; (1<i < n)isatype, areal types
I<U; B,...,U 8>, where | <Uy,...,U> is adirect superinterface of C<Fy,...,F,>, and 8
isthe substitution [F1: =Ty, ..., Fn: =Ty] .

Example 8.1.5-1. lllegal Superinterfaces
cl ass Redundant inplenents java.lang. Cl oneable, Coneable {

int x;

}

This program results in a compile-time error because the namesj ava. | ang. d oneabl e
and C oneabl e refer to the same interface.

Aninterfacetypel isasuperinterface of classtype cif any of thefollowingistrue:
* | isadirect superinterface of C.

* C has some direct superinterface J for which | is a superinterface, using the
definition of "superinterface of an interface” givenin §9.1.3.

* | isasuperinterface of the direct superclass of C.
A class can have a superinterface in more than one way.

A classis said to implement al its superinterfaces.

Example 8.1.5-2. Superinterfaces

interface Col orable {
void setCol or(int color);
int getColor();
}
enum Fini sh { MATTE, GLOSSY }
interface Paintable extends Col orable {
voi d set Fi ni sh(Fi ni sh finish);
Fi ni sh get Fi ni sh();

193

8.1

194

Class Declarations CLASSES

class Point { int x, vy; }
cl ass Col oredPoi nt extends Point inplenments Col orable {
int color;
public void setColor(int color) { this.color = color; }
public int getColor() { return color; }
}
cl ass Pai nt edPoi nt extends Col oredPoi nt inplenments Paintable {
Fi nish finish;
public void setFinish(Finish finish) {
this.finish = finish;
}
public Finish getFinish() { return finish; }

}

Here, the relationships are as follows:

e Theinterface Pai nt abl e isasuperinterface of class Pai nt edPoi nt .

¢ The interface Col or abl e is a superinterface of class Col or edPoi nt and of class
Pai nt edPoi nt .

* TheinterfacePai nt abl e isasubinterface of theinterface Col or abl e, and Col or abl e
is asuperinterface of Pai nt abl e, asdefined in 89.1.3.

The class Pai nt edPoi nt has Col orabl e as a superinterface both because it is a
superinterface of Col or edPoi nt and because it is a superinterface of Pai nt abl e.

Unless the class being declared is abst r act , the declarations of al the method
members of each direct superinterface must be implemented either by adeclaration
in this class or by an existing method declaration inherited from the direct
superclass, because a class that is not abstract is not permitted to have abstract
methods (88.1.1.1).

It is permitted for a single method declaration in a class to implement methods of
more than one superinterface.

Example 8.1.5-3. Implementing M ethods of a Superinterface

interface Col orable {
voi d setColor(int color);
int getColor();

}

class Point { int x, y; };

cl ass Col oredPoi nt extends Point inplenments Col orable {
int color;

}

This program causes a compile-time error, because Col or edPoi nt is not an abst r act
class but fails to provide an implementation of methods set Col or and get Col or of the
interface Col or abl e.

CLASSES Class Declarations 8.1

In the following program:

interface Fish { int getNunberOf Scales(); }
interface Piano { int getNunmber O Scales(); }
class Tuna inplenents Fish, Piano {
/1 You can tune a piano, but can you tuna fish?
public int getNunmberOf Scales() { return 91; }
}

themethod get Number O Scal es in class Tuna hasaname, signature, and return type that
matches the method declared in interface Fi sh and also matches the method declared in
interface Pi ano; it is considered to implement both.

On the other hand, in a situation such as this:

interface Fish { int get Nunber O Scal es(); }
interface StringBass { doubl e getNumber Of Scal es(); }
class Bass inplenments Fish, StringBass {

/1 This declaration cannot be correct,

/1 no matter what type is used.

public ?? getNunberOf Scal es() { return 91; }
}

it is impossible to declare a method named get Nunber O Scal es whose signature and
return type are compatible with those of both the methods declared in interface Fi sh and
in interface St ri ngBass, because a class cannot have multiple methods with the same
signature and different primitive return types (88.4). Therefore, itisimpossible for asingle
class to implement both interface Fi sh and interface St ri ngBass (88.4.8).

A class may not at the same time be a subtype of two interface types which are
different invocations of the same generic interface (89.1.2), or a subtype of an
invocation of ageneric interface and araw type naming that same generic interface,
or acompile-time error occurs.

This requirement was introduced in order to support translation by type erasure (84.6).

Example 8.1.5-4. lllegal Multiple Inheritance of an I nterface
interface |<T> {}

class B inplenments |<Integer> {}
class C extends B inplenents I<String> {}

8.1.6 ClassBody and Member Declarations

A classbody may contain declarations of membersof theclass, that is, fields(88.3),
methods (88.4), classes (88.5), and interfaces (88.5).

195

8.2 Class Members CLASSES

A class body may also contain instance initializers (88.6), static initializers (88.7),
and declarations of constructors (88.8) for the class.

ClassBody:
{ ClassBodyDeclarationsgp }

ClassBodyDeclarations:
ClassBodyDeclaration
ClassBodyDeclarations ClassBodyDeclaration

ClassBodyDeclaration:
ClassMemberDeclaration
Instancel nitializer
Saticlnitializer
Constructor Declaration

ClassMember Declaration:
FieldDeclaration
MethodDeclaration
ClassDeclaration
InterfaceDeclaration

The scope and shadowing of a declaration of a member mdeclared in or inherited
by aclasstype Cis specified in §6.3 and §6.4.

If Citself isanested class, there may be definitions of the same kind (variable, method, or
type) and name as min enclosing scopes. (The scopes may be blocks, classes, or packages.)
In al such cases, the member mdeclared in or inherited by C shadows (86.4.1) the other
definitions of the same kind and name.

8.2 ClassMembers

The members of aclasstype are al of the following:

» Members inherited from its direct superclass (88.1.4), except in class j ect
which has no direct superclass

» Membersinherited from any direct superinterfaces (88.1.5)
» Members declared in the body of the class (88.1.6)

196

CLASSES Class Members 8.2

Members of a class that are declared pri vat e are not inherited by subclasses of
that class.

Only members of a class that are declared pr ot ect ed Or publ i ¢ are inherited by
subclasses declared in a package other than the one in which the classis declared.

Constructors, static initializers, and instance initializers are not members and
therefore are not inherited.

We use the phrase the type of a member to denote:

» For afield, itstype.

» For amethod, an ordered 3-tuple consisting of:
+ argument types: alist of the types of the arguments to the method member.
* return type: the return type of the method member.

* throws clause: exception types declared in the throws clause of the method
member.

Fields, methods, and member types of a class type may have the same name,
sincethey are used in different contexts and are disambiguated by different lookup
procedures (86.5). However, thisis discouraged as a matter of style.

Example 8.2-1. Use of ClassMembers

class Point {
int x, vy;
private Point() { reset(); }
Point(int x, int y) { this.x = x; this.y =vy; }
private void reset() { this.x = 0; this.y =0; }
}
cl ass Col oredPoi nt extends Point {
int color;
void clear() { reset(); } [// error
}
class Test {
public static void main(String[] args) {
Col oredPoi nt ¢ = new Col oredPoint (0, 0); // error
c.reset(); [/ error

}
This program causes four compile-time errors.

One error occurs because Col or edPoi nt has no constructor declared with two i nt
parameters, as requested by the use in mai n. This illustrates the fact that Col or edPoi nt
does not inherit the constructors of its superclass Poi nt .

197

8.2

198

Class Members CLASSES

Another error occurs because Col or edPoi nt declares no constructors, and therefore a
default constructor for it is automatically created (88.8.9), and this default constructor is
equivaent to:

Col oredPoint () { super(); }

which invokes the constructor, with no arguments, for the direct superclass of the class
Col or edPoi nt . The error is that the constructor for Poi nt that takes no arguments is
pri vat e, and thereforeisnot accessible outside the class Poi nt , even through asuperclass
constructor invocation (88.8.7).

Two moreerrorsoccur becausethemethodr eset of classPoi nt ispri vat e, and therefore
isnotinherited by classCol or edPoi nt . Themethod invocationsin method cl ear of class
Col or edPoi nt and in method nai n of class Test are therefore not correct.

Example 8.2-2. Inheritance of Class Memberswith Default Access

Consider the example where the points package declares two compilation units:

package points;
public class Point {
int x, vy;
public void nove(int dx, int dy) { x += dx; y +=dy; }

and:

package points;
public class Point3d extends Point {
int z;
public void nmove(int dx, int dy, int dz) {
X += dx; y +=dy; z += dz;
}
}

and athird compilation unit, in another package, is:

i mport poi nts. Poi nt 3d;
cl ass Poi nt4d extends Point3d {
int w
public void nove(int dx, int dy, int dz, int dw {
X += dx; y +=dy; z +=dz; w+=dw, // conpile-time errors
}
}

Here both classes in the poi nt s package compile. The class Poi nt 3d inherits the fields
x andy of class Poi nt, because it is in the same package as Poi nt . The class Poi nt 4d,
which isin a different package, does not inherit the fields x and y of class Poi nt or the
field z of class Poi nt 3d, and so fails to compile.

CLASSES Class Members

A better way to write the third compilation unit would be:

i mport points. Poi nt 3d;
cl ass Poi nt4d extends Point3d {
int w
public void nove(int dx, int dy, int dz, int dw {
super. move(dx, dy, dz); w += dw;
}
}

using the nove method of the superclass Poi nt 3d to process dx, dy, and dz. If Poi nt 4d
iswritten in thisway, it will compile without errors.

Example 8.2-3. Inheritance of publ i ¢ and pr ot ect ed Class Members

Given the class Poi nt :

package points;
public class Point {
public int x, y;
protected int useCount = O;
static protected int total UseCount = O;
public void nove(int dx, int dy) {
x += dx; y += dy; useCount ++; total UseCount ++;
}
}

the publ i ¢ and pr ot ect ed fieldsx, y, useCount , and t ot al UseCount areinheritedin
all subclasses of Poi nt .

Therefore, this test program, in another package, can be compiled successfully:

class Test extends points. Point {
public void noveBack(int dx, int dy) {
X -= dx; y -= dy; useCount++; total UseCount ++;
}
}

Example 8.2-4. Inheritance of pri vat e Class Members

class Point {
int x, vy;
void nove(int dx, int dy) {
X += dx; y += dy; total Moves++;
}
private static int total Mves;
voi d printMves() { Systemout.println(total Moves); }
}
cl ass Point3d extends Point {
int z;
void nove(int dx, int dy, int dz) {
super. move(dx, dy); z += dz; total Moves++; // error

8.2

199

8.2 Class Members CLASSES

}

Here, the class variable t ot al Moves can be used only within the class Poi nt ; it is not
inherited by the subclass Poi nt 3d. A compile-time error occurs because method move of
class Poi nt 3d triesto increment t ot al Moves.

Example 8.2-5. Accessing M ember s of I naccessible Classes

Even though aclassmight not be declared publ i ¢, instances of the classmight be available
at runtimeto code outside the packagein whichit isdeclared by meansapubl i ¢ superclass
or superinterface. An instance of the class can be assigned to a variable of such apubl i c
type. An invocation of a publ i ¢ method of the object referred to by such a variable
may invoke a method of the class if it implements or overrides a method of the publ i ¢
superclass or superinterface. (In this situation, the method is necessarily declared publ i c,
even though it isdeclared in aclassthat is not publ i c.)

Consider the compilation unit:

package poi nts;
public class Point {
public int x, vy;
public void nove(int dx, int dy) {
X +=dx; y += dy;
}
}

and another compilation unit of another package:

package norePoints;
cl ass Poi nt 3d extends points. Point {
public int z;
public void nmove(int dx, int dy, int dz) {
super. nmove(dx, dy); z += dz;
}
public void nove(int dx, int dy) {
nove(dx, dy, 0);
}

public class OnePoint {
public static points.Point getOne() {
return new Poi nt3d();
}
}

An invocation mor ePoi nt s. OnePoi nt . get One() in yet a third package would return
a Poi nt 3d that can be used as a Poi nt , even though the type Poi nt 3d is not available
outsidethe packagenmor ePoi nt s. Thetwo-argument version of method nove could then be
invoked for that object, which is permissible because method nove of Poi nt 3d iSpubl i ¢
(as it must be, for any method that overrides a publ i ¢ method must itself be publ i c,

200

CLASSES Field Declarations

precisely so that situations such as this will work out correctly). The fieldsx and y of that
object could also be accessed from such a third package.

Whilethefieldz of classPoi nt 3d ispubl i c, itisnot possibleto accessthisfield from code
outside the package nor ePoi nt s, given only areference to an instance of class Poi nt 3d
in avariable p of type Poi nt . Thisis because the expression p. z is not correct, as p has
type Poi nt and class Poi nt hasno field named z; also, the expression ((Poi nt 3d) p) . z
is not correct, because the class type Poi nt 3d cannot be referred to outside package
nor ePoi nt s.

The declaration of the field z as publ i ¢ is not useless, however. If there were to be, in
package nor ePoi nt s, apubl i ¢ subclass Poi nt 4d of the class Poi nt 3d:

package norePoi nts;
public class Point4d extends Point3d {
public int w
public void nove(int dx, int dy, int dz, int dw {
super. move(dx, dy, dz); w += dw;
}
}

then class Poi nt 4d would inherit thefield z, which, being publ i ¢, could then be accessed
by code in packages other than nor ePoi nt s, through variables and expressions of the
publ i c type Poi nt 4d.

8.3 Fidld Declarations

The variables of a class type are introduced by field declarations.

8.3

201

8.3

202

Field Declarations CLASSES

FieldDeclaration:
FieldModifiersypt Type VariableDeclarators;

VariableDeclarators:
VariableDeclarator
VariableDeclarators, VariableDeclarator

VariableDeclarator:
VariableDeclaratorld
VariableDeclaratorld = Variablelnitializer

VariableDeclaratorld:
Identifier
VariableDeclaratorld|]

Variablelnitializer:
Expression
Arraylnitializer

The FieldModifiers are described in §8.3.1.

The Identifier in aFieldDeclarator may be used in anameto refer to the field.

More than one field may be declared in a single field declaration by using more
than one declarator; the FieldModifiers and Type apply to al the declaratorsin the
declaration.

The declared type of a field is denoted by the Type that appears in the field
declaration, followed by any bracket pairs that follow the Identifier in the
declarator.

It is a compile-time error for the body of a class declaration to declare two fields
with the same name.

The scope and shadowing of afield declaration is specified in §6.3 and §6.4.

If the class declares a field with a certain name, then the declaration of that field
is said to hide any and al accessible declarations of fields with the same name in
superclasses, and superinterfaces of the class.

In this respect, hiding of fields differs from hiding of methods (88.4.8.3), for there is
no distinction drawn between st ati ¢ and non-st ati c fields in field hiding whereas a
distinction is drawn between st at i ¢ and hon-st at i ¢ methods in method hiding.

CLASSES Field Declarations

A hidden field can be accessed by using aqualified name (86.5.6.2) if itisst ati c,
or by using afield access expression that contains the keyword super (815.11.2)
or acast to a superclass type.

In this respect, hiding of fieldsis similar to hiding of methods.

If afield declaration hides the declaration of another field, the two fields need not
have the same type.

A class inherits from its direct superclass and direct superinterfaces al the non-
private fields of the superclass and superinterfaces that are both accessible to code
in the class and not hidden by a declaration in the class.

A privat e field of a superclass might be accessible to a subclass - for example, if
both classes are members of the same class. Nevertheless, apri vat e field is never
inherited by a subclass.

Itis possible for aclass to inherit more than one field with the same name. Such a
situation doesnot initself cause acompile-time error. However, any attempt within
the body of the class to refer to any such field by its simple name will result in a
compile-time error, because such areference is ambiguous.

There might be several paths by which the samefield declaration might beinherited
from an interface. In such a situation, the field is considered to be inherited only
once, and it may be referred to by its simple name without ambiguity.

A value stored in afield of typef | oat isaways an element of the float value set
(84.2.3); similarly, a value stored in afield of type doubl e is always an element
of the double value set. It is not permitted for afield of typefl oat to contain an
element of the float-extended-exponent value set that is not also an element of the
float value set, nor for afield of type doubl e to contain an element of the double-
extended-exponent value set that is not also an element of the double value set.

Example 8.3-1. Multiply Inherited Fields

A class may inherit two or more fields with the same name, either from two interfaces or
from its superclass and an interface. A compile-time error occurs on any attempt to refer
to any ambiguously inherited field by its simple name. A qualified name or afield access
expression that contains the keyword super (815.11.2) may be used to access such fields
unambiguously. In the program:

interface Frob { float v = 2.0f; }
cl ass SuperTest { int v =3; }
cl ass Test extends SuperTest inplenments Frob {
public static void main(String[] args) {
new Test (). printV();

}

8.3

203

8.3

204

Field Declarations CLASSES

void printV() { Systemout.printin(v); }
}

the class Test inherits two fields named v, one from its superclass Super Test and one
from its superinterface Fr ob. Thisin itself is permitted, but a compile-time error occurs
because of the use of the simple name v in method pr i nt V: it cannot be determined which
v isintended.

Thefollowing variation usesthefield accessexpression super . v torefer to thefield named
v declared in class Super Test and uses the qualified name Fr ob. v to refer to the field
named v declared in interface Fr ob:

interface Frob { float v 2.0f; }
cl ass SuperTest { int \Y 3; }
cl ass Test extends SuperTest inplenents Frob {
public static void main(String[] args) {
new Test (). printV();

}
void printV() {
Systemout. println((super.v + Frob.v)/2);
}
}

It compiles and prints:
2.5

Even if two distinct inherited fields have the same type, the same value, and are both
final , any reference to either field by ssmple name is considered ambiguous and results
in acompile-time error. In the program:

interface Col or { int RED=0, GREEN-=1, BLUE=2; }

interface TrafficLight { int RED=0, YELLOW1, GREEN=2; }
class Test inplenments Color, TrafficLight {
public static void main(String[] args) {

Systemout.printIln(GREEN); // conpile-tine error

System out. printl n(RED); /Il conpile-tinme error

}

it is not astonishing that the reference to GREEN should be considered ambiguous, because
classTest inheritstwo different declarations for GREEN with different values. The point of
thisexampleisthat the referenceto REDis also considered ambiguous, because two distinct
declarations are inherited. The fact that the two fields named RED happen to have the same
type and the same unchanging value does not affect this judgment.

Example 8.3-2. Re-inheritance of Fields

If the same field declaration is inherited from an interface by multiple paths, the field is
considered to be inherited only once. It may be referred to by its simple name without
ambiguity. For example, in the code:

CLASSES Field Declarations

interface Col orable {
int RED = Oxff0000, GREEN = 0x00ff00, BLUE = 0x0000ff;

}

interface Paintable extends Col orable {
int MATTE = 0, G.OSSY = 1;

}

class Point { int x, y; }

cl ass Col oredPoi nt extends Point inplenments Colorable {}

cl ass Pai nt edPoi nt extends Col oredPoi nt inplenments Paintable {
int p = RED

}

the fields RED, GREEN, and BLUE are inherited by the class Pai nt edPoi nt both through
itsdirect superclass Col or edPoi nt and through its direct superinterface Pai nt abl e. The
simple names RED, GREEN, and BLUE may nevertheless be used without ambiguity within
the class Pai nt edPoi nt to refer to the fields declared in interface Col or abl e.

8.3.1 Fidd Modifiers

FieldModifiers:
FieldModifier
FieldModifiers FieldModifier

FieldModifier: one of
Annotation publ i ¢ prot ected privat e
staticfinal transient volatile

If an annotation a (89.7) on a field declaration corresponds to an annotation
type T (89.6), and T has a (meta)annotation m that corresponds to
j ava. | ang. annot at i on. Tar get , then m must have an element whose value is
j ava. | ang. annot at i on. El enent Type. FI ELD, or acompile-time error occurs.

The access modifiers publ i ¢, prot ect ed, and pri vat e are discussed in §6.6.

It is a compile-time error if the same modifier appears more than once in afield
declaration, or if a field declaration has more than one of the access modifiers
public, protected,andprivate.

If two or more (distinct) field modifiers appear in afield declaration, it is customary, though
not required, that they appear in the order consistent with that shown abovein the production
for FieldModifier.

83.1.1 static Fields

If afield is declared st ati ¢, there exists exactly one incarnation of the field, no
matter how many instances (possibly zero) of the class may eventually be created.

8.3

205

8.3

206

Field Declarations CLASSES

A static field, sometimes called a class variable, is incarnated when the class is
initialized (812.4).

A field that is not declared st at i ¢ (sometimes called anon-st at i ¢ field) iscalled
an instance variable. Whenever anew instance of aclassis created (812.5), a new
variable associated with that instanceis created for every instance variable declared
in that class or any of its superclasses.

Example 8.3.1.1-1. st at i ¢ Fields

class Point {
int x, y, useCount;
Point(int x, int y) { this.x = x; this.y =vy; }
static final Point origin = new Point(0, 0);
}
class Test {
public static void main(String[] args) {
Point p = new Point(1,1);
Point q = new Point(2,2);
p.x = 3;
p.y =3;
p. useCount ++;
p.origin. useCount ++;

Systemout.printin("(" + g.x +"," +qy +")");
System out. println(qg. useCount);
Systemout.printin(qg.origin == Point.origin);

System out. println(qg.origin.useCount);
}
This program prints:

(2,2)
0
true
1

showing that changing the fields x, y, and useCount of p does not affect the fields of q,
because these fields are instance variables in distinct objects. In this example, the class
variableori gi n of theclassPoi nt isreferenced both using the classnameasaqualifier, in
Poi nt . ori gi n, and using variables of the class type in field access expressions (§15.11),
asinp.originandq.origin. These two ways of accessing the ori gi n class variable
access the same object, evidenced by the fact that the value of the reference equality
expression (§15.21.3):

g.origin==Point.origin
istrue. Further evidence is that the incrementation:

p.origin. useCount ++;

CLASSES Field Declarations

causes the value of g. ori gi n. useCount to be 1; this is so because p. ori gi n and
qg. ori gi n refer to the same variable.

Example 8.3.1.1-2. Hiding of Class Variables

class Point {
static int x = 2;
}
cl ass Test extends Point {
static double x = 4.7;
public static void main(String[] args) {
new Test (). printX();

}
void printX() {
Systemout.println(x + " " + super.x);
}
}

This program produces the outpuit:
4.7 2

because the declaration of x in class Test hides the definition of x in class Poi nt , so class
Test doesnot inherit thefield x from its superclass Poi nt . Within the declaration of class
Test , the smple name x refersto thefield declared within class Test . Codein class Test
may refer to thefield x of classPoi nt assuper. x (or, becausex isst at i c, asPoi nt . x).
If the declaration of Test . x is deleted:

class Point {
static int x = 2;
}
cl ass Test extends Point {
public static void main(String[] args) {
new Test (). printX();

}
void printX() {

Systemout.println(x + " " + super.x);
}

}
then the field x of class Poi nt isno longer hidden within class Test ; instead, the simple
name x now refers to the field Poi nt . x. Code in class Test may till refer to that same
field assuper . x. Therefore, the output from this variant programiis:

22

Example 8.3.1.1-3. Hiding of Instance Variables

class Point {
int x =2

}

8.3

207

8.3 Field Declarations CLASSES

cl ass Test extends Point {
double x = 4.7;
void printBoth() {
Systemout.println(x + " " + super.x);
}
public static void main(String[] args) {
Test sanple = new Test();
sanpl e. printBoth();
Systemout.println(sanple.x + " " + ((Point)sanple).Xx);

}

This program produces the outpult:

4.7 2

4.7 2

because the declaration of x in class Test hidesthe definition of x in class Poi nt , so class
Test does not inherit the field x from its superclass Poi nt . It must be noted, however,
that while the field x of class Poi nt is not inherited by class Test, it is nevertheless
implemented by instances of class Test. In other words, every instance of class Test
contains two fields, one of type i nt and one of type doubl e. Both fields bear the name
x, but within the declaration of class Test , the simple name x aways refers to the field
declared within class Test . Code in instance methods of class Test may refer to the
instance variable x of class Poi nt assuper. x.

Code that uses a field access expression to access field x will access the field named x
in the classindicated by the type of reference expression. Thus, the expression sanpl e. x
accesses adoubl e value, theinstance variable declared in class Test , because the type of
the variable sanpl e is Test , but the expression ((Poi nt) sanpl e) . x accesses an i nt
value, the instance variable declared in class Poi nt , because of the cast to type Poi nt .

If the declaration of x is deleted from class Test , asin the program:

class Point {
static int x = 2;
}
cl ass Test extends Point {
void printBoth() {
Systemout.println(x + " " + super.x);
}
public static void main(String[] args) {
Test sanple = new Test();
sanpl e. printBoth();
Systemout.printin(sanple.x + " " + ((Point)sanple).Xx);

}

then the field x of class Poi nt is no longer hidden within class Test . Within instance
methodsin the declaration of class Test , the simple namex now refersto thefield declared
within class Poi nt . Codein class Test may still refer to that same field assuper . x. The
expression sanpl e. x still refers to the field x within type Test , but that field is now an

208

CLASSES Field Declarations

inherited field, and so refers to the field x declared in class Poi nt . The output from this
variant program is:

2 2
2 2
83.1.2 final Fidds

A field can bedeclared fi nal (84.12.4). Both classand instance variables (st ati c
and non-st at i ¢ fields) may be declared fi nal .

Itisacompile-time error if ablank final (84.12.4) classvariableis not definitely
assigned (816.8) by a static initializer (88.7) of the classin which it is declared.

A blank fi nal instance variable must be definitely assigned (816.9) at the end of
every constructor (88.8) of the classin which it is declared; otherwise a compile-
time error occurs.

8.3.1.3 transient Fields

Variables may be marked transi ent to indicate that they are not part of the
persistent state of an object.

Example 8.3.1.3-1. Persistence of t ransi ent Fields
If an instance of the class Poi nt :

class Point {
int x, vy;
transient float rho, theta;

}

were saved to persistent storage by a system service, then only thefieldsx and y would be
saved. This specification does not specify details of such services; see the specification of
java.io. Serializabl e for an example of such aservice.

83.1.4 volatile Fields

The Java programming language allows threads to access shared variables (817.1).
As arule, to ensure that shared variables are consistently and reliably updated, a
thread should ensure that it has exclusive use of such variables by obtaining alock
that, conventionally, enforces mutual exclusion for those shared variables.

The Java programming language provides a second mechanism, vol ati | e fields,
that is more convenient than locking for some purposes.

A field may be declared vol at i | e, in which case the Java Memory Model ensures
that all threads see a consistent value for the variable (817.4).

8.3

209

8.3 Field Declarations CLASSES

It isacompile-time error if afi nal variableisalso declared vol ati | e.

Example 8.3.1.4-1. vol ati | e Fields

If, in the following example, one thread repeatedly callsthe method one (but no more than
I nt eger . MAX_VALUE timesin al), and another thread repeatedly calls the method t wo:

class Test {
static int i =0, j = 0;
static void one() { i++ j++ }
static void two() {
Systemout.println("i=" +i +" j=" +]j);
}

}

then method t wo could occasionally print avalue for j that is greater than the value of i ,
because the exampl e includes no synchronization and, under the rules explained in §17.4,
the shared values of i andj might be updated out of order.

One way to prevent this out-or-order behavior would be to declare methods one and t wo
to be synchr oni zed (§8.4.3.6):

class Test {
static int i =0, j = 0;
static synchroni zed void one() { i++ j++ }
static synchroni zed void two() {
Systemout.println("i=" +1i + " j=" +]j);
}

}

This prevents method one and method two from being executed concurrently, and
furthermore guarantees that the shared values of i and j are both updated before method
one returns. Therefore method t wo never observes a value for j greater than that for i ;
indeed, it always observes the same valuefori andj .

Another approach would be to declarei andj tobevol atil e:

class Test {
static volatile int i =0, j = 0;
static void one() { i++ j++ }
static void two() {
Systemout.println("i=" +1i + " j=" +]j);
}

}

This allows method one and method t wo to be executed concurrently, but guarantees that
accesses to the shared values for i andj occur exactly as many times, and in exactly the
same order, as they appear to occur during execution of the program text by each thread.
Therefore, the shared value for j is never greater than that for i , because each update to
i must be reflected in the shared value for i before the updatetoj occurs. It is possible,
however, that any given invocation of method t wo might observeavalueforj thatismuch

210

CLASSES Field Declarations

greater than the value observed for i , because method one might be executed many times
between the moment when method t wo fetchesthevalueof i and the moment when method
two fetchesthevalueof j .

See 817.4 for more discussion and examples.

8.3.2 Initialization of Fields

If afield declarator contains a variable initializer, then it has the semantics of an
assignment (815.26) to the declared variable, and:

« If the declarator isfor aclass variable (that is, ast at i ¢ field), then the variable
initializer is evaluated and the assignment performed exactly once, when the
classisinitialized (812.4.2).

* If the declarator is for an instance variable (that is, a field that is not st ati c),
then the variableinitializer is evaluated and the assignment performed each time
an instance of the classis created (8§12.5).

Example 8.3.2-1. Field I nitialization

class Point {
int x =1, y =5;

class Test {
public static void main(String[] args) {
Point p = new Point();
Systemout.println(p.x + ", " + p.y);
}
This program produces the output:
1, 5

because the assignments to x and y occur whenever anew Poi nt is created.

Exception checking for a variable initializer in a field declaration is specified in
§11.2.3.

Variable initializers are also used in local variable declaration statements (814.4),
wheretheinitializer is evaluated and the assignment performed each time the local
variable declaration statement is executed.

8.3.2.1 Initializersfor Class Variables

If areference by simple name to any instance variable occurs in an initialization
expression for a class variable, then a compile-time error occurs.

8.3

211

8.3

212

Field Declarations CLASSES

If the keyword t hi s (815.8.3) or the keyword super (815.11.2, 815.12) occursin
an initialization expression for a class variable, then a compile-time error occurs.

At run time, static fields that are final and that are initialized with constant
expressions (815.28) areinitialized first (812.4.2). This also applies to such fields
in interfaces (89.3.1). These fields are "constants" that will never be observed to
have their default initial values (84.12.5), even by devious programs (§13.4.9).

Use of class variables whose declarations appear textually after the use is sometimes
restricted, even though these class variables are in scope. See §8.3.2.3 for the preciserules
governing forward reference to class variables.

8.3.2.2 Initializersfor Instance Variables

Initialization expressions for instance variables may use the simple name of any
static variable declared in or inherited by the class, even one whose declaration
occurs textualy later.

Example 8.3.2.2-1. Out-of-order Field Initialization

class Test {
float f = j;
static int j = 1;

}

This program compileswithout error; itinitializesj to1 when classTest isinitialized, and
initializesf tothecurrent value of j every time aninstance of class Test is created.

Initialization expressions for instance variables are permitted to refer to the current
object t hi s (815.8.3) and to use the keyword super (815.11.2, §15.12).

Use of instance variables whose declarations appear textually after the use is sometimes
restricted, even though these instance variables are in scope. See §8.3.2.3 for the precise
rules governing forward reference to instance variables.

8.3.2.3 Restrictions on the use of Fields during Initialization

The declaration of amember needsto appear textually beforeit isused only if the
member is an instance (respectively st at i ¢) field of aclass or interface c and all
of the following conditions hold:

» Theusage occursin an instance (respectively st at i ¢) variable initializer of cor
in an instance (respectively st ati c) initializer of C.

» The usageis not on the left hand side of an assignment.

» Theusageisviaasimple name.

CLASSES Field Declarations

» cistheinnermost class or interface enclosing the usage.
Itisacompile-timeerror if any of the four requirements above are not met.

Example 8.3.2.3-1. Restrictionson Field I nitialization
A compile-time error occurs for this program:

class Testl {
int i =j; [/ conpile-tine error:
/1 incorrect forward reference
int j =1;
}

whereas the following program compiles without error:

class Test2 {
Test2() { k = 2; }
int j 1;
int i i
int k;

}

even though the constructor (88.8) for Test refersto the field k that is declared three lines
later.

The restrictions above are designed to catch, at compile time, circular or otherwise
malformed initializations. Thus, both:

class Z {
static int i =] + 2;
static int j = 4;

}

and:

class Z {
static { i =] + 2; }
static int i, j;
static { j = 4; }

}

result in compile-time errors. Accesses by methods are not checked in thisway, so:

class Z {
static int peek() { returnj; }
static int i = peek();

static int j = 1;
}
class Test {
public static void main(String[] args) {

8.3

213

8.3 Field Declarations CLASSES

Systemout.println(zZ.i);

}
}
produces the output:
0

because the variable initializer for i uses the class method peek to access the value of the
variablej beforej hasbeen initialized by its variableinitializer, at which point it still has
its default value (84.12.5).

A more elaborate exampleis:

cl ass UseBef oreDecl aration {
static {
x = 100;
/1 ok - assignnent
int y=x+1
/1 error - read before declaration
int v=x=3
/1 ok - x at left hand side of assignnment
int z = UseBeforeDeclaration.x * 2
/'l ok - not accessed via sinple nane

Object o = new Object() {
void foo() { x++ }
/1 ok - occurs in a different class
{ x++; }
/Il ok - occurs in a different class

H
}
{
j = 200;
/'l ok - assignnent
=i+
/1 error - right hand side reads before declaration
int k=j =j +1
/1 error - illegal forward reference to j
int n=j = 300
/Il ok - j at left hand side of assignment
int h =j++
/1 error - read before declaration
int | =this.j * 3

/1 ok - not accessed via sinple nane

Obj ect o = new hject() {
void foo(){ j++ }
/Il ok - occurs in a different class
{i=7+11
/1 ok - occurs in a different class

214

CLASSES Method Declarations

}

int w=x = 3;
/1 ok - x at left hand side of assignnment
int p=x;
/1l ok - instance initializers may access static fields
static int u =
(new Qbject() { int bar() { return x; } }).bar();
/1 ok - occurs in a different class

static int x;

int m=j = 4
/Il ok - j at left hand side of assignment
int o=

(new Object() { int bar() { returnj; } }).bar();
/Il ok - occurs in a different class
int j;

8.4 Method Declarations

A method declares executable code that can be invoked, passing a fixed nhumber
of values as arguments.

MethodDeclaration:
MethodHeader MethodBody

MethodHeader:
MethodModifier sy TypeParameter sy Result MethodDeclarator Throwsgp

MethodDeclar ator :
Identifier (Formal Parameter Listqp)

The FormalParameterList is described in §8.4.1, the MethodModifiers clause in
88.4.3, the TypeParametersclausein §8.4.4, the Result clausein §88.4.5, the Throws
clausein 88.4.6, and the MethodBody in §8.4.7.

Theldentifier inaMethodDeclarator may be used in anameto refer to the method.

Itisacompile-timeerror for the body of aclassto declare as memberstwo methods
with override-equivalent signatures (§8.4.2).

The scope and shadowing of a method declaration is specified in 86.3 and §6.4.

8.4

215

8.4

216

Method Declarations CLASSES

For compatibility with older versions of the Java SE platform, the declaration of a
method that returns an array is allowed to place (some or all of) the empty bracket
pairsthat form the declaration of the array type after the formal parameter list. This
is supported by the following obsolescent production, but should not be used in
new code.

MethodDeclarator:
MethodDeclarator []

8.4.1 Formal Parameters

The formal parameters of a method or constructor, if any, are specified by a list
of comma-separated parameter specifiers. Each parameter specifier consists of a
type (optionally preceded by the fi nal modifier and/or one or more annotations)
and an identifier (optionally followed by brackets) that specifies the name of the
parameter.

Thelast formal parameter of amethod or constructor isspecial: it may beavariable
arity parameter, indicated by an dllipsis following the type.

If the last formal parameter is a variable arity parameter, the method is a variable
arity method. Otherwise, it is afixed arity method.

If a method or constructor has no formal parameters, only an empty pair of
parentheses appears in the declaration of the method or constructor.

CLASSES Method Declarations

Formal ParameterList:
LastFormal Parameter
Formal Parameters, LastFormal Parameter

Formal Parameters:
Formal Parameter
Formal Parameters, Formal Parameter

Formal Parameter:
VariableModifiersyy Type VariableDeclaratorld

VariableModifiers:
VariableModifier
VariableModifiers VariableModifier

VariableModifier: one of
Annotation f i nal

LastFormal Parameter:
VariableModifiersyy Type. . . VariableDeclaratorld
Formal Parameter

The following is repeated from §8.3 to make the presentation here clearer:

VariableDeclaratorld:
Identifier
VariableDeclaratorld |]

If an annotation a (89.7) on a forma parameter corresponds to an
annotation type T (89.6), and T has a (meta-)annotation m that corresponds
to j ava. | ang. annot at i on. Tar get, then m must have an element whose value
iS j ava. | ang. annot at i on. El enent Type. PARAMETER, Or a compile-time error
occurs.

The scope and shadowing of aformal parameter is specified in §6.3 and 86.4.

It is a compile-time error for a method or constructor to declare two formal
parameters with the same name. (That is, their declarations mention the same
Identifier.)

It is a compile-time error if aformal parameter that is declared fi nal is assigned
to within the body of the method or constructor.

8.4

217

8.4

218

Method Declarations CLASSES

It is a compile-time error to use mixed array notation (810.2) for a variable arity
parameter.

The declared type of aformal parameter is denoted by the Type that appearsin its
parameter specifier, followed by any bracket pairs that follow the Identifier in the
declarator, except for a variable arity parameter, whose declared type is an array
type whaose component type is the Type that appearsin its parameter specifier.

If the declared type of a variable arity parameter has a non-reifiable element
type (84.7), then a compile-time unchecked warning occurs for the declaration
of the variable arity method, unless the method is annotated with the
Saf eVar ar gs annotation (89.6.3.7) or the unchecked warning is suppressed by the
Suppr essWar ni ngs annotation (89.6.3.5).

When the method or constructor is invoked (815.12), the values of the actua
argument expressions initialize newly created parameter variables, each of the
declared type, before execution of the body of the method or constructor. The
Identifier that appears in the Declaratorld may be used as a simple name in the
body of the method or constructor to refer to the formal parameter.

Invocations of a variable arity method may contain more actual argument
expressions than formal parameters. All the actual argument expressions that do
not correspond to the formal parameters preceding the variable arity parameter will
be evaluated and the results stored into an array that will be passed to the method
invocation (815.12.4.2).

A method or constructor parameter of type f | oat aways contains an element of
the float value set (84.2.3); similarly, a method or constructor parameter of type
doubl e always contains an element of the double value set. It ishot permitted for a
method or constructor parameter of typef | oat to contain an element of the float-
extended-exponent value set that isnot al so an element of thefloat value set, nor for
amethod parameter of type doubl e to contain an element of the double-extended-
exponent value set that is not also an element of the double value set.

Where an actual argument expression corresponding to a parameter variable is
not FP-strict (815.4), evaluation of that actual argument expression is permitted to
use intermediate values drawn from the appropriate extended-exponent val ue sets.
Prior to being stored in the parameter variable, the result of such an expression
is mapped to the nearest value in the corresponding standard value set by method
invocation conversion (85.3).

CLASSES Method Declarations

8.4.2 Method Signature

Two methods have the same signature if they have the same name and argument
types.

Two method or constructor declarations Mand N have the same argument types if
al of the following conditions hold:

» They have the same number of formal parameters (possibly zero)
» They have the same number of type parameters (possibly zero)

* LetA, ..., A, bethe type parameters of Mmand let By, ..., B, be the type parameters
of N. After renaming each occurrence of a B; in N's type to A, the bounds of
corresponding type variables are the same, and the formal parameter types of M
and N are the same.

The signature of a method my is a subsignature of the signature of a method m if
either:

* m hasthe same signature as m, or
« the signature of m isthe same as the erasure (84.6) of the signature of m.

Two method signatures m and mpy are override-equivalent iff either m is a
subsignature of m, or mp is a subsignature of m.

It is a compile-time error to declare two methods with override-equivalent
signaturesin aclass.

Example 8.4.2-1. Override-Equivalent Signatures

class Point {

int x, vy;

abstract void nmove(int dx, int dy);

void move(int dx, int dy) { x +=dx; y += dy; }
}

This program causes a compile-time error because it declares two nove methods with the
same (and hence, override-equivalent) signature. This is an error even though one of the
declarationsisabst ract .

The notion of subsignature is designed to express a relationship between two methods
whose signatures are not identical, but in which one may override the other. Specifically,
it allows a method whose signature does not use generic types to override any generified
version of that method. This is important so that library designers may freely generify
methods independently of clients that define subclasses or subinterfaces of the library.

Consider the example:

class Col |l ecti onConverter {

8.4

219

8.4

220

Method Declarations CLASSES

Li st toList(Collection c) {...}
}

class Overrider extends Coll ecti onConverter {
Li st toList(Collection c) {...}

}

Now, assume this code was written before the introduction of generics, and now the author
of classCol | ecti onConvert er decidesto generify the code, thus:

class Coll ectionConverter {
<T> List<T> tolList(Collection<T>c) {...}
}

Without special dispensation, Overrider.toList would no longer override
Col | ectionConverter.toList. Instead, the code would be illegal. This would
significantly inhibit the use of generics, since library writers would hesitate to migrate
existing code.

8.4.3 Method M odifiers

MethodModifiers:
MethodModifier
MethodModifiers MethodModifier

MethodModifier: one of
Annotation publ i c prot ect ed pri vat e abstract
static final synchroni zed nativestrictfp

If an annotation a (89.7) on a method declaration corresponds to an
annotation type T (89.6), and T has a (meta-)annotation m that corresponds to
j ava. | ang. annot at i on. Tar get, then m must have an element whose value is
j ava. | ang. annot at i on. El enent Type. METHOD, Or a compile-time error occurs.

It isacompile-time error if the same modifier appears more than once in a method
declaration, or if a method declaration has more than one of the access modifiers
public, protected,andprivat e (86.6).

It is a compile-time error if a method declaration that contains the keyword
abst ract aso containsany one of thekeywordspri vat e, stati c,final,native,
strictfp, Or synchroni zed.

Itisacompile-timeerror if amethod declaration that containsthe keyword nat i ve
also containsstri ctfp.

If two or more (distinct) method modifiers appear in amethod declaration, it is customary,
though not required, that they appear in the order consistent with that shown above in the
production for MethodModifier.

CLASSES Method Declarations

8.4.3.1 abstract Methods

An abstract method declaration introduces the method as a member, providing
its signature (88.4.2), return type, and t hr ows clause (if any), but does not provide
an implementation.

Thedeclaration of an abst r act method mmust appear directly within an abst r act
class (call it A) unless it occurs within an enum (88.9); otherwise a compile-time
error occurs.

Every subclassof Athatisnot abst r act (88.1.1.1) must provide animplementation
for m or a compile-time error occurs.

It would beimpossible for asubclassto implement apri vat e abst r act method, because
pri vat e methods are not inherited by subclasses; therefore such a method could never
be used.

An abstract class can override an abstract method by providing another
abst ract method declaration.

This can provide a place to put a documentation comment, to refine the return type, or to
declare that the set of checked exceptions (811.2) that can be thrown by that method, when
it isimplemented by its subclasses, is to be more limited.

An instance method that is not abstract can be overridden by an abstract
method.

Example 8.4.3.1-1. Abstract/Abstract Method Overriding

cl ass BufferEnpty extends Exception {

Buf ferEnpty() { super(); }
Buf ferEnpty(String s) { super(s); }

class BufferError extends Exception {
BufferError() { super(); }
Buf ferError(String s) { super(s); }

}

interface Buffer {
char get() throws BufferEnpty, BufferError;

}

abstract class InfiniteBuffer inplenents Buffer {
public abstract char get() throws BufferError;

}

The overriding declaration of method get in class | nfi ni t eBuf f er states that method
get in any subclass of InfiniteBuffer never throws a BufferEnpty exception,
putatively because it generates the data in the buffer, and thus can never run out of data.

8.4

221

8.4

222

Method Declarations CLASSES

Example 8.4.3.1-2. Abstract/Non-Abstract Overriding

We can declare an abstract class Poi nt that requires its subclasses to implement
toString if they are to be complete, instantiable classes:

abstract class Point {

int x, vy;

public abstract String toString();
}

Thisabst ract declaration of t oSt ri ng overridesthe non-abst r act t oSt ri ng method
of class oj ect . (Class Obj ect isthe implicit direct superclass of class Poi nt .) Adding
the code:

cl ass Col or edPoi nt extends Point {
int color;
public String toString() {
return super.toString() + ": color " + color; [/ error
}

}

results in a compile-time error because the invocation super.toString() refers to
method t oSt ri ng in class Poi nt , which isabst ract and therefore cannot be invoked.
Method t oSt ri ng of class Qbj ect can be made availableto class Col or edPoi nt only if
class Poi nt explicitly makes it avail able through some other method, asin:

abstract class Point {
int x, vy;
public abstract String toString();
protected String objString() { return super.toString(); }

}
cl ass Col or edPoi nt extends Point {
int color;
public String toString() {
return obj String() + ": color " + color; [/ correct
}
}

84.3.2 static Methods
A method that isdeclared st at i ¢ is called a class method.

It is a compile-time error to use the name of atype parameter of any surrounding
declaration in the header or body of a class method.

A class method is always invoked without reference to a particular object. It isa
compile-time error to attempt to reference the current object using the keyword
t hi s (815.8.3) or the keyword super (815.11.2).

CLASSES Method Declarations

A method that is not declared st at i ¢ iscalled an instance method, and sometimes
caled anon-st at i ¢ method.

An instance method is always invoked with respect to an object, which becomes
the current object to which the keywordst hi s and super refer during execution
of the method body.

8.4.3.3 final Methods
A method can be declaredf i nal to prevent subclassesfrom overriding or hidingit.
It isacompile-time error to attempt to override or hide afi nal method.

A private method and all methods declared immediately within afinal class
(88.1.1.2) behave asif they arefi nal , sinceit isimpossible to override them.

At run time, a machine-code generator or optimizer can "inling" the body of afi nal
method, replacing an invocation of the method with the code in its body. The inlining
process must preserve the semantics of the method invocation. In particular, if the target of
an instance method invocation isnul |, then aNul | Poi nt er Except i on must be thrown
evenif themethodisinlined. A Javacompiler must ensure that the exception will bethrown
at the correct point, so that the actual arguments to the method will be seen to have been
evaluated in the correct order prior to the method invocation.

Consider the example:

final class Point {
int x, vy;
void nove(int dx, int dy) { x += dx; y += dy; }
}
class Test {
public static void main(String[] args) {
Point[] p = new Point[100];
for (int i =0; i < p.length; i++) {
p[i] = new Point();
p[i].nove(i, p.length-1-i);

}
}
}
Inlining the method nove of class Poi nt in method mai n would transform the f or loop
to the form:
for (int i = i < p.length; i++) {

p[i] = new Point();
Point pi = p[il];

int j = p.length-1-i;
pi.x +=i;

pi.y +=j;

8.4

223

8.4

224

Method Declarations CLASSES

The loop might then be subject to further optimizations.

Such inlining cannot be done at compile time unless it can be guaranteed that Test and
Poi nt will always be recompiled together, so that whenever Poi nt - and specifically its
nmove method - changes, the code for Test . mai n will also be updated.

8.4.3.4 native Methods

A method that is nati ve is implemented in platform-dependent code, typically
written in another programming language such as C. The body of anat i ve method
isgiven asasemicolon only, indicating that the implementation is omitted, instead
of ablock.

For example, the class RandomAccessFi | e of the package j ava. i o might declare the
following nat i ve methods:

package java.io;
public class RandomAccessFile
i mpl enents Dat aCut put, Datal nput {

public native void open(String name, bool ean witeable)
throws | OExcepti on;

public native int readBytes(byte[] b, int off, int |en)
throws | OExcepti on;

public native void witeBytes(byte[] b, int off, int len)
throws | OExcepti on;

public native long getFilePointer() throws | OException;

public native void seek(long pos) throws | COExcepti on;

public native long | ength() throws | CException;

public native void close() throws | CExcepti on;

8.4.35 strictfp Methods

The effect of the st ri ct f p modifier isto make all f1 oat or doubl e expressions
within the method body be explicitly FP-strict (§15.4).

8.4.3.6 synchroni zed Methods

A synchroni zed method acquires a monitor (817.1) before it executes.

For aclass (st ati ¢) method, the monitor associated with the d ass object for the
method's classis used.

For an instance method, the monitor associated with t hi s (the object for which the
method was invoked) is used.

CLASSES Method Declarations

Example 8.4.3.6-1. synchr oni zed Monitors

These are the same monitors that can be used by the synchr oni zed statement (814.19).
Thus, the code:

class Test {
int count;
synchroni zed void bunmp() {
count ++;
}
static int classCount;
static synchroni zed void classBunp() {
cl assCount ++;
}
}

has exactly the same effect as:

cl ass BunmpTest {
int count;

voi d bunp() {
synchroni zed (this) { count++; }
}

static int classCount;
static void classBump() {
try {
synchroni zed (d ass. for Name("BunpTest")) {
cl assCount ++;

}
} catch (d assNot FoundException e) {}

}
Example 8.4.3.6-2. synchr oni zed M ethods

public class Box {
private Object boxContents;
public synchroni zed Ooject get() {
Obj ect contents = boxContents;
boxContents = nul |;
return contents;

}

public synchroni zed bool ean put (Obj ect contents) {
if (boxContents != null) return fal se;
boxContents = contents;
return true;

}

}

This program defines a class which is designed for concurrent use. Each instance of the
class Box has an instance variable boxCont ent s that can hold a reference to any object.

8.4

225

8.4

226

Method Declarations CLASSES

Y ou can put an object in aBox by invoking put , which returnsf al se if the box is aready
full. You can get something out of a Box by invoking get , which returns a null reference
if the box is empty.

If put and get were not synchroni zed, and two threads were executing methods for
the same instance of Box at the same time, then the code could misbehave. It might, for
example, lose track of an object because two invocations to put occurred at the sametime.

84.4 Generic Methods

A method is generic if it declares one or more type variables (84.4).

These type variables are known as the type parameters of the method. The form of
the type parameter section of a generic method is identical to the type parameter
section of ageneric class (88.1.2).

A generic method declaration defines a set of methods, one for each possible
invocation of the type parameter section by type arguments. Type arguments may
not need to be provided explicitly when a generic method is invoked, as they can
often be inferred (815.12.2.7).

The scope and shadowing of a method's type parameter is specified in §86.3.

8.4.5 Method Return Type

Theresult of amethod declaration either declares the type of value that the method
returns (the return type), or usesthe keyword voi d to indicate that the method does
not return a value.

Result:
Type

voi d

Return types may vary among methods that override each other if the return types
are reference types. The notion of return-type-substitutability supports covariant
returns, that is, the specialization of the return type to a subtype.

A method declaration d; with return typeR; isreturn-type-substitutable for another
method d, with return type R, if and only if the following conditions hold:

e If Ry iSvoidthen R, iSvoi d.
» If Ry isaprimitivetype, then R, isidentical toR;.

 If R, isareference type then:

CLASSES Method Declarations 8.4

* R, is either a subtype of R, or R; can be converted to a subtype of R, by
unchecked conversion (85.1.9), or

* R =R

An unchecked conversion is allowed in the definition, despite being unsound, as a specid
allowance to allow smooth migration from non-generic to generic code. If an unchecked
conversion is used to determine that R, is return-type-substitutable for Ry, then R; is
necessarily not a subtype of R, and the rules for overriding (88.4.8.3, §9.4.1) will require
a compile-time unchecked warning.

8.4.6 Method Throws

A throws clause is used to declare any checked exception classes (811.1.1) that
the statements in a method or constructor body can throw (811.2.2).

Throws:
t hr ows ExceptionTypeList

ExceptionTypeL.ist:
ExceptionType
ExceptionTypelList, ExceptionType

ExceptionType:
TypeName
TypeVariable

It is a compile-time error if any ExceptionType mentioned in at hrows clauseis
not a subtype (84.10) of Thr owabl e.

Type variables are allowed in at hr ows clause even though they are not allowed
inacat ch clause.

Example 8.4.6-1. Type Variables as Thrown Exception Types

import java.io.FileNot FoundExcepti on;
interface Privil egedExcepti onActi on<E extends Exception> {
void run() throws E;
}
cl ass AccessController {
public static <E extends Exception>
Obj ect doPrivil eged(Privil egedExceptionActi on<E> action) throws E {
action.run();
return "success";

227

8.4 Method Declarations CLASSES

class Test {
public static void main(String[] args) {

try {
AccessControl | er. doPrivil eged(

new Privil egedExcepti onActi on<Fi | eNot FoundExcepti on>() {
public void run() throws FileNot FoundException {
/Il ... delete a file ...

}
1
} catch (Fil eNot FoundException f) { /* Do sonmething */ }

}

It is permitted but not required to mention unchecked exception classes (811.1.1)
inathrows clause.

Therelationship between at hr ows clause and the exception checking for amethod
or constructor body is specified in §11.2.3.

Essentially, for each checked exception that can result from execution of the body of a
method or constructor, acompile-time error occurs unlessits exception type or a supertype
of its exception typeis mentioned in at hr ows clause in the declaration of the method or
constructor.

The requirement to declare checked exceptions allows a Java compiler to ensure that code
for handling such error conditions has been included. Methods or constructors that fail to
handle exceptional conditions thrown as checked exceptions in their bodies will normally
cause compile-time errorsif they lack proper exception typesin their t hr ows clauses. The
Javaprogramming language thus encourages aprogramming stylewhererareand otherwise
truly exceptional conditions are documented in thisway.

The relationship between thet hr ows clause of amethod and thet hr ows clauses of
overridden or hidden methods is specified in §8.4.8.3.

8.4.7 Method Body

A method body is either a block of code that implements the method or smply a
semicolon, indicating the lack of an implementation.

MethodBody:
Block

’

It isacompile-timeerror if amethod declaration iseither abst ract or nati ve and
has a block for its body.

It is a compile-time error if a method declaration is neither abst ract hor nati ve
and has a semicolon for its body.

228

CLASSES Method Declarations

If an implementation isto be provided for amethod declared voi d, but the implementation
requires no executable code, the method body should be written as a block that contains
no statements: "{ }".

If amethod is declared voi d, then its body must not contain any r et ur n statement
(814.17) that has an Expression, or a compile-time error occurs.

If amethod is declared to have areturn type, then every r et ur n statement (814.17)
in its body must have an Expression, or a compile-time error occurs.

If amethod is declared to have areturn type, then a compile-time error occurs if
the body of the method can complete normally (814.1).

In other words, a method with areturn type must return only by using ar et ur n statement
that provides avalue return; it is not allowed to "drop off the end of its body".

Note that it is possible for a method to have a declared return type and yet contain no
r et ur n statements. Hereis one example:

class DizzyDean {
int pitch() { throw new RuntineException("90 nph?!"); }
}

8.4.8 Inheritance, Overriding, and Hiding

A classcinheritsfrom its direct superclass and direct superinterfacesall abst r act
and non-abst r act methods of the superclass and superinterfaces that are publ i c,
pr ot ect ed, or declared with default accessin the sasme package asc, and areneither
overridden (88.4.8.1) nor hidden (88.4.8.2) by a declaration in the class.

Methods are overridden or hidden on a signature-by-signature basis.

If, for example, a class declares two publ i ¢ methods with the same name (88.4.9), and a
subclass overrides one of them, the subclass still inherits the other method.

If the method not inherited is declared in a class, or the method not inherited
is declared in an interface and the new declaration is abstract, then the new
declaration is said to override it.

If the method not inherited isabst ract and the new declaration is not abst r act ,
then the new declaration is said to implement it.
8.4.8.1 Overriding (by Instance Methods)

An instance method m;, declared in class C, overrides another instance method m,
declared in class A iff all of the following are true:

8.4

229

8.4

230

Method Declarations CLASSES

e Cisasubclass of A.
» The signature of m isasubsignature (88.4.2) of the signature of m.
* Either:

* mpiSpublic, prot ect ed, or declared with default accessin the same package
asc, or

* m overrides a method my (my distinct from m, my distinct from m), such that
m; overrides m.

Moreover, if m is not abstract, then m is said to implement any and al
declarations of abst ract methods that it overrides.

The signature of an overriding method may differ from the overridden one if a formal
parameter in one of the methods has a raw type, while the corresponding parameter in the
other has a parameterized type.

The rules allow the signature of the overriding method to differ from the overridden one,
to accommodate migration of pre-existing code to take advantage of generics. See §8.4.2
for further analysis.

It isacompile-time error if an instance method overrides ast at i ¢ method.

In this respect, overriding of methods differs from hiding of fields (88.3), for it is
permissible for an instance variable to hide ast at i ¢ variable.

An overridden method can be accessed by using a method invocation expression
(815.12) that contains the keyword super .

A qualified name or a cast to a superclass type is not effective in attempting to
access an overridden method; in this respect, overriding of methods differs from
hiding of fields (§15.12.4.4).

The presence or absence of the st ri ct f p modifier has absolutely no effect on the
rules for overriding methods and implementing abstract methods. For example, it
is permitted for a method that is not FP-strict to override an FP-strict method and
it is permitted for an FP-strict method to override a method that is not FP-strict.

Example 8.4.8.1-1. Overriding

class Point {
int x =0, y=0;
void move(int dx, int dy) { x +=dx; y += dy; }
}
cl ass Sl owPoi nt extends Point {
int xLimt, yLimt;
void nove(int dx, int dy) {
super.move(limt(dx, xLimt), limt(dy, yLimt));

CLASSES Method Declarations 8.4

}
static int limt(int d, int limt) {

returnd > 1limt ?2limt : d<-limt ? -limt : d;
}

}

Here, the class S| owPoi nt overrides the declarations of method nove of classPoi nt with
itsown nove method, which limits the distance that the point can move on each invocation
of the method. When the nove method isinvoked for an instance of class SI owPoi nt , the
overriding definition in class S| owPoi nt will always be called, even if the referenceto the
Sl owPoi nt object istaken from a variable whose typeis Poi nt .

Example 8.4.8.1-2. Overriding

Overriding makesit easy for subclassesto extend the behavior of an existing class, asshown
in thisexample:

import java.io.CQutputStream
i mport java.io.| OException;

cl ass Buf ferQutput {

private Qutput Stream o;

Buf f er Qut put (Qutput Streamo) { this.o = o; }

protected byte[] buf = new byte[512];

protected int pos = 0;

public void putchar(char c) throws | CException {
if (pos == buf.length) flush();
buf [pos++] = (byte)c;

}
public void putstr(String s) throws | OException {
for (int i =0; i <s.length(); i++)
putchar (s.charAt(i));
}

public void flush() throws | OException {
o.wite(buf, 0, pos);
pos = 0;

}

}
cl ass Li neBufferQutput extends BufferQutput {

Li neBuf f er Qut put (Qut put Stream o) { super(o); }
public void putchar(char c) throws | CException {
super . put char(c);
if (c =="\n") flush();
}
}

class Test {
public static void main(String[] args) throws | OException {
Li neBuf fer Qut put | bo = new Li neBufferQut put (System out);
| bo. putstr ("I bo\nlbo");
Systemout.print("print\n");
I bo. putstr("\n");

231

8.4

232

Method Declarations

}
This program produces the output:

I bo
print
| bo

The class BufferQutput implements a very simple buffered version of an
Qut put St r eam flushing the output when the buffer is full or f1 ush is invoked. The
subclass Li neBuf f er Qut put declares only a constructor and a single method put char,
which overrides the method put char of Buf f er Qut put . It inherits the methods put st r
and f | ush from class Buf f er Qut put .

In the put char method of a Li neBuf f er Qut put object, if the character argument is a
newline, then it invokes the f1 ush method. The critical point about overriding in this
exampleisthat themethod put st r, whichisdeclared in classBuf f er Qut put , invokesthe
put char method defined by the current object t hi s, which isnot necessarily the put char
method declared in class Buf f er Qut put .

Thus, when put st r isinvoked in mai n using the Li neBuf f er Qut put object | bo, the
invocation of put char inthe body of the put st r method is an invocation of the put char
of the object | bo, the overriding declaration of put char that checks for a newline. This
allowsasubclass of Buf f er Qut put to changethe behavior of the put st r method without
redefining it.

Documentation for a class such as Buf f er Qut put, which is designed to be extended,
should clearly indicate what is the contract between the class and its subclasses, and
should clearly indicate that subclasses may override the put char method in this way.
The implementor of the Buf f er Qut put class would not, therefore, want to change the
implementation of put str in afuture implementation of Buf f er Qut put not to use the
method put char , because this would break the pre-existing contract with subclasses. See
the discussion of binary compatibility in 813, especially §13.2.

8.4.8.2 Hiding (by Class Methods)

If aclass declares astati ¢ method m then the declaration mis said to hide any
method n , where the signature of mis a subsignature (88.4.2) of the signature of
m , in the superclasses and superinterfaces of the class that would otherwise be
accessible to code in the class.

Itisacompile-time error if ast ati ¢ method hides an instance method.

In this respect, hiding of methods differs from hiding of fields (88.3), for it is permissible
for astati c variable to hide an instance variable. Hiding is also distinct from shadowing
(86.4.1) and obscuring (86.4.2).

CLASSES

CLASSES Method Declarations

A hidden method can be accessed by using a qualified name or by using a method
invocation expression (815.12) that contains the keyword super or a cast to a
superclass type.

In this respect, hiding of methods is similar to hiding of fields.
Example 8.4.8.2-1. Invocation of Hidden Class M ethods

A class (st at i ¢) method that is hidden can be invoked by using a reference whose type
is the class that actually contains the declaration of the method. In this respect, hiding of
st ati ¢ methods is different from overriding of instance methods. The example:

cl ass Super {
static String greeting() { return "Goodnight"; }
String nane() { return "Richard"; }

}

cl ass Sub extends Super {
static String greeting() { return "Hello"; }
String nane() { return "Dick"; }

}

class Test {
public static void main(String[] args) {
Super s = new Sub();
Systemout.printin(s.greeting() +", " + s.name());

}
produces the output:
Goodni ght, Di ck
because the invocation of gr eet i ng uses the type of s, namely Super, to figure out, at

compiletime, which class method to invoke, whereas the invocation of nanme usesthe class
of s, namely Sub, to figure out, at run time, which instance method to invoke.

8.4.8.3 Requirementsin Overriding and Hiding

If amethod declaration d; with return type R, overrides or hides the declaration of
another method d, with return type R;, then d; must be return-type-substitutable
(88.4.5) for d,, or acompile-time error occurs.

This rule alows for covariant return types - refining the return type of a method when
overriding it.

If Ry is not a subtype of R,, a compile-time unchecked warning occurs unless
suppressed by the Suppr essVar ni ngs annotation (89.6.3.5).

8.4

233

8.4

234

Method Declarations CLASSES

A method that overrides or hides another method, including methods that
implement abst ract methods defined in interfaces, may not be declared to throw
more checked exceptions than the overridden or hidden method.

In this respect, overriding of methods differs from hiding of fields (88.3), for it is
permissible for afield to hide afield of another type.

More precisely, suppose that B is a class or interface, and A is a superclass or
superinterface of B, and a method declaration n in B overrides or hides a method
declaration min A. Then:

» If n hasat hr ows clause that mentions any checked exception types, then mmust
have at hr ows clause, or a compile-time error occurs.

» For every checked exception type listed in the t hr ows clause of n, that same
exception class or one of its supertypes must occur in the erasure (84.6) of the
t hr ows clause of m otherwise, a compile-time error occurs.

* If theunerasedt hr ows clause of mdoes not contain a supertype of each exception
typeinthet hr ows clause of n, a compile-time unchecked warning occurs.

Itisacompile-timeerror if atype declaration T has amember method m and there
exists amethod my declared in T or a supertype of T such that all of the following
conditions hold:

* m and m have the same name.
* m isaccessiblefromT.
» The signature of m is not a subsignature (§8.4.2) of the signature of my.

» The signature of m or some method m, overrides (directly or indirectly) has the
same erasure as the signature of mpy or some method my overrides (directly or
indirectly).

These restrictions are necessary because generics are implemented via erasure. The rule
above implies that methods declared in the same class with the same name must have
different erasures. It also implies that a type declaration cannot implement or extend two
distinct invocations of the same generic interface.

The access modifier (86.6) of an overriding or hiding method must provide at |east
as much access as the overridden or hidden method, as follows:

« |f the overridden or hidden method is publ i ¢, then the overriding or hiding
method must be publ i ¢; otherwise, a compile-time error occurs.

* If the overridden or hidden method is pr ot ect ed, then the overriding or hiding
method must be pr ot ect ed or publ i ¢; otherwise, a compile-time error occurs.

CLASSES Method Declarations 8.4

 If the overridden or hidden method has default (package) access, then the
overriding or hiding method must not be pri vat e; otherwise, a compile-time
€rror occurs.

Note that a pri vat e method cannot be hidden or overridden in the technical sense of
those terms. This means that a subclass can declare a method with the same signature as
aprivat e method in one of its superclasses, and there is no requirement that the return
type or t hr ows clause of such a method bear any relationship to those of the pri vat e
method in the superclass.

Example 8.4.8.3-1. Covariant Return Types

The following declarations are legal in the Java programming language from Java SE 5.0
onwards:

class C inplenments C oneable {
C copy() throws C oneNot SupportedException {
return (Cclone();

}
}
class D extends C inplenments C oneable {
D copy() throws O oneNot SupportedException {
return (D)clone();
}
}

The relaxed rule for overriding also allows one to relax the conditions on abstract classes
implementing interfaces.

Example 8.4.8.3-2. Unchecked Warning from Return Type

Consider:

class StringSorter {
/1 turns a collection of strings into a sorted |ist
Li st tolList(Collectionc) {...}

}

and assume that someone subclasses St ri ngSorter:

class Overrider extends StringSorter {
Li st toList(Collectionc) {...}
}

Now, at some point the author of St ri ngSor t er decidesto generify the code:

class StringSorter {
/1 turns a collection of strings into a sorted |ist
Li st<String> toList(Collection<String>c) {...}

235

8.4

236

Method Declarations CLASSES

}

An unchecked warning would be given when compiling Overri der against the new
definition of StringSorter because the return type of Overrider.toList isList,
which is not a subtype of the return type of the overridden method, Li st <St ri ng>.

Example 8.4.8.3-3. Incorrect Overriding because of t hr ows

This program uses the usual and conventional form for declaring a new exception type, in
its declaration of the class BadPoi nt Except i on:

cl ass BadPoi nt Excepti on extends Exception {
BadPoi nt Exception() { super(); }
BadPoi nt Exception(String s) { super(s); }

}
class Point {

int x, vy;

void move(int dx, int dy) { x +=dx; y += dy; }
}

cl ass CheckedPoi nt extends Point {
voi d move(int dx, int dy) throws BadPoi nt Exception {
if ((x +dx) <0 || (y +dy) <0)
t hrow new BadPoi nt Exception();
X += dx; y += dy;

}

The program results in a compile-time error, because the override of method nove in class
CheckedPoi nt declaresthat it will throw achecked exception that thenove in classPoi nt

has not declared. If this were not considered an error, an invoker of the method move on
a reference of type Poi nt could find the contract between it and Poi nt broken if this
exception were thrown.

Removing thet hr ows clause does not help:

cl ass CheckedPoi nt extends Point {
void nove(int dx, int dy) {
if ((x +dx) <0]] (y +dy) <0)
t hr ow new BadPoi nt Excepti on()
X += dx; y += dy;

}

A different compile-time error now occurs, because the body of the method nove cannot
throw a checked exception, namely BadPoi nt Except i on, that does not appear in the
t hr ows clause for nove.

Example 8.4.8.3-4. Erasure Affects Overriding

A class cannot have two member methods with the same name and type erasure:

CLASSES Method Declarations

class C<T> {
Tid(Tx) {...}
}

class D extends C<String> {
Cbject id(oject x) {...}
}

This is illegal since D.i d(Obj ect) is a member of D, C<String>.id(String) is
declared in a supertype of D, and:

* The two methods have the same name, i d

e C<String>.id(String) isaccessibletoD

e The signature of D.id(Cbject) is not a subsignature of that of
C<String>.id(String)

¢ The two methods have the same erasure
Two different methods of a class may not override methods with the same erasure:

class C<T> {
Tid(Tx) {...}
}

interface |<T> {
Tid(T x);

}

class D extends C<String> inplenments |<Integer> {
public String id(String x) {...}
public Integer id(Integer x) {...}

}

Thisisalsoillegal, sinceD.i d(String) isamember of D, D. i d(| nteger) isdeclared
in D, and:

* The two methods have the same name, i d

e D.id(Integer) isaccessibletoD

« Thetwo methods have different signatures (and neither is a subsignature of the other)

e D.id(String) overrides C<String>.id(String) and D.id(lnteger) overrides
I.id(Integer) yetthetwo overridden methods have the same erasure

8.4.8.4 Inheriting Methods with Override-Equivalent Sgnatures

It is possible for a class to inherit multiple methods with override-equivalent
signatures (88.4.2).

It is a compile-time error if a class C inherits a concrete method whose signature
is a subsignature of another concrete method inherited by C. This can happen if

8.4

237

8.4

238

Method Declarations CLASSES

a superclass is generic, and it has two methods that were distinct in the generic
declaration, but have the same signature in the particular invocation used.

Otherwise, there are two possible cases:
« |f one of the inherited methods is not abst r act , then there are two subcases:
+ If the method that is not abst ract iSstati ¢, acompile-time error occurs.

+ Otherwise, the method that is not abstract is considered to override, and
thereforetoimplement, all the other methods on behalf of the classthat inherits
it.

If the signature of the non-abst ract method is not a subsignature of each of
the other inherited methods, a compil e-time unchecked warning occurs unless
suppressed by the Suppr essWar ni ngs annotation (89.6.3.5).

If the return type of the non-abst ract method is not a subtype of the return
type of any of the other inherited methods, a compile-time unchecked warning
occurs unless suppressed by the Suppr esswar ni ngs annotation (89.6.3.5).

A compile-time error occursif the return type of the non-abst r act method is
not return-type-substitutable (88.4.5) for each of the other inherited methods.

A compile-time error occurs if the inherited method that is not abst ract has
athrows clause that conflicts (88.4.6) with that of any other of the inherited
methods.

 If al the inherited methods are abstract, then the class is necessarily an
abstract classand isconsidered to inherit all the abst r act methods.

One of the inherited methods must be return-type-substitutable for every other
inherited method; otherwise, a compile-time error occurs. (Thet hr ows clauses
do not cause errorsin this case.)

There might be several paths by which the same method declaration might be
inherited from aninterface. Thisfact causesno difficulty and never, of itself, results
in acompile-time error.

8.4.9 Overloading

I two methods of aclass (whether both declared in the same class, or both inherited
by aclass, or one declared and one inherited) have the same hame but signatures
that are not override-equivalent, then the method nameis said to be overloaded.

This fact causes no difficulty and never of itself results in a compile-time error.
There is no required relationship between the return types or between thet hr ows

CLASSES Method Declarations

clauses of two methods with the same name, unless their signatures are override-
equivalent.

When a method is invoked (§15.12), the number of actual arguments (and any
explicit type arguments) and the compile-time types of the arguments are used,
at compile time, to determine the signature of the method that will be invoked
(815.12.2). If the method that is to be invoked is an instance method, the actual
method to beinvoked will be determined at run time, using dynamic method lookup
(815.12.4).

Example 8.4.9-1. Overloading

class Point {
float x, vy;
void nove(int dx, int dy) { x += dx; y += dy; }
voi d move(float dx, float dy) { x += dx; y += dy; }
public String toString() { return "("+x+","+y+")"; }
}

Here, the class Poi nt has two members that are methods with the same name, nove. The
overloaded move method of class Poi nt chosen for any particular method invocation is
determined at compile time by the overloading resolution procedure given in §15.12.

Intotal, the membersof theclassPoi nt arethef | oat instancevariablesx andy declaredin
Poi nt , the two declared move methods, the declared t oSt ri ng method, and the members
that Poi nt inheritsfromitsimplicit direct superclass Qoj ect (84.3.2), such asthe method
hashCode. Note that Poi nt does not inherit the t oSt ri ng method of class Obj ect
because that method is overridden by the declaration of the t oSt ri ng method in class
Poi nt .

Example 8.4.9-2. Overloading, Overriding, and Hiding

class Point {
int x =0, y=0;
void nove(int dx, int dy) { x += dx; y += dy; }
int color;
}
cl ass Real Poi nt extends Point {
float x = 0.0f, y = 0.0f;
voi d move(int dx, int dy) { nove((float)dx, (float)dy); }
void nove(float dx, float dy) { x += dx; y += dy; }
}

Here, the class Real Poi nt hides the declarations of thei nt instance variablesx andy of
classPoi nt withitsownf | oat instancevariablesx andy, and overridesthe method nove
of class Poi nt with its own nove method. It also overloads the name nove with another
method with a different signature (88.4.2).

8.4

239

8.4 Method Declarations CLASSES

In this example, the members of the class Real Poi nt include the instance variable
col or inherited from the class Poi nt , the f | oat instance variables x and y declared in
Real Poi nt , and the two nove methods declared in Real Poi nt .

Which of these overloaded nove methods of class Real Poi nt will be chosen for any
particular method invocation will be determined at compile time by the overloading
resolution procedure described in §15.12.

Thisfollowing program is an extended variation of the preceding program:

class Point {
int x =0, y =0, color;
void move(int dx, int dy) { x +=dx; y += dy; }
int getX() { return x; }
int getY() { returny; }
}
cl ass Real Poi nt extends Point {
float x = 0.0f, y = 0.0f;
voi d move(int dx, int dy) { nove((float)dx, (float)dy); }
void nove(float dx, float dy) { x += dx; y += dy; }
float getX() { return x; }
float getY() { returny; }

}

Here, the class Poi nt provides methods get X and get Y that return the values of itsfields
x andy; the class Real Poi nt then overrides these methods by declaring methods with the
same signature. The result istwo errors at compile time, one for each method, because the
return types do not match; the methods in class Poi nt return values of typei nt, but the
wanna-be overriding methods in class Real Poi nt return values of typef | oat .

This program corrects the errors of the preceding program:

class Point {
int x =0, y=0;
void nove(int dx, int dy) { x += dx; y += dy; }
int getX() { return x; }
int getY() { returny; }
int color;
}
cl ass Real Poi nt extends Point {
float x = 0.0f, y = 0.0f;
void nove(int dx, int dy) { nove((float)dx, (float)dy); }
voi d move(float dx, float dy) { x += dx; y += dy; }
int getX() { return (int)Mth.floor(x); }
int getY() { return (int)Math.floor(y); }
}

Here, the overriding methods get X and get Y in class Real Poi nt have the same return
types as the methods of class Poi nt that they override, so this code can be successfully
compiled.

240

CLASSES Method Declarations 8.4

Consider, then, this test program:

class Test {
public static void main(String[] args) {
Real Point rp = new Real Point();
Point p = rp;
rp. nove(1. 71828f, 4.14159f)
p. move(1, -1);
show(p. x, p.y);
show(rp.x, rp.y);
show(p. get X(), p.getY());
show(rp.getX(), rp.getY());

}

static void show(int x, int y) {
Systemout.printIn("(" + x + ", " +y +")");

}

static void show(float x, float y) {
Systemout.printin("(" +x + ", " +y +")");

}

}
The output from this programis:

(0, 0)
(2.7182798, 3.14159)
(2, 3)
(2, 3)

Thefirst line of output illustrates the fact that an instance of Real Poi nt actually contains
the two integer fields declared in class Poi nt ; it is just that their names are hidden from
code that occurs within the declaration of class Real Poi nt (and those of any subclasses
it might have). When a reference to an instance of class Real Poi nt in avariable of type
Poi nt isused to accessthe field x, theinteger field x declared in class Poi nt isaccessed.
Thefact that its value is zero indicates that the method invocation p. nove(1, -1) didnot
invoke the method nove of class Poi nt ; instead, it invoked the overriding method nove
of class Real Poi nt .

The second line of output shows that the field accessr p. x refersto the field x declared in
class Real Poi nt . Thisfield is of typef | oat, and this second line of output accordingly
displays floating-point values. Incidentally, this also illustrates the fact that the method
name s howisoverloaded; thetypesof the argumentsin themethod invocation dictatewhich
of the two definitions will be invoked.

The last two lines of output show that the method invocations p. get X() andr p. get X()
each invoke the get X method declared in class Real Poi nt . Indeed, there is no way to
invoke the get X method of class Poi nt for an instance of class Real Poi nt from outside
the body of Real Poi nt, no matter what the type of the variable we may use to hold the
reference to the object. Thus, we see that fields and methods behave differently: hiding is
different from overriding.

241

8.5

242

Member Type Declarations CLASSES

8.5 Member Type Declarations

A member classis a class whose declaration is directly enclosed in another class
or interface declaration.

A member interfaceisan interfacewhose declaration isdirectly enclosed in another
class or interface declaration.

The accessibility of amember type in a class declaration is specified in §86.6.

It is a compile-time error if a member type declaration has more than one of the
access modifierspubl i c, prot ect ed, and pri vat e.

Member type declarations may have annotation modifiers (89.7) like any other type
or member declaration.

The scope and shadowing of a member type is specified in §6.3 and §6.4.

If aclass declares a member type with a certain name, then the declaration of that
type is said to hide any and all accessible declarations of member types with the
same name in superclasses and superinterfaces of the class.

In this respect, hiding of member typesis similar to hiding of fields (§8.3).

A class inherits from its direct superclass and direct superinterfaces all the
non-pri vat e member types of the superclass and superinterfaces that are both
accessible to code in the class and not hidden by a declaration in the class.

A class may inherit two or more type declarations with the same name, either from
two interfaces or from its superclass and an interface. It is a compile-time error to
attempt to refer to any ambiguously inherited class or interface by its simple name.

If the same type declaration is inherited from an interface by multiple paths, the
class or interface is considered to be inherited only once. It may be referred to by
its simple name without ambiguity.

8.5.1 Static Member Type Declarations

The st ati ¢ keyword may modify the declaration of a member type Cc within the
body of anon-inner classor interface T. Its effect isto declare that cisnot an inner
class. Just asast at i ¢ method of T has no current instance of T inits body, C aso
has no current instance of T, nor doesit have any lexically enclosing instances.

It is a compile-time error if a static class contains a usage of a non-static
member of an enclosing class.

CLASSES Instance Initializers 8.6

A member interfaceisimplicitly st at i ¢ (89.1.1). Itispermitted for the declaration
of amember interface to redundantly specify the st at i ¢ modifier.

8.6 Instancelnitializers

Aninstanceinitializer declared in aclassis executed when an instance of the class
iscreated (812.5, §15.9, §8.8.7.1).

Instancel nitializer:
Block

It is a compile-time error if an instance initializer cannot complete normally
(814.21).

It isacompile-time error if ar et ur n statement (814.17) appears anywhere within
an instance initializer.

Instance initializers are permitted to refer to the current object via the keyword
t hi s (815.8.3), to use the keyword super (815.11.2, §15.12), and to use any type
variablesin scope.

Use of instance variables whose declarations appear textually after the use is sometimes
restricted, even though these instance variables are in scope. See §8.3.2.3 for the precise
rules governing forward reference to instance variables.

Exception checking for an instance initializer is specified in §11.2.3.

8.7 Static Initializers

A datic initializer declared in a class is executed when the class is initialized
(812.4.2). Together with any field initializers for class variables (88.3.2), static
initializers may be used to initialize the class variables of the class.

Saticlnitializer:
stati c Block

Itisacompile-time error if astatic initializer cannot complete normally (814.21).

Itisacompile-timeerror if ar et ur n statement (814.17) appears anywhere within
adtatic initializer.

243

8.8

244

Constructor Declarations CLASSES

It is a compile-time error if the keyword t hi s (815.8.3) or the keyword super
(815.11, 815.12) or any type variable declared outside the static initializer, appears
anywhere within a static initializer.

Use of class variables whose declarations appear textualy after the use is sometimes
restricted, even though these class variables are in scope. See §8.3.2.3 for the precise rules
governing forward reference to class variables.

Exception checking for a static initializer is specified in §11.2.3.

8.8 Constructor Declarations

A constructor is used in the creation of an object that is an instance of a class
(8125, 815.9).

ConstructorDeclaration:
Constructor Modifier sy Constructor Declarator
Throwsg,: Constructor Body

Constructor Declarator:
TypeParameter sop: SmpleTypeName (- Formal Parameter Listop)

The SmpleTypeName in the Constructor Declarator must be the simple name of
the class that contains the constructor declaration; otherwise a compile-time error
occurs.

Inall other respects, the constructor declaration looksjust like amethod declaration
that has no result (88.4.5).

Constructor declarations are not members. They are never inherited and therefore
are not subject to hiding or overriding.

Example 8.8-1. Constructor Declarations

class Point {

int x, vy;

Point(int x, int y) { this.x = x; this.y =vy; }
}

Constructors are invoked by class instance creation expressions (815.9), by
the conversions and concatenations caused by the string concatenation operator
+ (815.18.1), and by explicit constructor invocations from other constructors
(88.8.7).

CLASSES Constructor Declarations

Constructors are never invoked by method invocation expressions (815.12).

Access to constructorsis governed by access modifiers (86.6).

This is useful, for example, in preventing instantiation by declaring an inaccessible
constructor (88.8.10).

8.8.1 Formal Parametersand Type Parameters

Theformal parameters and type parameters of a constructor areidentical in syntax
and semantics to those of a method (88.4.1).

8.8.2 Constructor Signature

It is a compile-time error to declare two constructors with override-equivalent
signatures (88.4.2) in aclass.

It is a compile-time error to declare two constructors whose signatures have the
same erasure (84.6) in aclass.

8.8.3 Constructor Modifiers

ConstructorModifiers:
ConstructorModifier
ConstructorModifiers Constructor Modifier

ConstructorModifier: one of
Annotation publ i c protected private

If an annotation a (89.7) on a constructor corresponds to an annotation
type T (89.6), and T has a (meta)annotation m that corresponds to
j ava. | ang. annot ati on. Target, then m must have an element whose vaue
iSjava. | ang. annot at i on. El enent Type. CONSTRUCTOR, Or a compile-time error
OCCUrs.

The access modifiers publ i ¢, pr ot ect ed, and pri vat e are discussed in §6.6.

It is a compile-time error if the same modifier appears more than once in a
constructor declaration, or if a constructor declaration has more than one of the
access modifierspubl i c, prot ect ed, and pri vat e.

It is a compile-time error if the constructor of an enum type (88.9) is declared
publ i c Or prot ect ed.

8.8

245

8.8

246

Constructor Declarations CLASSES

If no access modifier is specified for the constructor of a normal class, the
constructor has default access.

If no access modifier is specified for the constructor of an enum type, the
constructor ispri vat e.

If two or more (distinct) method modifiers appear in a method declaration, it is customary,
though not required, that they appear in the order consistent with that shown above in the
production for MethodModifier.

Unlike methods, a constructor cannot beabst ract , stati c,final ,native,strictfp,
or synchroni zed:

* A constructor is not inherited, so there is no need to declareit fi nal .
¢ Anabstract constructor could never be implemented.

« A constructor is aways invoked with respect to an object, so it makes no sense for a
constructor to best at i c.

e Thereisno practical need for aconstructor to be synchr oni zed, because it would lock
the object under construction, which isnormally not made availableto other threads until
al constructors for the object have completed their work.

« Thelack of nat i ve constructorsisan arbitrary language design choicethat makesit easy
for an implementation of the Java Virtual Machine to verify that superclass constructors
are always properly invoked during object creation.

* The inability to declare a constructor as strictfp (in contrast to a method (§8.4.3))
isan intentional language design choice; it effectively ensures that a constructor is FP-
strict if and only if its classis FP-strict (§15.4).

8.8.4 Generic Constructors

Itispossible for aconstructor to be declared generic, independently of whether the
class the constructor is declared in isitself generic.

A constructor isgeneric if it declares one or more type variables (84.4).

These type variables are known as the type parameters of the constructor. The
form of the type parameter section of a generic constructor isidentical to the type
parameter section of a generic class (88.1.2).

A generic constructor declaration defines a set of constructors, one for each
possible invacation of the type parameter section by type arguments. Type
arguments may not need to be provided explicitly when a generic constructor is
invoked, as they can often by inferred (815.12.2.7).

The scope and shadowing of aconstructor'stype parameter is specified in 86.3 and
86.4.

CLASSES Constructor Declarations

8.8.5 Constructor Throws

The t hr ows clause for a constructor is identical in structure and behavior to the
t hr ows clause for amethod (§8.4.6).

8.8.6 TheType of a Constructor

The type of a constructor consists of its signature and the exception types given
by itst hr ows clause.

8.8.7 Constructor Body

The first statement of a constructor body may be an explicit invocation of another
constructor of the same class or of the direct superclass (§88.8.7.1).

ConstructorBody:
{ ExplicitConstructorInvocationg, BlockStatementsyp }

It is a compile-time error for a constructor to directly or indirectly invoke itself
through a series of one or more explicit constructor invocations involving t hi s.

If the constructor isaconstructor for an enum type (88.9), it isacompile-time error
for it to invoke the superclass constructor explicitly.

If a constructor body does not begin with an explicit constructor invocation and
the constructor being declared is not part of the primordia class Qvj ect, then
the constructor body implicitly begins with a superclass constructor invocation
"super (); ", aninvocation of the constructor of its direct superclass that takes no
arguments.

Except for the possibility of explicit constructor invocations, the body of a
constructor is like the body of amethod (8§8.4.7).

A return statement (814.17) may be used in the body of a constructor if it does
not include an expression.

Example 8.8.7-1. Constructor Bodies

class Point {

int x, vy;

Point(int x, int y) { this.x = x; this.y =vy; }
}
cl ass Col oredPoi nt extends Point {

static final int WHHTE = 0, BLACK = 1;

int color;

8.8

247

8.8 Constructor Declarations CLASSES

Col oredPoint (int x, int y) {
this(x, y, WHTE);

}
Col oredPoint (int x, int y, int color) {

super (X, y);
this.color = color;

}

Here, the first constructor of Col or edPoi nt invokes the second, providing an additional
argument; the second constructor of Col or edPoi nt invokes the constructor of its
superclass Poi nt , passing along the coordinates.

8.8.7.1 Explicit Constructor Invocations

ExplicitConstructor | nvocation:
NonWildTypeArgumentsgp t hi s (ArgumentListop)
NonWildTypeArgumentsop: super (- ArgumentListop) ;
Primary . NonWildTypeArgumentsyyt super (ArgumentListop) ;

NonWildTypeArguments:
< ReferenceTypeList >

ReferenceTypeL.ist:
ReferenceType
ReferenceTypelist, ReferenceType

Explicit constructor invocation statements can be divided into two kinds:

» Alternate constructor invocations begin with the keyword this (possibly
prefaced with explicit type arguments). They are used to invoke an aternate
constructor of the same class.

e SQuperclass constructor invocations begin with either the keyword super
(possibly prefaced with explicit type arguments) or a Primary expression. They
are used to invoke a constructor of the direct superclass.

Superclass constructor invocations may be subdivided:

+ Unqualified superclass constructor invocations begin with the keyword super
(possibly prefaced with explicit type arguments).

* Qualified superclassconstructor invocationsbegin with aPrimary expression.

They alow a subclass constructor to explicitly specify the newly created
object's immediately enclosing instance with respect to the direct superclass
(88.1.3). This may be necessary when the superclassis an inner class.

248

CLASSES Constructor Declarations

An explicit constructor invocation statement in a constructor body may not refer
to any instance variables or instance methods or inner classes declared in this class
or any superclass, or uset hi s or super in any expression; otherwise, a compile-
time error occurs.

The exception typesthat an explicit constructor invocation statement can throw are
specified in §11.2.2.

Example 8.8.7.1-1. Qualified Superclass Constructor Invocation

class Quter {
class Inner {}

}

class ChildO I nner extends Quter.|nner {
ChildOflnner() { (new CQuter()).super(); }
}

Example 8.8.7.1-2. Restrictions on Explicit Constructor Invocation Statements

If the first constructor of Col or edPoi nt in the example from §8.8.7 were changed as
follows:

class Point {
int x, vy;
Point(int x, int y) { this.x =x; this.y =vy; }
}
cl ass Col oredPoi nt extends Point {
static final int WHHTE = 0, BLACK = 1;
int color;
Col oredPoint(int x, int y) {
this(x, y, color); [/ Changed to color fromWH TE

Col oredPoint(int x, int y, int color) {

super (X, Yy);
this.color = color;

}

then acompile-time error would occur, because theinstance variablecol or cannot be used
by a explicit constructor invocation statement.

Let C bethe class being instantiated, and let s be the direct superclass of C.
Itisacompile-time error if Sisnot accessible (86.6).
If a superclass constructor invocation statement is qualified, then:

» |f sisnot aninner class, or if the declaration of S occursin a static context, then
a compile-time error occurs.

8.8

249

8.8

250

Constructor Declarations CLASSES

» Otherwise, let p bethe Primary expression immediately preceding”. super ". Let
Obethe innermost lexically enclosing class of s.

Itisacompile-time error if the type of p isnot oor asubclass of O, or if the type
of p isnot accessible (86.6).

If a superclass constructor invocation statement is unqualified, and if sisan inner
member class, then it is a compile-time error if S isnot a member of alexicaly
enclosing class of ¢ by declaration or inheritance.

Evauation of an aternate constructor invocation statement proceeds by first
evaluating the arguments to the constructor, |eft-to-right, asin an ordinary method
invocation; and then invoking the constructor.

Evaluation of a superclass constructor invocation statement is more complicated,
asfollows:

1. Let cbethe classbeing instantiated, let s be the direct superclass of c, and let
i betheinstance being created.

2. The immediately enclosing instance of i with respect to s (if any) must be
determined:

» |f sisnot aninner class, or if the declaration of S occursin a static context,
no immediately enclosing instance of i with respect to S exists.

 If the superclass constructor invocation is qualified, then the Primary
expression p immediately preceding . super " is evaluated.

If p evaluatestonul | ,aNul | Poi nt er Except i on israised, and the superclass
constructor invocation completes abruptly.

Otherwise, theresult of thisevaluationistheimmediately enclosing instance
of i withrespecttos.

* If the superclass constructor invocation is not qualified, then:

+ If sisalocal class (814.3), then let 0 be the innermost Iexically enclosing
class of s. Let n be an integer such that ois the n'th lexically enclosing
classof C.

The immediately enclosing instance of i with respect to s is the n'th
lexically enclosing instance of t hi s.

+ Otherwise, s isan inner member class (88.5).

Let obetheinnermost lexically enclosing classof s, and let n bean integer
such that ois the n'th lexically enclosing class of C.

CLASSES Constructor Declarations

The immediately enclosing instance of i with respect to s is the n'th
lexically enclosing instance of t hi s.

3. After determining theimmediately enclosing instance of i with respect to S (if
any), evaluation of the superclass constructor invocation statement proceeds
by evaluating the arguments to the constructor, left-to-right, asin an ordinary
method invocation; and then invoking the constructor.

4. Finaly, if the superclass constructor invocation statement completes normally,
then all instance variable initializers of c and al instance initializers of C are
executed. If an instance initializer or instance variable initializer 1 textually
precedes another instance initializer or instance variable initiaizer J, then1 is
executed before J.

Execution of instance variableinitializersand instanceinitializersis performed
regardless of whether the superclass constructor invocation actually appears
as an explicit constructor invocation statement or is provided automatically.
(An aternate constructor invocation does not perform this additional implicit
execution.)

8.8.8 Constructor Overloading

Overloading of constructors is identical in behavior to overloading of methods
(88.4.9). The overloading is resolved at compile time by each class instance
creation expression (815.9).

8.8.9 Default Constructor

If a class contains no constructor declarations, then a default constructor with no
formal parametersand not hr ows clauseisimplicitly declared.

If the class being declared is the primordial class ject, then the default
constructor has an empty body. Otherwise, the default constructor simply invokes
the superclass constructor with no arguments.

It is a compile-time error if a default constructor is implicitly declared but the
superclass does not have an accessible constructor (86.6) that takes no arguments
and hasno t hr ows clause.

In a class type, if the class is declared public, then the default constructor
is implicitly given the access modifier publ i ¢ (86.6); if the class is declared
pr ot ect ed, then the default constructor is implicitly given the access modifier
protected (86.6); if the class is declared pri vat e, then the default constructor

8.8

251

8.8

252

Constructor Declarations CLASSES

is implicitly given the access modifier private (86.6); otherwise, the default
constructor has the default access implied by no access modifier.

In an enum type, the default constructor isimplicitly pri vat e (88.9.2).

Example 8.8.9-1. Default Constructors
The declaration:

public class Point {
int x, vy;

}
is equivalent to the declaration:

public class Point {

int x, vy;

public Point() { super(); }
}

where the default constructor is publ i ¢ because the class Poi nt ispublic.
Example 8.8.9-2. Accessibility of Constructorsv. Classes

The rule that the default constructor of a class has the same access modifier as the class
itself issimple and intuitive. Note, however, that this does not imply that the constructor is
accessible whenever the classis accessible. Consider:

package p1i;
public class Quter {
protected class Inner {}

}
package p2;
class SonOFQuter extends pl.CQuter {
voi d foo() {
new Inner(); // conpile-tine access error
}
}

The constructor for | nner ispr ot ect ed. However, the constructor ispr ot ect ed relative
to I nner, while I nner is protected relative to Quter. So, | nner is accessible in
SonCf Qut er, since it is a subclass of Qut er. | nner's constructor is not accessible in
SonOf Qut er, because the class SonCOf Qut er is not a subclass of | nner! Hence, even
though I nner isaccessible, its default constructor is not.

CLASSES Enums 8.9

8.8.10 Preventing Instantiation of a Class

A class can be designed to prevent code outside the class declaration from creating
instances of the class by declaring at |east one constructor, to prevent the creation
of animplicit constructor, and by declaring all constructorsto bepri vat e.

A publ i c class can likewise prevent the creation of instances outside its package
by declaring at least one constructor, to prevent creation of a default constructor
with public access, and by declaring no constructor that ispubl i c.

Example 8.8.10-1. Preventing I nstantiation via Constructor Accessibility

class dassOnly {
private AassOnly() { }
static String just = "only the |onely";

}

Here, the class G assOnl y cannot be instantiated, while in the following code:

package j ust;
public class PackageOnly {
PackageOnly() { }
String[] justDesserts = { "cheesecake", "ice creant };

}

the class PackageOnl y can be instantiated only within the package j ust , in which it is
declared.

8.9 Enums

An enum declaration specifies a new enum type.

EnumDeclaration:
ClassModifiersyp: enumldentifier Interfacesyy: EnumBody

EnumBody:
{ EnumConstantsypt , opt EnumBodyDecl arationsyp }

Enum types (88.9) must not be declared abstract; doing so will result in a
compile-time error.

Anenum typeisimplicitly fi nal unlessit contains at |east one enum constant that
has a class body.

It isacompile-time error to explicitly declare an enum typeto befi nal .

253

8.9

254

Enums CLASSES

Nested enum types are implicitly stati c. It is permissible to explicitly declare a
nested enum typeto bestati c.

Thisimplies that it is impossible to define alocal (814.3) enum, or to define an enum in
aninner class (§8.1.3).

The direct superclass of an enum type named E is EnunxE> (88.1.4).

An enum type has no instances other than those defined by its enum constants. It
isacompile-time error to attempt to explicitly instantiate an enum type (815.9.1).

Thefi nal cl one methodin Enumensuresthat enum constants can never be cloned, and the
special treatment by the serialization mechanism ensures that duplicate instances are never
created as aresult of deserialization. Reflective instantiation of enum types is prohibited.
Together, these four things ensure that no instances of an enum type exist beyond those
defined by the enum constants.

8.9.1 Enum Constants

The body of an enum type may contain enum constants. An enum constant defines
an instance of the enum type.

EnumConstants:
EnumConstant
EnumConstants, EnumConstant

EnumConstant:
Annotationsyy Identifier Argumentsyp: ClassBodyopt

Arguments:
(ArgumentListop)

EnumBodyDeclarations:
; ClassBodyDeclarationsgpt

An enum constant may optionally be preceded by annotation modifiers. If
an annotation a (89.7) on an enum constant corresponds to an annotation
type T (89.6), and T has a (meta)annotation m that corresponds to
j ava. | ang. annot at i on. Tar get , then m must have an element whose value is
j ava. | ang. annot at i on. El enent Type. FI ELD, or a compile-time error occurs.

The Identifier in a EnumConstant may be used in a name to refer to the enum
constant.

The scope and shadowing of an enum constant is specified in 86.3 and 86.4.

CLASSES Enums

An enum constant may be followed by arguments, which are passed to the
constructor of the enum type when the constant is created during classinitialization
as described later in this section. The constructor to be invoked is chosen using
the normal overloading rules (815.12.2). If the arguments are omitted, an empty
argument list is assumed.

Theoptional classbody of an enum constant implicitly defines an anonymous class
declaration (815.9.5) that extends the immediately enclosing enum type. The class
body is governed by the usual rules of anonymous classes; in particular it cannot
contain any constructors.

Instance methods declared in these class bodies may be invoked outside the
enclosing enumtypeonly if they override accessible methodsin the enclosing enum

type.

It is a compile-time error for the class body of an enum constant to declare an
abstract method.

Becausethereisonly oneinstance of each enum constant, it ispermissibleto usethe
== operator in place of the equal s method when comparing two object references
if it isknown that at least one of them refers to an enum constant.

The equal s method in Enumisafi nal method that merely invokes super . equal s on
its argument and returns the result, thus performing an identity comparison.

Example 8.9.1-1. Iterating Over Enum Constants With An Enhanced f or L oop

public class Test {
enum Season { WNTER, SPRING SUMVER, FALL }

public static void main(String[] args) {

for (Season s : Season.val ues())
System out. println(s);

}
This program produces the output:

W NTER
SPRI NG
SUMVER
FALL

Example 8.9.1-2. Use Of j ava. uti | . Enunet For Subranges
inmport java.util.EnunSet;

public class Test {
enum Day { MONDAY, TUESDAY, WEDNESDAY,

8.9

255

8.9

256

Enums CLASSES

THURSDAY, FRI DAY, SATURDAY, SUNDAY }

public static void main(String[] args) {
System out. print ("Wekdays: ");
for (Day d : EnunSet.range(Day. MONDAY, Day. FRI DAY))
Systemout.print(d + " ");

}
This program produces the outpult:
Weekdays: MONDAY TUESDAY WEDNESDAY THURSDAY FRI DAY

java.util.EnunBet containsarich family of static factories, so this technique can be
generalized to work with non-contiguous subsets as well as subranges. At first glance, it
might appear wasteful to generate aj ava. util . EnunSet object for a single iteration,
but they are so cheap that this is the recommended idiom for iteration over a subrange.
Internally, aj ava. uti | . EnunSet is represented with asingle | ong assuming the enum
type has 64 or fewer elements.

8.9.2 Enum Body Declarations

Any constructor or member declarations within an enum declaration apply to the
enum type exactly asif they had been present in the class body of a normal class
declaration, unless explicitly stated otherwise.

It is a compile-time error if a constructor declaration of an enum type is publ i c
Orf pr ot ect ed.

If an enum type has no constructor declarations, then a pri vat e constructor that
takes no parameters (to match the implicit empty argument list) is automatically
provided.

Itisacompile-timeerror for an enum declaration to declare afinalizer. Aninstance
of an enum type may never be finalized.

It is a compile-time error for an enum type E to have an abstract method mas a
member unless E has one or more enum constants, and all of E's enum constants
have class bodies that provide concrete implementations of m

In addition to the members that an enum type E inherits from EnunxE>, for each
declared enum constant with the name n, the enum type has an implicitly declared
public static final field named n of type E. These fields are considered to be
declared inthe same order asthe corresponding enum constants, beforeany st at i ¢
fieldsexplicitly declared in the enum type. Each suchfieldisinitialized to theenum
constant that corresponds to it. Each such field is also considered to be annotated

CLASSES Enums

by the same annotations as the corresponding enum constant. The enum constant
is said to be created when the corresponding field is initialized.

In addition, if E is the name of an enum type, then that type has the following
implicitly declared st at i ¢ methods:

/**

* Returns an array containing the constants of this enum
* type, in the order they're declared. This method may be
* used to iterate over the constants as follows:

*

* for(E ¢ : E. values())

* Systemout. println(c);

*

* @eturn an array containing the constants of this enum
* type, in the order they' re decl ared

*/

public static E[] values();

/**

* Returns the enum constant of this type with the specified
* namne.

* The string nmust match exactly an identifier used to declare
* an enumconstant in this type. (Extraneous whitespace

* characters are not permtted.)

*

* @eturn the enumconstant with the specified name

* @hrows |11l egal Argument Exception if this enumtype has no
* constant with the specified nane

*

/
public static E valueO (String nane);

It follows that enum type declarations cannot contain fields that conflict with the enum
constants, and cannot contain methods that conflict with the automatically generated
methods (val ues() andval ueCf (St ri ng)) or methodsthat overridethef i nal methods
in Enum (equal s(Obj ect), hashCode(), cl one(), conpar eTo(Qbj ect), name(),
ordi nal (), and get Decl ari ngC ass()).

It is a compile-time error to reference a static field of an enum type that is
not a constant variable (84.12.4) from constructors, instance initializer blocks, or
instance variable initializer expressions of that type.

Itisacompile-timeerror for the constructors, instanceinitializer blocks, or instance
variable initializer expressions of an enum constant e to refer to e or to an enum
constant of the same type that is declared to the right of e.

Example 8.9.2-1. Restriction On Enum Constant Self-Reference
Without thisrule, apparently reasonable code would fail at run time dueto theinitialization

circularity inherent in enum types. (A circularity exists in any class with a "self-typed"
stati c field.) Hereis an example of the sort of code that would fail:

8.9

257

8.9 Enums CLASSES

import java.util.Mp;
import java.util.HashMap;
enum Col or {

RED, GREEN, BLUE;

static final Map<String, Col or> col orMap =
new HashMap<Stri ng, Col or>();
Col or () { colorMp.put(toString(), this); }
}

Staticinitialization of thisenum typewould throw aNul | Poi nt er Except i on becausethe
stati c variable col or Map is uninitialized when the constructors for the enum constants
run. The restriction above ensures that such code won't compile.

Note that the example can easily be refactored to work properly:

import java.util.Map;
import java.util.HashMap;

enum Col or {
RED, GREEN, BLUE;

static final Map<String, Col or> col orMap =
new HashMap<Stri ng, Col or>();
static {
for (Color ¢ : Color.values())
col or Map. put (c.toString(), c);

}

The refactored version is clearly correct, as static initialization occurs top to bottom.

Example 8.9.2-2. Enum Type With Members

enum Coi n {
PENNY(1), N CKEL(5), DIME(10), QUARTER(25);
Coin(int value) { this.value = value; }
private final int value;
public int value() { return value; }

}

Each enum constant arranges for a different value in the field val ue, passed in via a
constructor. The field represents the value, in cents, of an American coin. Note that there
are no restrictions on the type or number of parameters that may be declared by an enum
type's constructor.

A swi t ch statement is useful for simulating the addition of amethod to an enum type from
outside the type. This example "adds" acol or method to the Coi n type, and prints atable
of coins, their values, and their colors.

class Test {

258

CLASSES

}

Enums

public static void main(String[] args) {
for (Coin ¢ : Coin.values())
Systemout.printin(c + "\t\t" +
c.value() + "\t" + color(c));

}

private enum Coi nCol or { COPPER, N CKEL, SILVER }
private static CoinCol or color(Coin c) {
switch(c) {
case PENNY:
return Coi nCol or. COPPER,
case NI CKEL:
return Coi nCol or. NI CKEL;
case DI ME: case QUARTER:
return Coi nCol or. SI LVER;
defaul t:
throw new AssertionError("Unknown coin: " + c);

This program produces the outpult:

PENNY 1 COPPER
NI CKEL 5 NI CKEL
DI ME 10 S| LVER
QUARTER 25 S| LVER

Example 8.9.2-3. M ultiple Enum Types

Inthefollowing program, aplaying card classisbuilt atop two simple enum types. Notethat
each enum type would be as long as the entire example in the absence of the enum facility:

inmport java.util.List;
inmport java.util.Arraylist;

class Card inpl ements Conparabl e<Car d>,

java.io. Serializable {
public enum Rank { DEUCE, THREE, FOUR, FIVE, SIX, SEVEN,
El GHT, NI NE, TEN, JACK, QUEEN, KING ACE }

public enum Suit { CLUBS, DI AMONDS, HEARTS, SPADES }

private final Rank rank;
private final Suit suit;
public Rank rank() { return rank; }
public Suit suit() { return suit; }

private Card(Rank rank, Suit suit) {
if (rank == null || suit == null)
t hrow new Nul | Poi nt er Exception(rank + ", " + suit);
this.rank = rank;
this.suit = suit;

8.9

259

8.9

260

Enums

}

CLASSES

}

public String toString() { return rank + " of " + suit; }

/1 Primary sort on suit, secondary sort on rank
public int conpareTo(Card c) {
int suitConpare = suit.conmpareTo(c.suit);
return (suitConpare != 0 ?
sui t Conpare :
rank. conpareTo(c. rank));

}

private static final List<Card> prototypebDeck =
new ArraylLi st <Card>(52);

static {
for (Suit suit : Suit.values())
for (Rank rank : Rank.val ues())
pr ot ot ypeDeck. add(new Card(rank, suit));

}

/'l Returns a new deck
public static List<Card> newDeck() {

return new Arrayli st <Card>(prot ot ypeDeck) ;
}

The following program exercises the Car d class. It takes two integer parameters on the
command line, representing the number of hands to deal and the number of cardsin each
hand:

inmport java.util.List;

inmport java.util.Arraylist;
inmport java.util.Collections;
class Deal {

public static void main(String args[]) {

i nt nunHands = Integer.parselnt(args[0]);

int cardsPerHand = Integer.parselnt(args[1]);

Li st<Card> deck = Card. newDeck();

Col | ecti ons. shuffl e(deck);

for (int i=0; i < nunHands; i ++)

System out. printl n(deal Hand(deck, cardsPerHand));

}

/**
* Returns a new ArraylList consisting of the last n
* el ements of deck, which are renoved from deck.
* The returned list is sorted using the el enents’
* natural ordering.
*/
public static <E extends Conparabl e<E>>
ArraylLi st <E> deal Hand(Li st<E> deck, int n) {
int deckSize = deck. size();

CLASSES

Enums

Li st <E> handVi ew = deck. subLi st (deckSi ze - n, deckSize);
ArraylLi st<E> hand = new ArraylLi st <E>(handVi ew) ;

handVi ew. cl ear () ;
Col | ecti ons. sort (hand);
return hand;

}
The program produces the output:

java Deal 4 3

[DEUCE of CLUBS, SEVEN of CLUBS, QUEEN of DI AMONDS]
[NINE of HEARTS, FIVE of SPADES, ACE of SPADES]
[THREE of HEARTS, SI X of HEARTS, TEN of SPADES]

[TEN of CLUBS, NI NE of DI AMONDS, THREE of SPADES]

Example 8.9.2-4. Enum Constantswith Class Bodies

enum Qperation {
PLUS {
doubl e eval (doubl e x, double y) {

3
M NUS {

doubl e eval (doubl e x, double y) {
3
TI MES {

doubl e eval (doubl e x, double y) {
3
DI VI DED_BY {

doubl e eval (doubl e x, double y) {
b

return

return

return

return

/1l Each constant supports an arithnetic operation
abstract doubl e eval (doubl e x, double y);

public static void main(String args[]) {
doubl e x = Doubl e. parseDoubl e(args[0]);
doubl e y = Doubl e. parseDoubl e(args[1]);
for (Operation op : Operation.val ues())
Systemout.printin(x + " " + op + "

" =" + op.eval (x,

}

+y +

v));

Constant-specific class bodies attach behaviors to the constants. The program produces the

output:

java Operation 2.0 4.0
2.0 PLUS 4.0 = 6.0

2.0 MNUS 4.0 = -2.0
2.0 TIMES 4.0 = 8.0

2.0 DDVIDED BY 4.0 = 0.5

8.9

261

8.9 Enums CLASSES

The above pattern is much safer than using a switch statement in the base type
(Oper at i on), asthe pattern precludes the possihility of forgetting to add a behavior for a
new constant (since the enum declaration would cause a compile-time error).

262

CHAPTER9

| nterfaces

AN interface declaration introduces a new reference type whose members
are classes, interfaces, constants, and abstract methods. This type has no
implementation, but otherwise unrelated classes can implement it by providing
implementations for its abstract methods.

A nested interface is any interface whose declaration occurs within the body of
another class or interface.

A top level interfaceis an interface that is not a nested interface.

We distinguish between two kinds of interfaces - normal interfaces and annotation
types.

This chapter discusses the common semantics of al interfaces - normal interfaces,
both top level (87.6) and nested (88.5, §9.5), and annotation types (89.6). Details
that are specific to particular kinds of interfaces are discussed in the sections
dedicated to these constructs.

Programs can use interfaces to make it unnecessary for related classes to share a
common abst r act superclass or to add methodsto bj ect .

An interface may be declared to be a direct extension of one or more other
interfaces, meaning that it implicitly specifies al the member types, abstract
methods, and constants of the interfaces it extends, except for any member types
and constants that it may hide.

A class may be declared to directly implement one or more interfaces, meaning
that any instance of the class implements all the abstract methods specified
by the interface or interfaces. A class necessarily implements al the interfaces
that its direct superclasses and direct superinterfaces do. This (multiple) interface
inheritance alows objectsto support (multiple) common behaviorswithout sharing
any implementation.

263

9.1 Interface Declarations INTERFACES

A variable whose declared type is an interface type may have as its value a
reference to any instance of a class which implements the specified interface. It is
not sufficient that the class happen to implement al the abst r act methods of the
interface; the class or one of itssuperclasses must actually be declared toimplement
the interface, or else the classis not considered to implement the interface.

9.1 Interface Declarations

An interface declaration specifies a new named reference type. There are two
kinds of interface declarations - normal interface declarations and annotation type
declarations (89.6).

InterfaceDeclaration:
Normal I nterfaceDeclaration
AnnotationTypeDeclaration

Normal InterfaceDeclaration:
InterfaceModifiersyyt i nt er f ace Identifier
TypeParameter sop; Extendsl nterfacesyp: InterfaceBody

The Identifier in an interface declaration specifies the name of the interface.

It is a compile-time error if an interface has the same simple name as any of its
enclosing classes or interfaces.

The scope and shadowing of an interface declaration is specified in 86.3 and §6.4.

9.1.1 Interface Modifiers

An interface declaration may include interface modifiers.

InterfaceModifiers:
InterfaceModifier
InterfaceModifiers InterfaceModifier

InterfaceModifier: one of
Annotation publ i ¢ prot ected private
abstract staticstrictfp

If an annotation a (89.7) on an interface declaration corresponds to an
annotation type T (89.6), and T has a (meta-)annotation m that corresponds to

264

INTERFACES Interface Declarations

j ava. | ang. annot at i on. Tar get , then m must have an element whose value is
j ava. | ang. annot at i on. El enent Type. TYPE, Or acompile-time error occurs.

The access modifier publ i ¢ (86.6) pertainsto every kind of interface declaration.

The access modifiers prot ect ed and pri vat e pertain only to member interfaces
within adirectly enclosing class or enum declaration (88.5.1).

The modifier st ati ¢ pertains only to member interfaces (88.5.1, 89.5), not to top
level interfaces (87.6).

It is a compile-time error if the same modifier appears more than once in an
interface declaration.

If two or more (distinct) interface modifiers appear in an interface declaration, then it is
customary, though not required, that they appear in the order consistent with that shown
above in the production for InterfaceModifier.

9.1.1.1 abstract Interfaces

Every interfaceisimplicitly abstr act .

This modifier is obsolete and should not be used in new programs.

9.1.1.2 strictfp Interfaces

The effect of the stri ct f p modifier isto make all f1 oat or doubl e expressions
within the interface declaration be explicitly FP-strict (§15.4).

Thisimpliesthat al nested types declared in the interface areimplicitly st ri ct f p.

9.1.2 GenericInterfacesand Type Parameters

Aninterfaceis genericif it declares one or more type variables (84.4).

These type variables are known as the type parameters of the interface. The type
parameter section follows the interface name and is delimited by angle brackets.

In an interface's type parameter section, a type variable T directly depends on a
type variable s if s is the bound of T, while T depends on s if either T directly
depends on s or T directly depends on atype variable U that depends on s (using
this definition recursively).

It is a compile-time error if atype variable in ainterface's type parameter section
depends on itself.

9.1

265

9.1

266

Interface Declarations INTERFACES

The scope of an interface's type parameter is specified in §6.3.

It isacompile-time error to refer to atype parameter of an interface 1 anywherein
the declaration of afield or type member of | .

A generic interface declaration defines a set of parameterized types (84.5), one for
each possible invocation of the type parameter section by type arguments. All of
these parameterized types share the same interface at run time.

9.1.3 Superinterfaces and Subinterfaces

If an ext ends clauseis provided, then the interface being declared extends each of
the other named interfaces and therefore inherits the member types, methods, and
constants of each of the other named interfaces.

These other named interfaces are the direct superinterfaces of the interface being
declared.

Any classthat i npl ement s the declared interface is also considered to implement
all the interfaces that this interface ext ends.

Extends| nterfaces:
ext ends InterfaceTypeList

The following is repeated from §4.3 and §8.1.5 to make the presentation here clearer:

InterfaceTypelist:
InterfaceType
InterfaceTypelist, InterfaceType

InterfaceType:
TypeDecl Specifier TypeArgumentsyy

Given a (possibly generic) interface declaration for | <Fy,...,F,> (n = 0), the direct
superinterfaces of theinterfacetypel <Fy,...,F,> arethetypes given in the ext ends
clause of the declaration of | if an ext ends clauseis present.

Letl <Fy,...,F,> (N> 0), beagenericinterface declaration. Thedirect superinterfaces
of the parameterized interfacetypel <Ty,...,T,>, whereT; (1<i<n)isatype, areal
types J<y, 0,...,U 6>, where J<U,...,U> is adirect superinterface of I <Fy,...,F,>,
and 0 isthe substitution [Fy: =T, . . ., Fn: =Tl .

Each InterfaceType in the ext ends clause of an interface declaration must name
an accessible (86.6) interface type; otherwise a compile-time error occurs.

INTERFACES Interface Declarations

The superinterface relationship is the transitive closure of the direct superinterface
relationship. An interface K is a superinterface of interface | if either of the
following istrue:

» Kisadirect superinterface of |1 .

» There exists an interface J such that K is a superinterface of J, and J is a
superinterface of | ,applying this definition recursively.

Interface! issaid to be asubinterface of interface K whenever K is a superinterface
of I.

While every class is an extension of class j ect , there is no single interface of
which all interfaces are extensions.

Aninterface! directly dependsonatypeT if Tismentioned intheext ends clause
of I either as asuperinterface or as aqualifier within a superinterface name.

Aninterfacel dependsonareferencetypeT if any of thefollowing conditionshold:
* | directly dependsonT.
* | directly depends on aclass C that depends (88.1.5) on T.

| directly depends on an interface J that depends on T (using this definition
recursively).

It isacompile-time error if an interface depends on itself.

If circularly declared interfaces are detected at run time, as interfaces are loaded
(812.2), thenac assCircul ari tyError isthrown.

9.1.4 Interface Body and Member Declarations

Thebody of aninterface may declare members of theinterface, that is, fields (89.3),
methods (89.4), classes (89.5), and interfaces (89.5).

9.1

267

9.2 Interface Members INTERFACES

InterfaceBody:
{ InterfaceMember Declarationsyp; }

InterfaceMember Declarations:
InterfaceMember Declaration
InterfaceMember Declar ations I nterfaceMember Declar ation

InterfaceMember Declar ation:
ConstantDeclaration
AbstractMethodDeclaration
ClassDeclaration
InterfaceDeclaration

The scope of a declaration of a member mdeclared in or inherited by an interface
type! isspecifiedin 86.3.

9.2 Interface Members

The members of an interface are:
» Those members declared in the interface.
» Those members inherited from direct superinterfaces.

« If aninterface hasno direct superinterfaces, then theinterfaceimplicitly declares
apubl i c abst ract member method mwith signatures, returntyper , andt hr ows
clauset correspondingto eachpubl i ¢ instance method mwith signatures, return
typer, andt hr ows clauset declared in oj ect, unless a method with the same
signature, samereturntype, and acompatiblet hr ows clauseisexplicitly declared
by the interface.

It is a compile-time error if the interface explicitly declares such a method min
the case where mis declared to befi nal in Qbj ect .

It follows that is a compile-time error if the interface declares a method with a
signature that is override-equivalent (88.4.2) to apubl i ¢ method of bj ect , but
has a different return type or incompatiblet hr ows clause.

The interface inherits, from the interfaces it extends, all members of those
interfaces, except for (a) fields, classes, and interfacesthat it hides and (b) methods
that it overrides (89.4.1).

268

INTERFACES Field (Constant) Declarations

Fields, methods, and member types of an interface type may have the same name,
since they are used in different contexts and are disambiguated by different lookup
procedures (86.5). However, thisis discouraged as a matter of style.

9.3 Field (Constant) Declarations

ConstantDeclaration:
ConstantModifiersyp Type VariableDeclarators;

ConstantModifiers:
ConstantModifier
ConstantModifier ConstantModifers

ConstantModifier: one of
Annotation publ i ¢ static fi nal

If an annotation a (89.7) on a field declaration corresponds to an annotation
type T (89.6), and T has a (meta)annotation m that corresponds to
j ava. | ang. annot at i on. Tar get , then m must have an element whose value is
j ava. | ang. annot at i on. El enent Type. FI ELD, or a compile-time error occurs.

Every field declaration in the body of an interface is implicitly public, stati c,
and final . It is permitted to redundantly specify any or all of these modifiers for
such fields.

If two or more (distinct) field modifiers appear in afield declaration, it iscustomary, though
not required, that they appear in the order consistent with that shown abovein the production
for ConstantModifier.

It is a compile-time error if the same modifier appears more than once in afield
declaration.

It is a compile-time error for the body of an interface declaration to declare two
fields with the same name.

The declared type of a field is denoted by the Type that appears in the field
declaration, followed by any bracket pairs that follow the Identifier in the
declarator.

If theinterface declares afield with acertain name, then the declaration of that field
issaid to hide any and all accessible declarations of fields with the same name in
superinterfaces of the interface.

9.3

269

9.3

270

Field (Constant) Declarations INTERFACES

It is possible for an interface to inherit more than one field with the same name.
Such asituation doesnot initself cause acompile-timeerror. However, any attempt
within the body of the interface to refer to any such field by its simple name will
result in a compile-time error, because such areference is ambiguous.

There might be several paths by which the samefield declaration might beinherited
from an interface. In such a situation, the field is considered to be inherited only
once, and it may be referred to by its simple name without ambiguity.

Example 9.3-1. Ambiguous I nherited Fields

If two fields with the same name are inherited by an interface because, for example, two
of itsdirect superinterfaces declare fields with that name, then a single ambiguous member
results. Any use of this ambiguous member will result in a compile-time error. In the
program:

interface BaseCol ors {
int RED = 1, GREEN = 2, BLUE = 4;
}
interface Rai nbowCol ors extends BaseCol ors {
int YELLON= 3, ORANGE = 5, INDIGO = 6, VIOLET = 7;
}
interface PrintColors extends BaseCol ors {
int YELLON= 8, CYAN = 16, MAGENTA = 32;
}
interface LotsO Col ors extends Rai nbowCol ors, PrintColors {
int FUCHSIA = 17, VERM LI ON = 43, CHARTREUSE = RED+90;
}

theinterface Lot sOf Col or s inheritstwo fields named YELLOW Thisisall right aslong as
the interface does not contain any reference by simple name to the field YELLOW (Such a
reference could occur within avariableinitializer for afield.)

Even if interface Pri nt Col or s were to give the value 3 to YELLOWrather than the value
8, areference to field YELLOWwithin interface Lot sOf Col or s would still be considered
ambiguous.

Example 9.3-2. Multiply Inherited Fields

If asingle field is inherited multiple times from the same interface because, for example,
both thisinterface and one of thisinterface's direct superinterfaces extend the interface that
declares the field, then only a single member results. This situation does not in itself cause
acompile-time error.

In the previous example, the fields RED, GREEN, and BLUE are inherited by interface
Lot sCf Col or s inmorethan oneway, through interface Rai nbowCol or s and also through
interface Pri nt Col or s, but the reference to field RED in interface Lot sOf Col or s is not
considered ambiguous because only one actual declaration of the field RED isinvolved.

INTERFACES Abstract Method Declarations 9.4

9.3.1 Initialization of Fieldsin Interfaces

Every field in the body of aninterface must have aninitialization expression, which
need not be a constant expression (815.28), or a compile-time error occurs.

It is a compile-time error if an initialization expression for an interface field
contains a reference by simple name to the same field or to another field whose
declaration occurs textually later in the same interface.

Example 9.3.1-1. Forward Referenceto a Field

interface Test {
float f i
int j 1;
int k k + 1,

}

This program causes two compile-time errors, becausej is referred to in theinitialization
of f beforej isdeclared, and because theinitialization of k refersto k itself.

If the keyword t hi s (815.8.3) or the keyword super (815.11.2, 815.12) occursin
an initialization expression for afield of an interface, then unless the occurrenceis
within the body of an anonymous class (§815.9.5), a compile-time error occurs.

The variable initializer is evaluated and the assignment performed exactly once,
when the interface isinitialized (812.4.2).

At run time, interface fields that are initialized with constant expressions (§15.28)
areinitialized first (812.4.2). This also appliesto static final fieldsin classes
(88.3.2.1). These fields are "constants" that will never be observed to have their
default initial values (84.12.5), even by devious programs (813.4.9).

9.4 Abstract Method Declar ations

AbstractMethodDeclaration:
AbstractMethodModifier sy, TypeParameter sy, Result
MethodDeclarator Throwsgp ;

AbstractMethodModifiers:
AbstractMethodModifier
AbstractMethodModifiers AbstractMethodModifier

AbstractMethodModifier: one of
Annotation publ i ¢ abstract

271

9.4

272

Abstract Method Declarations INTERFACES

If an annotation a (89.7) on a method declaration corresponds to an
annotation type T (89.6), and T has a (meta-)annotation m that corresponds to
j ava. | ang. annot at i on. Tar get, then m must have an element whose value is
j ava. | ang. annot at i on. El enent Type. METHOD, or a compile-time error occurs.

Every method declaration in the body of an interfaceisimplicitly publ i ¢ (86.6).

Every method declaration in the body of an interfaceisimplicitly abst r act , soits
body is always represented by a semicolon, not a block.

It is permitted, but discouraged as a matter of style, to redundantly specify the
publ i ¢ and/or abst ract modifier for amethod declared in an interface.

Itisacompile-time error if the same modifier appears more than once on a method
declared in an interface.

It is a compile-time error if amethod declared in an interface is declared st at i ¢,
because st at i ¢ methods cannot be abst r act .

Itisacompile-timeerror if amethod declaredinaninterfaceisstrictfp ornati ve
or synchroni zed, because those keywords describe implementation properties
rather than interface properties.

However, amethod declared in an interface may be implemented by a method that
isdeclared strictfp oOr native Or synchroni zed in a class that implements the
interface.

Itisacompile-time error if amethod declared in an interfaceis declared fi nal .

However, amethod declared in an interface may be implemented by a method that
isdeclared fi nal in aclassthat implementsthe interface.

It is a compile-time error for the body of an interface to declare, explicitly or
implicitly, two methods with override-equivalent signatures (88.4.2).

However, an interface may inherit several methods with such signatures (89.4.1).

A method in aninterface may be generic. Therulesfor type parameters of ageneric
method in an interface are the same as for a generic method in a class (§88.4.4).

9.4.1 Inheritanceand Overriding

An interface inherits from its direct superinterfaces all methods of the
superinterfaces that are not overridden by a declaration in the interface.

Methods are overridden on a signature-by-signature basis.

INTERFACES Abstract Method Declarations

If, for example, an interface declares two publ i ¢ methods with the same name (89.4.2),
and a subinterface overrides one of them, the subinterface still inherits the other method.

9.4.1.1 Overriding (by Instance Methods)

Aninstance method m declaredinaninterfacel overridesanother instance method,
m, declared in interface J iff both of the following are true:

e | isasubinterface of J.

» The signature of m isasubsignature (88.4.2) of the signature of mp.

Example 9.4.1.1-1. Overriding an abst ract Method Declaration

Methods declared in interfaces are abst r act and thus contain no implementation. About
all that can be accomplished by an overriding method declaration, other than to affirm a
method signature, is to refine the return type or to restrict the exceptions that might be
thrown by an implementation of the method. Here is a variation of the example shown in
(88.4.3.1):

cl ass BufferEnmpty extends Exception {}
cl ass Buf ferExcepti on extends Exception {}

interface Buffer {
char get() throws BufferEnpty, BufferException;

}

interface InfiniteBuffer extends Buffer {
char get() throws BufferException; [/ override

}

9.4.1.2 Requirementsin Overriding

Therelationship between thereturn type of aninterface method and thereturn types
of any overridden interface methods is specified in §8.4.8.3.

Therelationship between thet hr ows clause of an interface method and thet hr ows
clauses of any overridden interface methods are specified in 88.4.8.3.

The relationship between the signature of an interface method and the signatures
of overridden interface methods are specified in §8.4.8.3.

9.4.1.3 Inheriting Methods with Override-Equivalent Sgnatures

It is possible for an interface to inherit several methods with override-equivalent
signatures (88.4.2). Such a situation does not in itself cause a compile-time error.
The interface is considered to inherit all the methods.

9.4

273

9.5

274

Member Type Declarations INTERFACES

However, one of the inherited methods must be return-type-substitutable for every
other inherited method; otherwise, a compile-time error occurs. (The t hr ows
clauses do not cause errors in this case.)

There might be several paths by which the same method declaration is inherited
from an interface. This fact causes no difficulty and never, of itself, resultsin a
compile-time error.

9.4.2 Overloading

If two methods of an interface (whether both declared in the same interface, or both
inherited by an interface, or one declared and one inherited) have the same name
but different signatures that are not override-equivalent (88.4.2), then the method
nameis said to be overloaded.

This fact causes no difficulty and never of itself results in a compile-time error.
There is no required relationship between the return types or between the t hr ows
clauses of two methods with the same name but different signatures that are not
override-equivalent.

Example 9.4.2-1. Overloading an abst ract Method Declaration

interface Pointlnterface {
voi d move(int dx, int dy);

}

interface Real Pointlnterface extends Pointlnterface {
voi d move(float dx, float dy);
voi d nmove(doubl e dx, double dy);

}

Here, the method named nove isoverloaded ininterface Real Poi nt | nt er f ace withthree
different signatures, two of them declared and one inherited. Any non-abst r act classthat
implements interface Real Poi nt | nt er f ace must provide implementations of all three
method signatures.

9.5 Member Type Declarations

Interfaces may contain member type declarations (88.5).

A member type declaration in an interface is implicitly static and public. Itis
permitted to redundantly specify either or both of these modifiers.

Itisacompile-timeerror if the same modifier appears more than oncein amember
type declaration in an interface.

INTERFACES Annotation Types

If an interface declares amember type with a certain name, then the declaration of
that type is said to hide any and all accessible declarations of member types with
the same name in superinterfaces of the interface.

An interface inherits from its direct superinterfaces al the non-pri vat e member
types of the superinterfaces that are both accessible to code in the interface and not
hidden by a declaration in the interface.

An interface may inherit two or more type declarations with the same name. It
is a compile-time error to attempt to refer to any ambiguously inherited class or
interface by its simple name.

If the same type declaration is inherited from an interface by multiple paths, the
class or interface is considered to be inherited only once; it may be referred to by
its smple name without ambiguity.

9.6 Annotation Types

An annotation type declaration is a specia kind of interface declaration. To
distinguish an annotation type declaration from an ordinary interface declaration,
the keyword i nt er f ace is preceded by an at-sign (@.

AnnotationTypeDeclaration:
InterfaceModifiersop: @i nt er f ace Identifier AnnotationTypeBody

AnnotationTypeBody:
{ AnnotationTypeElementDeclarationsyp }

AnnotationTypeElementDeclarations:
AnnotationTypeElementDeclaration
AnnotationTypeElementDeclarations AnnotationTypeElementDeclaration

Note that the at-sign (@ and the keyword i nt er f ace are two distinct tokens. Technically
it is possible to separate them with whitespace, but thisis discouraged as a matter of style.

If an annotation a (89.7) on an annotation type declaration corresponds to
an annotation type T, and T has a (meta)annotation m that corresponds to
j ava. l ang. annot ati on. Target, then m must have either an element whose
valueisj ava. | ang. annot at i on. El enent Type. ANNOTATI ON_TYPE, or an element
whose value is j ava. | ang. annot at i on. El ement Type. TYPE, Or a compile-time
error OCcurs.

9.6

275

9.6

276

Annotation Types INTERFACES

Theldentifier in an annotation type declaration specifiesthe name of the annotation
type.

It is a compile-time error if an annotation type has the same simple name as any
of its enclosing classes or interfaces.

The direct superinterfface of an annotation type is aways
java. |l ang. annot at i on. Annot at i on.

By virtue of the AnnotationTypeDeclaration syntax, an annotation type declaration cannot
be generic, and no ext ends clauseis permitted.

A consequence of the fact that an annotation type cannot explicitly declare a superclass
or superinterface is that a subclass or subinterface of an annotation type is never itself
an annotation type. Similarly, j ava. | ang. annot ati on. Annot ati on is not itself an
annotation type.

An annotation type declaration inherits several members from
j ava. | ang. annot ati on. Annot at i on, including the implicitly declared methods
corresponding to the instance methods in Obj ect , yet these methods do not define
elements (89.6.1) of the annotation type and itisillegal to use them in annotations.

Without this rule, we could not ensure that the el ements were of the types representablein
annotations, or that accessor methods for them would be available.

Unless explicitly modified herein, all of the rules that apply to ordinary interface
declarations apply to annotation type declarations.

For example, annotation types share the same namespace as ordinary class and interface
types; and annotation type declarations are legal wherever interface declarations are legal,
and have the same scope and accessibility.

9.6.1 Annotation Type Elements

Each method declaration in an annotation type declaration defines an element of
the annotation type.

Annotation types can have zero or more elements. An annotation type has no
elements other than those defined by the methods it explicitly declares.

INTERFACES Annotation Types

AnnotationTypeElementDeclaration:
AbstractMethodModifiersyy: Type Identifier () Dimsyy DefaultValuegp ;
ConstantDeclaration
ClassDeclaration
InterfaceDeclaration
EnumDeclaration
AnnotationTypeDeclaration

1

DefaultValue;
def aul t ElementValue

By virtue of the AnnotationTypeElementDeclaration syntax, a method declaration in an
annotation type declaration cannot have any formal parameters or type parameters, or a
t hr ows clause.

By convention, no AbstractMethodModifiers should be present on an annotation type
element except for annotations.

Example 9.6.1-1. Annotation Type Declarations

Thefollowing annotation type declaration defines an annotation type with several elements:

| **

* Describes the "request-for-enhancenent" (RFE)
* that led to the presence of the annotated APl el ement.

*/
@nterface Request For Enhancenent {
int id(); /1 Unique | D nunber associated with RFE
String synopsis(); [// Synopsis of RFE
String engineer(); // Nane of engineer who inplenented RFE
String date(); /1 Date RFE was inpl enented
}

The following annotation type declaration defines an annotation type with no elements,
termed a marker annotation type:

/**

* An annotation with this type indicates that the
* specification of the annotated APl elenent is

* prelimnary and subject to change.

*/

@nterface Prelinmnnary {}

It is a compile-time error if the return type of a method declared in an annotation
typeisnot oneof thefollowing: aprimitivetype, St ri ng, d ass, any parameterized

9.6

277

9.6

278

Annotation Types INTERFACES

invocation of d ass, an enumtype (88.9), an annotation type, or an array type (810)
whose element type is one of the preceding types.

This specification precludes elements whose types are nested arrays. For example, this
annotation type declarationisillegal:

@nterface Verboten {
String[][] value();

It is a compile-time error if any method declared in an annotation type has a
signature that is override-equivalent to that of any publ i ¢ or prot ect ed method
declared in class bj ect or intheinterfacej ava. | ang. annot ati on. Annot at i on.

It is a compile-time error if an annotation type declaration T contains an element
of type T, either directly or indirectly.

For example, thisisillegal:
@nterface Sel fRef { SelfRef value(); }
and soisthis:

@nterface Ping { Pong value(); }
@nterface Pong { Ping value(); }

By convention, the name of the sole element in a single-element annotation type
isval ue. Linguistic support for this convention is provided by the single element
annotation construct (89.7.3); one must obey the convention in order to take
advantage of the construct.

Example 9.6.1-2. Single-Element Annotation Type Declarations

The convention isillustrated in the following annotation type declaration:

/**
* Associ ates a copyright notice with the annotated APl el ement.
*/
@nterface Copyright {
String val ue();

}

The following annotation type declaration defines a single-element annotation type whose
sole element has an array type:

/**
* Associates a list of endorsers with the annotated cl ass.
*/

INTERFACES Annotation Types 9.6

@nterface Endorsers {
String[] value();
}

The following annotation type declaration shows a O ass annotation whose value is
restricted by a bounded wildcard:

interface Formatter {}

/'l Designates a fornmatter to pretty-print the annotated cl ass
@nterface PrettyPrinter {
Cl ass<? extends Formatter> val ue();

}

Note that the grammar for annotation type declarations permits other element declarations
besides method declarations. For example, one might choose to declare a nested enum for
use in conjunction with an annotation type:

@nterface Quality {
enum Level { BAD, | NDI FFERENT, GOCD }
Level val ue();

Example 9.6.2-3. Complex Annotation Type Declaration

Here is an example of a complex annotation type, that is, an annotation type that contains
one or more elements whose types are also annotation types.

/**
* A person's nane. This annotation type is not designed
* to be used directly to annotate program el enents, but to
* define el ements of other annotation types.
*/
@nterface Nane {
String first();
String last();
}
/**
* |Indicates the author of the annotated program el ement.
*/
@nterface Author {
Nane val ue();
}
/**
* |Indicates the reviewer of the annotated program el ement.
*/
@nterface Reviewer {
Nane val ue();

}

279

9.6

280

Annotation Types INTERFACES

9.6.2 Defaultsfor Annotation Type Elements

An annotation type element may have a default value specified for it. Thisis done
by following its (empty) parameter list with the keyword def aul t and the default
value of the element.

Defaultsare applied dynamically at thetime annotationsareread; default valuesare
not compiled into annotations. Thus, changing a default value affects annotations
even in classes that were compiled before the change was made (presuming these
annotations lack an explicit value for the defaulted element).

An ElementValue (89.7) is used to specify adefault value.

Itisacompile-timeerror if thetype of the element isnot commensurate (89.7) with
the default value specified.

Example 9.6.2-1. Annotation Type Declaration With Default Values

@nterface Request For Enhancenent Def aul t {
int id(); /1 No default - nust be specified in
/1 each annotation
String synopsis(); // No default - nust be specified in
/1 each annotation
String engineer() default "[unassigned]";
String date() default "[uninplemented]";

9.6.3 Predefined Annotation Types

Severa annotation types are predefined in the libraries of the Java SE platform.
Some of these predefined annotation types have special semantics. These semantics
are specified in this section. This section does not provide acompl ete specification
for the predefined annotations contained herein; that is the role of the appropriate
API specifications. Only those semantics that require specia behavior on the part
of aJava compiler or Java Virtua Machine implementation are specified here.

9.6.3.1 @rarget

The annotation type j ava. | ang. annot at i on. Target is intended to be used in
meta-annotations that indicate the kind of program element that an annotation type
is applicable to.

j ava. | ang. annot at i on. Tar get has one element, of type
java. |l ang. annot ati on. El ement Type[] .

It is a compile-time error if a given enum constant appears more than once in an
annotation whose corresponding typeisj ava. | ang. annot at i on. Tar get .

INTERFACES Annotation Types

See §7.4.1, 88.1.1, 88.3.1, 88.4.1, §8.4.3, §8.8.3, §8.9, §9.1.1, §9.3, §9.4, §9.6 and §14.4
for the other effects of j ava. | ang. annot at i on. Tar get annotations.

9.6.3.2 @Rretention

Annotations may be present only in source code, or they may be present in the
binary form of aclass or interface. An annotation that is present in the binary form
may or may not be available at run time via the reflection libraries of the Java
SE platform. The annotation type j ava. | ang. annot at i on. Ret ent i on iS used to
choose among these possibilities.

If an annotation a corresponds to a type T, and T has a (meta-)annotation m that
correspondsto j ava. | ang. annot at i on. Ret ent i on, then:

o If m has an element whose value is
j ava. | ang. annot at i on. Ret ent i onPol i cy. SOURCE, then a Java compiler must
ensure that a is not present in the binary representation of the class or interface
in which a appears.

o If m has an element whose value is
java. |l ang. annot ati on. Ret enti onPol i cy. CLASS or
java. | ang. annot ati on. Ret enti onPol i cy. RUNTI ME, then a Java compiler
must ensure that a is represented in the binary representation of the class or
interface in which a appears, unless mannotates alocal variable declaration.

An annotation on a local variable declaration is never retained in the binary
representation.

In addition, if m has an edement whose vaue s
j ava. | ang. annot ati on. Ret ent i onPol i cy. RUNTI ME, the reflection libraries of
the Java SE platform must make a available at run time.

If T does not have a (meta)annotation m that corresponds to
java. |l ang. annot ati on. Ret enti on, then a Java compiler must treat T as if
it does have such a meta-annotation m with an element whose value is
java. l ang. annot ati on. Ret enti onPol i cy. CLASS.

9.6.3.3 @nherited

The annotation type j ava. | ang. annot ati on. I nheri t ed iS used to indicate that
annotations on a class C corresponding to a given annotation type are inherited by
subclasses of C.

9.6

281

9.6

282

Annotation Types INTERFACES

9.6.34 @verride

Programmers occasionally overload a method declaration when they mean to
override it, leading to subtle problems. The annotation type Overri de supports
early detection of such problems.

The classic example concerns the equal s method. Programmers write the following in
class Foo:

public bool ean equal s(Foo that) { ... }
when they mean to write:
publ i c bool ean equal s(Cbject that) { ... }

This is perfectly legal, but class Foo inherits the equal s implementation from oj ect ,
which can cause some very subtle bugs.

If amethod declaration is annotated with the annotation @ver ri de, but the method
doesnot override or implement amethod declared in asupertype, or isnot override-
equivalent to apubl i ¢ method of j ect , a compile-time error occurs.

This behavior differs from Java SE 5.0, where @verri de only caused a compile-time
error if applied to a method that implemented a method from a superinterface that was not
also present in a superclass.

The clause about overriding a publ i ¢ method is motivated by use of @verri de in an
interface. Consider the following type declarations:

cl ass Foo { @wverride public int hashCode() {..} }
interface Bar { @verride int hashCode(); }

The use of @verride in the class declaration is legal by the first clause, because
Foo. hashCode overrides Ooj ect . hashCode (88.4.8).

For the interface declaration, consider that while an interface does not have Qbj ect as
a supertype, an interface does have publ i ¢ abst ract members that correspond to the
publ i ¢ members of Cbj ect (89.2). If an interface chooses to declare them explicitly (i.e.
to declare members that are override-equivalent to publ i ¢ methods of Qbj ect), then the
interface is deemed to override them (88.4.8), and use of @ver ri de isallowed.

However, consider an interface that attempts to use @verri de on a cl one method:
(fi nal i ze could aso be used in this example)

interface Quux { @verride bject clone(); }

Because Obj ect . cl one is not publ i c, there is no member called cl one implicitly
declared in Quux. Therefore, the explicit declaration of cl one in Quux is not deemed

INTERFACES Annotation Types

to "implement" any other method, and it is erroneous to use @verri de. (The fact that
Quux. cl one ispubl i ¢ isnot relevant.)

In contrast, a class declaration that declares cl one is simply overriding Obj ect . cl one,
soisableto use @verri de:

class Beep { @verride protected Ooject clone() {..} }

9.6.3.5 @uppressWar ni ngs

Java compilers are increasingly capable of issuing helpful "lint-like" warnings.
To encourage the use of such warnings, there should be some way to disable a
warning in a part of the program when the programmer knows that the warning is
inappropriate.

The annotation type SuppressWarnings supports programmer control over
warnings otherwise issued by a Java compiler. It contains a single element that is
an array of Stri ng.

If a program declaration is annotated with the annotation
@uppressWarni ngs(value = {S;, ..., S), then aJava compiler must not
report any warning identified by one of s; ... s if that warning would have been
generated as aresult of the annotated declaration or any of its parts.

Unchecked warnings are identified by the string "unchecked".

Compiler vendors should document the warning names they support in conjunction with
this annotation type. Vendors are encouraged to cooperate to ensure that the same names
work across multiple compilers.

9.6.3.6 @eprecated

A program element annotated @eprecated is one that programmers are
discouraged from using, typically because it is dangerous, or because a better
alternative exists.

A Java compiler must produce a deprecation warning when a type, method, field,
or constructor whose declaration is annotated with the annotation @epr ecat ed is
used (i.e. overridden, invoked, or referenced by name), unless:

e The use is within an entity that is itself annotated with the annotation
@epr ecat ed; Or

* The use is within an entity that is annotated to suppress the warning with the
annotation @uppr essWar ni ngs(" deprecation"); or

» The use and declaration are both within the same outermost class.

9.6

283

9.6

284

Annotation Types INTERFACES

Use of the @epr ecat ed annotation on alocal variable declaration or on aparameter
declaration has no effect.

9.6.3.7 @af evarargs

A variable arity parameter with anon-reifiable element type (84.7) can cause heap
pollution (84.12.2) and give rise to compile-time unchecked warnings (85.1.9).
Such warnings are uninformative if the body of the variable arity method is well-
behaved with respect to the variable arity parameter.

The annotation type Saf eVar ar gs, when used to annotate a method or constructor
declaration, makes a programmer assertion that prevents a Java compiler from
reporting unchecked warnings for the declaration or invocation of avariable arity
method or constructor where the compiler would otherwise do so dueto thevariable
arity parameter having a non-reifiable element type.

The Saf evar ar gs annotation has non-local effects because it suppresses unchecked
warnings a method invocation expressions in addition to an unchecked warning
pertaining to the declaration of the variable arity method itself (88.4.1). In contrast,
the @uppr essWar ni ngs(" unchecked") annotation has local effects because it only
suppresses unchecked warnings pertaining to the declaration of a method.

The canonica target for a Safevarargs annotation is a method like
java.util. Col | ections. addAl | , whose declaration starts with:

public static <T> bool ean
addAl | (Col | ection<? super T>c, T... elenents)

The variable arity parameter has declared type T[], which is non-reifiable. However,
the method fundamentaly just reads from the input array and adds the elements
to a collection, both of which are safe operations with respect to the array.
Therefore, any compile-time unchecked warnings at method invocation expressions for
java.util.Collections.addAl | arearguably spuriousand uninformative. Applyinga
Saf eVar ar gs annotation to the method decl aration prevents generation of these unchecked
warnings at the method invocation expressions.

It is a compile-time error if a fixed arity method or constructor declaration is
annotated with the Saf evar ar gs annotation.

It is a compile-time error if a variable arity method declaration that is neither
static norfinal isannotated with the Saf evar ar gs annotation.

Since a Saf eVar ar gs annotation is only applicable to st at i ¢ methods, fi nal instance
methods, and constructors, the annotation is not usable where method overriding occurs.
Annotation inheritance only works on classes (not methods, interfaces, or constructors), so
a Saf eVar ar gs-style annotation cannot be passed through instance methods in classes or
through interfaces.

INTERFACES Annotations

9.7 Annotations

An annotation isamodifier consisting of the name of an annotation type (89.6) and
zero or more element-value pairs, each of which associates avalue with adifferent
element of the annotation type.

The purpose of an annotation is simply to associate information with the annotated
program element.

Annotations must contain an element-value pair for every element of the
corresponding annotation type, except for those elements with default values, or a
compile-time error occurs.

Annotations may, but are not required to, contain element-value pairs for elements
with default values.

Annotations may be used asmodifiersin any declaration, whether package (87.4.1),
class (88.1.1) (including enums (88.9)), interface (89.1.1) (including annotation
types(89.6)), field (88.3.1, §9.3), method (88.4.3, §9.4), formal parameter (§8.4.1),
constructor (88.8.3), or local variable (§814.4.1).

Annotations may also be used on enum constants. Such annotations are placed
immediately before the enum constant they annotate.

Itisacompile-timeerror if adeclaration isannotated with morethan one annotation
for agiven annotation type.

Annotations are conventionally placed before al other modifiers, but this is not a
reguirement; they may be freely intermixed with other modifiers.

Annotations:
Annotation
Annotations Annotation

Annotation:
Nor mal Annotation
Marker Annotation
SngleElementAnnotation

There are three kinds of annotations. The first (norma annotation) is fully
general. The others (marker annotation and single-element annotation) are merely
shorthands.

9.7

285

9.7

286

Annotations INTERFACES

9.7.1 Normal Annotations

A normal annotation is used to annotate a program element.

Nor mal Annotation:
@TypeName (ElementValuePairsyp)

ElementValuePairs;
ElementValuePair
ElementValuePairs, ElementValuePair

ElementValuePair:
Identifier = ElementValue

ElementValue:
Conditional Expression
Annotation

ElementValueArraylnitializer

ElementValueArraylnitializer:
{ ElementValuesypt , opt }

ElementValues:
ElementValue
ElementValues, ElementValue

The TypeName names the annotation type corresponding to the annotation.

Note that the at-sign (@ is atoken unto itself. Technicaly it is possible to put whitespace
between it and the TypeName, but thisis discouraged as a matter of style.

It is a compile-time error if TypeName does not name an annotation type that is
accessible (86.6) at the point where the annotation is used.

The Identifier in an ElementValuePair must be the simple name of one of the
elements (i.e. methods) of the annotation type identified by TypeName; otherwise,
a compile-time error occurs.

The return type of this method defines the element type of the element-value pair.

An ElementValueArraylnitializer is similar to a normal array initiaizer (810.6),
except that annotations are permitted in place of expressions.

INTERFACES Annotations

An element type T is commensurate with an element value v if and only if one of
the following conditionsis true:

* Tisanarray typeEg[] and either:

* Visan ElementValueArraylnitializer and each ElementValue (analogous to a
Variablelnitializer in an array initializer) in v is commensurate with E; or

* visan ElementValue that is commensurate with E.
» Thetype of v isassignment compatible (85.2) with T, and furthermore:
* If Tisaprimitivetypeor Stri ng, and Vv isaconstant expression (815.28).
* visnotnul I .
* If Tisd ass, or aninvocation of d ass, and visaclassliteral (815.8.2).

+ If Tisan enum type, and v is an enum constant.
Notethat nul | isnot alega element value for any element type.

It is a compile-time error if the element type is not commensurate with the
ElementValue.

If the element type is not an annotation type or an array type, ElementValue must
be a Conditional Expression (815.25).

A Conditional Expression is simply an expression without assignments, and not necessarily
an expression involving the conditional operator (? :). Conditional Expressionis preferred
over Expression in ElementVal ue because an element val ue has asimple structure (constant
expression or class literal or enum constant) that may easily be represented in binary form.

If the element type is an array type and the corresponding ElementValue is not
an ElementValueArraylnitializer, then an array value whose sole element is the
value represented by the ElementValue is associated with the element. Otherwise,
if the corresponding ElementValue is an ElementValueArraylnitializer, then the
array value represented by the ElementValueArraylnitializer is associated with the
element.

In other words, it is permissible to omit the curly braces when a single-element array isto
be associated with an array-valued annotation type element.

Notethat the array's element type cannot be an array type. That is, nested array typesare not
permitted as element types. (While the annotation syntax would permit this, the annotation
type declaration syntax would not.)

An ElementValue is aways FP-strict (815.4).

9.7

287

9.7 Annotations INTERFACES

An annotation on an annotation type declaration is known as a meta-annotation.

An annotation type may be used to annotate its own declaration. More generally,
circularitiesin the transitive closure of the "annotates' relation are permitted.

For example, it islegal to annotate an annotation type declaration with another annotation
type, and to annotate the latter type's declaration with the former type. (The pre-defined
meta-annotation types contain several such circularities.)

Example 9.7.1-1. Normal Annotations

Hereis an example of anormal annotation.

@rRequest For Enhancenent (

id = 2868724,
synopsis = "Provide time-travel functionality",
engi neer = "M . Peabody",
date = "4/1/2004"
)
public static void travel ThroughTi me(Date destination) { ... }

Hereis an example of a normal annotation that takes advantage of default values.

@Request For Enhancenent (
id = 4561414,
synopsis = "Bal ance the federal budget"

)

public static void bal anceFeder al Budget () {
t hr ow new Unsupport edOperati onExcepti on("Not inplenmented");

}
Notethat the types of the annotationsin the examplesin this section are the annotation types
defined in the examplesin §9.6. Note also that the elements are in the above annotation are
in the same order as in the corresponding annotation type declaration. Thisis not required,
but unless specific circumstances dictate otherwise, it is areasonable convention to follow.

9.7.2 Marker Annotations

The second form of annotation, marker annotation, isashorthand designed for use
with marker annotation types.

Marker Annotation:
@l dentifier

It is shorthand for the normal annotation:

@dentifier()

288

INTERFACES Annotations

Itislegal to usethe marker annotation form for annotation types with elements, so
long as all the elements have default values.

Example 9.7.2-1. Marker Annotations

Here is an example using the Pr el i ni nar y marker annotation type from §9.6.1:

@relimnary public class TimeTravel { ... }

9.7.3 Single-Element Annotations

The third form of annotation, single-element annotation, is a shorthand designed
for use with single-element annotation types.

SngleElementAnnotation:
@ldentifier (ElementValue)

It is shorthand for the normal annotation:
@dentifier(value = El enent Val ue)

It is legal to use single-element annotations for annotation types with multiple
elements, so long as one element is named val ue, and all other elements have
default values.

Example 9.7.3-1. Single-Element Annotations

Here is an example of a single-element annotation.

@opyri ght ("2002 Yoyodyne Propul sion Systens, Inc.")
public class GscillationOverthruster { ... }

Here is an example of an array-valued single-element annotation.

@Endor sers({"Chil dren", "Unscrupul ous dentists"})
public class Lollipop { ... }

Hereis an example of a single-element array-valued single-element annotation. Note that
the curly braces are omitted.

@ndor ser s(" Epi curus")
public class Pleasure { ... }

Here is an example with of a single-element annotation that contains a normal annotation.

@\t hor (@ane(first = "Joe", last = "Hacker"))

9.7

289

9.7 Annotations INTERFACES

public class BitTwiddle { ... }

Here is an example of a single-element annotation with ad ass element whose value is
restricted by the use of a bounded wildcard.

cl ass CorgeousFormatter inplenents Formatter { ... }

@rettyPrinter(GorgeousFornatter.class)

public class Petunia { ... }
/1 1llegal; String is not a subtype of Formatter
@rettyPrinter(String.class)
public class Begonia { ... }

Here is an example of a single-element annotation using an enum type defined inside the
annotation type.

@uality(Quality. Level . GOOD)
public class Karma { ... }

290

CHAPTER 10

Arrays

I N the Java programming language, arrays are objects (84.3.1), are dynamically
created, and may be assigned to variables of type j ect (84.3.2). All methods of
class bj ect may be invoked on an array.

An array object contains a number of variables. The number of variables may be
zero, in which case the array is said to be empty. The variables contained in an
array have no names; instead they are referenced by array access expressions that
use non-negative integer index values. These variables are called the components
of the array. If an array has n components, we say n is the length of the array;
the components of the array are referenced using integer indicesfromOton - 1,
inclusive.

All the components of an array have the same type, called the component type of
the array. If the component type of an array is T, then the type of the array itself
iswritten T[] .

The value of an array component of typef| oat isaways an element of the float
value set (84.2.3); similarly, the value of an array component of type doubl e is
always an element of the double value set. It is not permitted for the value of an
array component of type f 1 oat to be an element of the float-extended-exponent
value set that is not also an element of the float value set, nor for the value of an
array component of typedoubl e to be an element of the doubl e-extended-exponent
value set that is not also an element of the double value set.

The component type of an array may itself be an array type. The components
of such an array may contain references to subarrays. If, starting from any array
type, one considers its component type, and then (if that is also an array type) the
component type of that type, and so on, eventually one must reach a component
type that is not an array type; thisis called the element type of the origina array,
and the components at thislevel of the data structure are called the elements of the
original array.

201

10.1

292

Array Types ARRAYS

There are some situations in which an element of an array can be an array: if the
element typeis bj ect Or C oneabl e Or j ava. i 0. Seri al i zabl e, then some or all
of the elements may be arrays, because any array object can be assigned to any
variable of these types.

10.1 Array Types

Array types are used in declarations and in cast expressions (815.16).

An array type is written as the name of an element type followed by some number
of empty pairs of square brackets[]. The number of bracket pairs indicates the
depth of array nesting.

An array'slength is not part of itstype.

The element type of an array may be any type, whether primitive or reference. In
particular:

» Arrayswith an interface type as the element type are allowed.

An element of such an array may have asitsvalue anull reference or aninstance
of any type that implements the interface.

» Arrayswith anabstract classtype asthe element type are allowed.

An element of such an array may have asitsvaue anull reference or an instance
of any subclass of the abst ract classthat isnot itself abst ract .

The supertypes of an array type are specified in §4.10.3.
The direct superclass of an array typeis j ect .

Every aray type implements the interfaces Cloneable and
java.io. Serializable.

10.2 Array Variables

A variable of array type holds areferenceto an object. Declaring avariable of array
type does not create an array object or alocate any space for array components. It
creates only the variable itself, which can contain areference to an array.

However, the initializer part of a declarator (88.3, §89.3, §14.4.1) may create an
array, areference to which then becomestheinitial value of the variable.

ARRAYS Array Variables

Example 10.2-1. Declarations of Array Variables

int[] ai ; /1 array of int
short[][] as; /1 array of array of short
short S, /'l scal ar short

aas[]1[1]; /1 array of array of short
Obj ect[] ao, /1 array of Object

ot her Ao; /1 array of Object
Col l ection<?>[] ca; // array of Collection of unknown type

The declarations above do not create array objects. The following are examples of
declarations of array variables that do create array objects:

Exception ae[]
Obj ect aao[][]
int[] factorial

new Exception[3];
new Exception[2][3];
{1, 1, 2, 6, 24, 120, 720, 5040 };

char ac[] {'n, o, "t'," ", "a, ,
S S S A T (¢ I
String[] aas ={ "array", "of", "String", };

The[] may appear as part of the type at the beginning of the declaration, or as part
of the declarator for a particular variable, or both.

For example:
byte[] rowector, colvector, matrix[];
This declaration is equivalent to:

byte rowector[], colvector[], matrix[][];

In avariable declaration (88.3, §88.4.1, 89.3, §14.14, §14.20) except for avariable
arity parameter, thearray type of avariableisdenoted by the array typethat appears
at the beginning of the declaration, followed by any bracket pairs that follow the
variable's Identifier in the declarator.

For example, the local variable declaration:
int a, b[], c[][];

is equivalent to the series of declarations:
int a;

int[] b;

int[1[] c;

Brackets are alowed in declarators as a nod to the tradition of C and C++. The general
rules for variable declaration, however, permit brackets to appear on both the type and in
declarators, so that the local variable declaration:

10.2

293

10.3

294

Array Creation ARRAYS

float[1[] f[1[(], olI[1[]. h[]: // Yechh!

is equivalent to the series of declarations:

110100 Fs
float[1[][1[1[] g
float[J[][] h;

We do not recommend "mixed notation” in an array variable declaration, where
brackets appear on both the type and in declarators.

Oncean array object iscreated, itslength never changes. To make an array variable
refer to an array of different length, areferenceto adifferent array must be assigned
to the variable.

A singlevariable of array type may contain referencesto arrays of different lengths,
because an array's length is not part of its type.

If an array variable v has type Al], where A is a reference type, then v can hold
areference to an instance of any array type B[], provided B can be assigned to A
(85.2). This may result in a run-time exception on a later assignment; see 810.5
for adiscussion.

10.3 Array Creation

An array is created by an array creation expression (815.10) or an array initializer
(810.6).

An array creation expression specifies the element type, the number of levels of
nested arrays, and the length of the array for at least one of the levels of nesting.
Thearray'slength isavailable asafi nal instance variablel engt h.

An array initializer creates an array and provides initia values for al its
components.

10.4 Array Access

A component of an array is accessed by an array access expression (§15.13) that
consistsof an expression whosevalueisan array referencefollowed by an indexing
expression enclosed by [and], asinAfi].

ARRAYS Array Sore Exception

All arrays are 0-origin. An array with length n can be indexed by the integers o
ton-1.

Example 10.4-1. Array Access

class Gauss {
public static void main(String[] args) {
int[] ia = newint[101];

for (int i =0; i <ia.length; i++) ia[i] =i;
int sum= 0;
for (int e : ia) sum+= g

System out. println(sum;
}
This program produces the output:
5050

The program declaresavariablei a that hastypearray of i nt , thatis,i nt[] . Thevariable
i a isinitialized to reference a newly created array object, created by an array creation
expression (815.10). The array creation expression specifiesthat the array should have 101
components. The length of the array is available using the field | engt h, as shown. The
program fills the array with the integers from 0 to 100, sums these integers, and prints the
result.

Arrays must be indexed by i nt values; short, byte, or char values may also
be used as index values because they are subjected to unary numeric promotion
(85.6.1) and becomei nt values.

An attempt to access an array component with a | ong index value results in a
compile-time error.

All array accesses are checked at run time; an attempt to use an index that
is less than zero or greater than or equal to the length of the array causes an
Arrayl ndexQut Of BoundsExcept i on to be thrown.

10.5 Array Store Exception

For an array whose type is Al], where A is a reference type, an assignment to
a component of the array is checked at run time to ensure that the value being
assigned is assignable to the component.

If the type of the value being assigned is not assignment-compatible (85.2) with
the component type, an Ar r ay St or eExcept i on isthrown.

10.5

295

105 Array Sore Exception ARRAYS

If the component type of an array were not reifiable (84.7), the Java Virtual Machine
could not perform the store check described in the preceding paragraph. This is why an
array creation expression with anon-reifiable element type is forbidden (§15.10). One may
declare avariable of an array type whose element type is non-reifiable, but assignment of
theresult of an array creation expression to the variablewill necessarily cause an unchecked
warning (85.1.9).

Example 10.5-1. Arr aySt or eExcept i on

class Point { int x, y; }
cl ass Col oredPoi nt extends Point { int color; }
class Test {
public static void main(String[] args) {
Col oredPoi nt[] cpa = new Col oredPoi nt [10] ;
Point[] pa = cpa;
Systemout.println(pa[1] == null)
try {
pa[0] = new Point();
} catch (ArrayStoreException e) {
Systemout.println(e);

}
}

This program produces the output:

true
java.l ang. ArraySt or eExcepti on: Poi nt

The variable pa hastype Poi nt[] and the variable cpa has asits value areference to an
object of type Col or edPoi nt [] . A Col or edPoi nt canbeassignedto aPoi nt ; therefore,
the value of cpa can be assigned to pa.

A referenceto thisarray pa, for example, testing whether pa[1] isnul I, will not result in
arun-time type error. This is because the element of the array of type Col or edPoi nt []
isa Col or edPoi nt, and every Col or edPoi nt can stand in for a Poi nt , since Poi nt is
the superclass of Col or edPoi nt .

On the other hand, an assignment to the array pa can result in arun-time error. At compile
time, an assignment to an element of pa is checked to make surethat thevalue assignedisa
Poi nt . But sincepa holdsareferencetoanarray of Col or edPoi nt , theassignmentisvalid
only if the type of the value assigned at run time is, more specifically, a Col or edPoi nt .

The Java Virtua Machine checks for such a situation at run time to ensure that the
assignment isvalid; if not, an Arr aySt or eExcept i on isthrown.

296

ARRAYS Array Initializers

10.6 Array Initializers

Anarray initializer may be specified in adeclaration (88.3, 89.3, 814.4), or as part
of an array creation expression (815.10), to create an array and provide someinitial
values.

Arraylnitializer:
{ Variablelnitializersyy , opt }

Variablelnitializers:
Variablelnitializer
Variablelnitializers, Variablelnitializer

The following is repeated from §8.3 to make the presentation here clearer:

Variablelnitializer:
Expression
Arraylnitializer

An array initializer is written as a comma-separated list of expressions, enclosed
by braces{ and}.

A trailing comma may appear after the last expression in an array initializer and
isignored.

Each variable initializer must be assignment-compatible (85.2) with the array's
component type, or a compile-time error occurs.

It isacompile-time error if the component type of the array being initialized is not
reifiable (84.7).

The length of the array to be constructed is equal to the number of variable
initializers immediately enclosed by the braces of the array initializer. Space is
alocated for a new array of that length. If there is insufficient space to allocate
the array, evaluation of the array initializer completes abruptly by throwing an
Qut O Merror yEr r or . Otherwise, aone-dimensional array is created of the specified
length, and each component of the array isinitialized to its default value (84.12.5).

Thevariableinitializersimmediately enclosed by the braces of the array initializer
are then executed from left to right in the textual order they occur in the source
code. Then'th variableinitializer specifiesthe value of the n-1'th array component.
If execution of avariableinitializer completes abruptly, then execution of the array
initializer completes abruptly for the same reason. If al the variable initializer

10.6

297

10.7 Array Members ARRAYS

expressions complete normally, the array initializer completes normally, with the
value of the newly initialized array.

If the component type is an array type, then the variable initializer specifying a
component may itself bean array initializer; that is, array initializers may be nested.
In this case, execution of the nested array initializer constructs and initializes an
array object by recursive application of the algorithm above, and assigns it to the
component.

Example 10.6-1. Array Initializers

class Test {
public static void main(String[] args) {
int ia[]l[] ={ {1, 2}, null };
for (int[] ea: ia) {
for (int e: ea) {
Systemout.printlin(e);

}

}
This program produces the output:

1
2

before causing aNul | Poi nt er Except i on intrying to index the second component of the
array i a, which isanull reference.

10.7 Array Members

The members of an array type are all of the following:

e Thepublic final field I ength, which contains the number of components of
the array. | engt h may be positive or zero.

» The publ i ¢ method cl one, which overrides the method of the same name in
class avj ect and throws no checked exceptions. The return type of the cl one
method of an array type T[] iST[] .

A clone of a multidimensional array is shallow, which isto say that it creates
only asingle new array. Subarrays are shared.

« All the members inherited from class Obj ect ; the only method of bj ect thatis
not inherited isitscl one method.

298

ARRAYS Array Members 10.7

An array thus has the same publ i ¢ fields and methods as the following class:

class A<T> inplenents Cloneable, java.io.Serializable {
public final int length = X ;
public T[] clone() {
try {
return (T[])super.clone(); // unchecked war ni ng
} catch (d oneNot SupportedException e) {
throw new | nternal Error(e. get Message());

}
}

Note that the cast in the example above would generate an unchecked warning (85.1.9) if
arrays were really implemented this way.

See §9.6.3.4 for another situation where the difference between publ i ¢ and non-publ i ¢
methods of Obj ect requires special care.

Example 10.7-1. Arrays Are Cloneable

class Testl {
public static void main(String[] args) {
int ial[] ={ 1, 2 };
int ia2[] = ial.clone();

Systemout.print((ial ==ia2) +" ");
ial[1] ++;

Systemout.printin(ia2[1]);
}
This program produces the output:

false 2

showing that the components of the arrays referenced by i al and i a2 are different
variables.

Example 10.7-2. Shared Subarrays After A Clone

The fact that subarrays are shared when a multidimensional array is cloned is shown by
this program:

class Test2 {
public static void main(String[] args) throws Throwabl e {
int ia[l[] ={ {1, 2}, null };
int ja[][] = ia.clone();
Systemout.print((ia ==ja) +" ");
Systemout.println(ia[0] ==ja[0] & ia[l] == ja[l]);

299

10.8 d ass Objects for Arrays ARRAYS

This program produces the outpuit:
fal se true

showing that thei nt [] array thatisi a[0] andthei nt[] array thatisj a[0] arethe same
array.

10.8 d ass Objectsfor Arrays

Every array has an associated d ass object, shared with all other arrays with the
same component type.

Example 10.8-1. d ass Object Of Array

class Test {
public static void main(String[] args) {
int[] ia = newint[3];
Systemout. println(ia.getdass());
Systemout. println(ia.getC ass().getSuperclass());

}
This program produces the outpuit:

class [I
cl ass java.l ang. Obj ect

where the string "[1" is the run-time type signature for the class object "array with
component typei nt ".

Example 10.8-2. Array d ass Objects Are Shared

class Test {
public static void main(String[] args) {
int[] ia = newint[3];
int[] ib = newint[6];
Systemout.println(ia.getCass() == ib.getdass());
Systemout.printin("ia has |length=" + ia.length);

}
This program produces the output:

true
ia has | ength=3

The program uses the method get O ass inherited from class Obj ect, and the field
I engt h. The result of the comparison of the C ass objects in the first println

300

ARRAYS An Array of CharactersisNot a String 109

demonstrates that all arrays whose components are of typei nt are instances of the same
array type, whichisint[].

10.9 An Array of CharactersisNot asStri ng

In the Java programming language, unlike C, an array of char isnot astring,
and neither a String nor an array of char is terminated by "\ u0ooo' (the NUL
character).

A St ring object isimmutable, that is, its contents never change, while an array of
char has mutable e ements.

The method t oChar Array in class String returns an array of characters containing
the same character sequence asa Stri ng. The class St ri ngBuf f er implements useful
methods on mutable arrays of characters.

301

CHAPTER 11

Exceptions

WHEN a program violates the semantic constraints of the Java programming
language, the Java Virtua Machine signals this error to the program as an
exception.

An example of such aviolation is an attempt to index outside the bounds of an
array. Some programming languages and their implementations react to such errors
by peremptorily terminating the program; other programming languages allow an
implementation to react in an arbitrary or unpredictable way. Neither of these
approachesis compatible with the design goal s of the Java SE platform: to provide
portability and robustness.

Instead, the Java programming language specifies that an exception will be thrown
when semantic constraintsareviolated and will cause anon-local transfer of control
from the point where the exception occurred to a point that can be specified by the
programmer.

An exception is said to be thrown from the point where it occurred and is said to
be caught at the point to which control is transferred.

Programs can also throw exceptions explicitly, using t hr ow statements (§14.18).

Explicit use of t hr ow statements provides an alternative to the old-fashioned style
of handling error conditions by returning funny values, such as the integer value
- 1 where anegative value would not normally be expected. Experience shows that
too often such funny values are ignored or not checked for by callers, leading to
programs that are not robust, exhibit undesirable behavior, or both.

Every exception is represented by an instance of the class Thr owabl e or one of its
subclasses (811.1). Such an object can be used to carry information from the point
at which an exception occursto the handler that catchesit. Handlers are established
by cat ch clauses of t ry statements (§14.20).

303

111

304

The Kinds and Causes of Exceptions EXCEPTIONS

During the process of throwing an exception, the Java Virtual Machine abruptly
completes, one by one, any expressions, statements, method and constructor
invocations, initiaizers, and field initialization expressions that have begun but not
completed execution in the current thread. This process continues until ahandler is
found that indicates that it handles that particular exception by naming the class of
the exception or asuperclassof the classof the exception (811.2). If no such handler
is found, then the exception may be handled by one of a hierarchy of uncaught
exception handlers (811.3) - thus every effort ismade to avoid letting an exception
go unhandled.

The exception mechanism of the Java SE platform is integrated with its
synchronization model (817.1), so that monitors are unlocked as synchr oni zed
statements (814.19) and invocations of synchr oni zed methods (88.4.3.6, §15.12)
complete abruptly.

11.1 TheKindsand Causes of Exceptions

11.1.1 TheKinds of Exceptions

Anexceptionisrepresented by an instance of the class Thr owabl e (adirect subclass
of bj ect) or one of its subclasses.

Thr owabl e and all its subclasses are, collectively, the exception classes.
Note that a subclass of Thr owabl e must not be generic (88.1.2).

The classes Except i on and Err or are direct subclasses of Thr owabl e.

Excepti on is the superclass of all the exceptions from which ordinary programs
may wish to recover.

Er r or isthe superclass of all the exceptions from which ordinary programs are not
ordinarily expected to recover.

Error and all its subclasses are, collectively, the error classes.

TheclassEr r or isaseparate subclassof Thr owabl e, distinct fromExcept i on intheclass
hierarchy, to allow programsto usetheidiom"} catch (Exception e) {" (811.2.3)
to catch all exceptions from which recovery may be possible without catching errors from
which recovery istypically not possible.

The class RuntinmeException is a direct subclass of Exception.
Runt i meExcepti on is the superclass of all the exceptions which may be thrown

EXCEPTIONS The Kinds and Causes of Exceptions

for many reasons during expression evaluation, but from which recovery may till
be possible.

Runt i meExcept i on and all its subclasses are, collectively, the run-time exception
classes.

The unchecked exception classes are the run-time exception classes and the error
classes.

The checked exception classes are all exception classes other than the unchecked
exception classes. That is, the checked exception classes are al subclasses of
Thr owabl e other than Runti meExcepti on and its subclasses and Error and its
subclasses.

Programs can use the pre-existing exception classes of the Java SE platform APl int hr ow
statements, or define additional exception classes as subclasses of Thr owabl e or of any of
its subclasses, as appropriate. To take advantage of compile-time checking for exception
handlers (§11.2), it is typical to define most new exception classes as checked exception
classes, that is, assubclasses of Except i on that are not subclassesof Runt i meExcept i on.

11.1.2 The Causes of Exceptions

An exception is thrown for one of three reasons:
* At hr ow Statement (814.18) was executed.

* An abnormal execution condition was synchronously detected by the Java
Virtual Machine, namely:

+ evaluation of an expression violates the norma semantics of the Java
programming language (815.6), such as an integer divide by zero.

+ an error occurs while loading, linking, or initializing part of the program
(812.2, 812.3, 812.4); in this case, an instance of a subclass of Li nkageEr r or
isthrown.

+ aninternal error or resource limitation preventsthe Java Virtual Machinefrom
implementing the semantics of the Java programming language; in this case,
an instance of a subclass of Vi r t ual Met hodEr r or isthrown.

These exceptions are not thrown at an arbitrary point in the program, but rather at
a point where they are specified as a possible result of an expression evaluation
or statement execution.

» An asynchronous exception occurred (811.1.3).

111

305

111

306

The Kinds and Causes of Exceptions EXCEPTIONS

11.1.3 Asynchronous Exceptions

M ost exceptions occur synchronously asaresult of an action by thethread in which
they occur, and at a point in the program that is specified to possibly result in such
an exception. An asynchronous exception is, by contrast, an exception that can
potentially occur at any point in the execution of a program.

Asynchronous exceptions occur only as aresult of:
* Aninvocation of the (deprecated) st op method of class Thr ead or Thr eadG oup.

The (deprecated) st op methods may be invoked by one thread to affect another
thread or all the threads in a specified thread group. They are asynchronous
because they may occur at any point in the execution of the other thread or
threads.

* Aninternal error or resource limitation in the Java Virtual Machine that prevents
it from implementing the semantics of the Java programming language. In this
case, the asynchronous exception that is thrown is an instance of a subclass of
Vi rt ual Met hodErr or.

Notethat St ackOver f | owEr r or , asubclassof Vi r t ual Met hodEr r or , may bethrown
synchronously by method invocation (§15.12.4.5) as well as asynchronously due to
nati ve method execution or Java Virtual Machine resource limitations. Similarly,
Qut OF Menor yError, another subclass of Virtual Met hodError, may be thrown
synchronously during object creation (812.5), array creation (815.10.1, §10.6), class
initialization (812.4.2), and boxing conversion (85.1.7), as well as asynchronously.

The Java SE platform permits a small but bounded amount of execution to occur
before an asynchronous exception is thrown.

Asynchronous exceptions arerare, but proper understanding of their semanticsis necessary
if high-quality machine code isto be generated.

The delay noted above is permitted to allow optimized code to detect and throw these
exceptions at points where it is practical to handle them while obeying the semantics of
the Java programming language. A simple implementation might poll for asynchronous
exceptions at the point of each control transfer instruction. Since a program has a finite
size, this provides abound on the total delay in detecting an asynchronous exception. Since
no asynchronous exception will occur between control transfers, the code generator has
some flexibility to reorder computation between control transfers for greater performance.
The paper Polling Efficiently on Sock Hardware by Marc Feeley, Proc. 1993 Conference
on Functional Programming and Computer Architecture, Copenhagen, Denmark, pp.
179-187, is recommended as further reading.

EXCEPTIONS Compile-Time Checking of Exceptions

11.2 Compile-Time Checking of Exceptions

The Java programming language requires that a program contains handlers for
checked exceptions which can result from execution of a method or constructor.
For each checked exception which is a possible result, the t hr ows clause for the
method (88.4.6) or constructor (88.8.5) must mention the class of that exception or
one of the superclasses of the class of that exception (811.2.3).

This compile-time checking for the presence of exception handlersis designed to
reduce the number of exceptions which are not properly handled. The checked
exception classes (811.1.1) named in the t hr ows clause are part of the contract
between theimplementor and user of the method or constructor. Thet hr ows clause
of an overriding method may not specify that this method will result in throwing
any checked exception which the overridden method is not permitted, by itst hr ows
clause, to throw (88.4.8.3).

When interfaces are involved, more than one method declaration may be
overridden by a single overriding declaration. In this case, the overriding
declaration must have at hr ows clause that is compatible with all the overridden
declarations (89.4.1).

The unchecked exception classes (811.1.1) are exempted from compile-time
checking.

Of the unchecked exception classes, error classes are exempted because they can occur at
many pointsin the program and recovery from them is difficult or impossible. A program
declaring such exceptions would be cluttered, pointlessly. Sophisticated programs may yet
wish to catch and attempt to recover from some of these conditions.

Of the unchecked exception classes, run-time exception classes are exempted because, in
the judgment of the designers of the Java programming language, having to declare such
exceptionswould not aid significantly in establishing the correctness of programs. Many of
the operations and constructs of the Java programming language can result in exceptions at
run time. Theinformation available to a Java compiler, and the level of analysisacompiler
performs, are usually not sufficient to establish that such run-time exceptions cannot occur,
even though this may be obvious to the programmer. Requiring such exception classes to
be declared would simply be an irritation to programmers.

For example, certain code might implement a circular data structure that, by construction,
can never involve null references; the programmer can then be certain that a
Nul | Poi nt er Except i on cannot occur, but it would be difficult for a Java compiler to
proveit. Thetheorem-proving technology that is needed to establish such global properties
of data structures is beyond the scope of this specification.

11.2

307

11.2

308

Compile-Time Checking of Exceptions EXCEPTIONS

We say that a statement or expression can throw a checked exception class E if,
according to the rules in 811.2.1 and §11.2.2, the execution of the statement or
expression can result in an exception of class E being thrown.

We say that acat ch clause can catch its catchable exception class(es).

The catchable exception class of a uni-cat ch clause is the declared type of its
exception parameter (§14.20).

The catchable exception classes of amulti-cat ch clause are the aternativesin the
union that denotes the type of its exception parameter (814.20).

11.2.1 Exception Analysis of Expressions

A class instance creation expression (815.9) can throw an exception class E iff
either:

* The expression is a qualified class instance creation expression and the
qualifying expression can throw E; or

» Some expression of the argument list can throw E; or

» Eisdetermined to be an exception class of thet hr ows clause of the constructor
that isinvoked (815.12.2.6); or

» The classinstance creation expression includes a ClassBody, and some instance
initializer block or instance variable initializer expression in the ClassBody can
throw E.

A method invocation expression (815.12) can throw an exception classE iff either:

» The method to be invoked is of the form Primary.ldentifier and the Primary
expression can throw E; or

» Some expression of the argument list can throw E; or

» Eisdetermined to be an exception class of thet hr ows clause of the method that
isinvoked (815.12.2.6).

For every other kind of expression, the expression can throw an exception class E
iff one of itsimmediate subexpressions can throw E.

11.2.2 Exception Analysis of Statements

A t hr ow statement (814.18) whose thrown expression has static type E and is not
afinal or effectively final exception parameter can throw E or any exception class
that the thrown expression can throw.

EXCEPTIONS Compile-Time Checking of Exceptions

For example, the statement t hr ow new j ava. i o. Fi | eNot FoundException(); can
throw j ava. i 0. Fi | eNot FoundExcept i on only. Formally, it is not the case that it "can
throw" a subclass or superclass of j ava. i 0. Fi | eNot FoundExcept i on.

A t hr owstatement whose thrown expressionisafinal or effectively final exception
parameter of acat ch clause C can throw an exception class E iff:

* Eisan exception class that thet ry block of thetry statement which declares
C can throw; and

* Eisassignment compatible with any of C's catchable exception classes; and

 Eisnot assignment compatible with any of the catchable exception classes of the
cat ch clauses declared to the left of cinthe samet ry statement.

A try statement (814.20) can throw an exception class E iff either:

» Thetry block can throw E, or an expression used to initialize a resource (in a
t ry-with-resources statement) can throw E, or the automatic invocation of the
cl ose() method of aresource (in at r y-with-resources statement) can throw E,
and E is not assignment compatible with any catchable exception class of any
cat ch clause of thet ry statement, and either nofi nal I y block is present or the
final Iy block can complete normally; or

e Somecat ch block of thet ry statement can throw E and either nof i nal 1 y block
ispresent or thefi nal I y block can complete normally; or

e Afinally block ispresent and can throw E.

An explicit constructor invocation statement (88.8.7.1) can throw an exception
classEiff either:

» Some expression of the constructor invocation's parameter list can throw E; or

» Eisdetermined to be an exception class of thet hr ows clause of the constructor
that isinvoked (815.12.2.6).

Any other statement Scan throw an exception classE iff an expression or statement
immediately contained in S can throw E.

11.2.3 Exception Checking

Itisacompile-timeerror if amethod or constructor body can throw some exception
class E when E is a checked exception class and E is not a subclass of some class
declared inthet hr ows clause of the method or constructor.

It is a compile-time error if aclass variable initializer (88.3.2) or static initializer
(88.7) of anamed class or interface can throw a checked exception class.

11.2

309

11.2

310

Compile-Time Checking of Exceptions EXCEPTIONS

Itisacompile-timeerror if aninstance variableinitializer or instanceinitializer of a
named class can throw a checked exception class unless that exception class or one
of its superclasses is explicitly declared in the t hr ows clause of each constructor
of its class and the class has at |east one explicitly declared constructor.

Notethat no compile-timeerror isdueif aninstancevariableinitializer or instanceinitializer
of an anonymous class (815.9.5) can throw an exception class. In a named class, it is
the responsibility of the programmer to propagate information about which exception
classes can be thrown by initiaizers, by declaring asuitablet hr ows clause on any explicit
constructor declaration. This relationship between the checked exception classes thrown
by aclasssinitializers and the checked exception classes declared by a class's constructors
is assured implicitly for an anonymous class declaration, because no explicit constructor
declarations are possible and a Java compiler always generates a constructor with asuitable
t hr ows clausefor that anonymous class declaration based on the checked exception classes
that itsinitializers can throw.

It is a compile-time error if acat ch clause can catch checked exception class E;
and it is not the case that the t ry block corresponding to the cat ch clause can
throw a checked exception class that is a subclass or superclass of E;, unlessk; is
Except i on Or asuperclass of Excepti on.

It is a compile-time error if acat ch clause can catch (811.2) checked exception
class E; and apreceding cat ch clause of theimmediately enclosingt ry statement
can catch E; or asuperclass of E;.

A Java compiler is encouraged to issue a warning if a cat ch clause can catch (§811.2)
checked exception class E; and the try block corresponding to the cat ch clause can
throw checked exception class E;, a subclass of E;, and a preceding cat ch clause of the
immediately enclosing t ry statement can catch checked exception class E; where E; <:

Ez <! Ej.

Example 11.2.3-1. Catching Checked Exceptions
import java.io.*;

class Statical |l yThrownExcepti onsl ncl udeSubtypes {
public static void main(String[] args) {
try {
t hrow new Fi | eNot FoundException();
} catch (1 OException ioe) {
/1 Legal in Java SE 6 and 7. "catch | CException"
/] catches | CException and any subtype.

}

try {
t hrow new Fi | eNot FoundExcepti on();

/1 Statenent "can throw' Fil eNot FoundExcepti on.
/1 It is not the case that statenent "can throw'
/1 a subtype or supertype of FileNotFoundExcepti on.

EXCEPTIONS Run-Time Handling of an Exception 11.3

} catch (FileNot FoundException fnfe) {
/! Legal in Java SE 6 and 7.

} catch (1 OException ioe) {
/1 Legal in Java SE 6 and 7, but conpilers are
/1 encouraged to throw warnings as of Java SE 7.
/1 Al subtypes of |COException that the try bl ock
/'l can throw have al ready been caught.

}

try {
m);
/1 Method mis declaration says "throws | OException".
/1l m"can throw' | CException. It is not the case
/1 that m"can throw' a subtype or supertype of
/1 | CException, e.g. Exception, though Exception or
/'l a supertype of Exception can al ways be caught.
} catch (Fil eNot FoundException fnfe) {
/1 Legal in Java SE 6 and 7, because the dynanmic type
/1 of the | Cexception m ght be Fil eNot FoundExcepti on.
} catch (I OException ioe) {
/1 Legal in Java SE 6 and 7.
} catch (Throwable t) {
/! Legal in Java SE 6 and 7.

}
}

static void m() throws | OException {
t hrow new Fi | eNot FoundExcepti on();
}
}

By the rules above, each aternativein amulti-cat ch clause (§14.20) must be able to catch
some exception class thrown by thet ry block and uncaught by previous cat ch clauses.
For example, the second cat ch clause below would cause a compile-time error because
exception analysis determines that Subcl assOf Foo is already caught by the first cat ch

clause:

try { ... }

catch (Foo f) { ... }

catch (Bar | SubclassOfFoo e) { ... }

11.3 Run-Time Handling of an Exception

When an exception is thrown (814.18), control is transferred from the code that
caused the exception to the nearest dynamically enclosing cat ch clause, if any, of
at ry statement (814.20) that can handle the exception.

311

113

312

Run-Time Handling of an Exception EXCEPTIONS

A statement or expression is dynamically enclosed by acat ch clauseif it appears
within the t ry block of thet ry statement of which the cat ch clause is a part, or
if the caller of the statement or expression is dynamically enclosed by the cat ch
clause.

The caller of a statement or expression depends on where it occurs:

« If within amethod, then the caller is the method invocation expression (815.12)
that was executed to cause the method to be invoked.

« If within a constructor or an instance initializer or the initializer for an instance
variable, then the caller is the class instance creation expression (§815.9) or the
method invocation of newl nst ance that was executed to cause an object to be
created.

« |f within astatic initidlizer or aninitializer for ast ati ¢ variable, then the caller
isthe expression that used the class or interface so asto causeit to be initialized
(812.4).

Whether a particular catch clause can handle an exception is determined by
comparing the class of the object that was thrown to the catchabl e exception classes
of the catch clause. The catch clause can handle the exception if one of its
catchable exception classes isthe class of the exception or a superclass of the class
of the exception.

Equivaently, a cat ch clause will catch any exception object that is an i nst anceof
(815.20.2) one of its catchable exception classes.

The control transfer that occurs when an exception is thrown causes abrupt
completion of expressions (815.6) and statements (814.1) until acat ch clause is
encountered that can handle the exception; execution then continues by executing
theblock of that cat ch clause. The codethat caused the exception isnever resumed.

All exceptions (synchronous and asynchronous) are precise: when the transfer of
control takesplace, al effectsof the statements executed and expressions eval uated
before the point from which the exception is thrown must appear to have taken
place. No expressions, statements, or parts thereof that occur after the point from
which the exception is thrown may appear to have been eval uated.

If optimized code has speculatively executed some of the expressions or statements which
follow the point at which the exception occurs, such code must be prepared to hide this
speculative execution from the user-visible state of the program.

If nocat ch clausethat can handlean exception can befound, then the current thread
(the thread that encountered the exception) is terminated. Before termination, all

EXCEPTIONS Run-Time Handling of an Exception

final Iy clauses are executed and the uncaught exception is handled according to
the following rules:

« If the current thread has an uncaught exception handler set, then that handler is
executed.

» Otherwise, the method uncaught Excepti on is invoked for the Thr eadG oup
that is the parent of the current thread. If the ThreadG oup and its parent
Thr eadG oupS do not override uncaught Except i on, then the default handler's
uncaught Except i on method isinvoked.

In situations where it is desirable to ensure that one block of code is always executed
after another, even if that other block of code completes abruptly, at ry statement with a
final |y clause (§14.20.2) may be used.

If atry orcatch blockinatry-finally ortry-catch-final |y statement completes
abruptly, then the fi nal | y clause is executed during propagation of the exception, even
if no matching cat ch clauseis ultimately found.

If afinally clause is executed because of abrupt completion of atry block and the
final |y clauseitself completes abruptly, then the reason for the abrupt completion of the
try block is discarded and the new reason for abrupt completion is propagated from there.

The exact rules for abrupt completion and for the catching of exceptions are specified in
detail with the specification of each statement in 814 and for expressionsin 8§15 (especially
§15.6).

Example 11.3-1. Throwing and Catching Exceptions

The following program declares an exception class Test Except i on. The mai n method
of class Test invokes thet hr ower method four times, causing exceptions to be thrown
three of the four times. The t ry statement in method mai n catches each exception that
the thrower throws. Whether the invocation of t hr ower completes normally or abruptly,
amessage is printed describing what happened.

cl ass Test Exception extends Exception {
Test Except i on() { super(); }
Test Exception(String s) { super(s); }
}

class Test {
public static void main(String[] args) {
for (String arg : args) {
try {
thrower (arg);
Systemout.println("Test \"" + arg +
"\" didn't throw an exception");
} catch (Exception e) {
Systemout.println("Test \"" + arg +
"\" threwa " + e.getdass() +

11.3

313

11.3 Run-Time Handling of an Exception EXCEPTIONS

"\'n with message: " +
e. get Message());
}
}
}
static int thrower(String s) throws TestException {
try {
if (s.equals("divide")) {
int i =0;
return i/i;
if (s.equals("null")) {
s = null;
return s.length();
}
if (s.equals("test")) {
throw new Test Exception("Test nessage");
}
return O;
} finally {
Systemout.println("[thrower(\"" + s + "\") done]");
}
}

}

If we execute the program, passing it the arguments:
divide null not test

it produces the outpuit:

[thrower ("divide") done]

Test "divide" threw a class java.lang. Arithmeti cException
with nessage: / by zero

[thrower ("null") done]

Test "null" threw a class java.l ang. Nul | Poi nt er Excepti on
with nmessage: null

[thrower("not") done]

Test "not" didn't throw an exception

[thrower("test") done]

Test "test" threw a class Test Excepti on
wi th nmessage: Test nessage

The declaration of the method t hr ower must have at hr ows clause because it can throw
instances of Test Except i on, which is a checked exception class (§11.1.1). A compile-
time error would occur if thet hr ows clause were omitted.

Notice that the fi nal I y clause is executed on every invocation of t hr ower , whether or
not an exception occurs, as shown by the"[thrower (...) done]" output that occurs
for each invocation.

314

CHAPTER 12

Execution

T HIS chapter specifies activities that occur during execution of a program. It is
organized around the life cycle of the Java Virtua Machine and of the classes,
interfaces, and objects that form a program.

The Java Virtual Machine starts up by loading a specified class and then invoking
the method nmai n inthis specified class. Section 812.1 outlinesthe loading, linking,
and initialization steps involved in executing mai n, as an introduction to the
concepts in this chapter. Further sections specify the details of loading (812.2),
linking (812.3), and initialization (812.4).

The chapter continues with a specification of the procedures for creation of new
classinstances (§812.5); and finalization of class instances (§12.6). It concludes by
describing the unloading of classes (812.7) and the procedure followed when a
program exits (812.8).

12.1 JavaVirtual Machine Startup

The Java Virtual Machine starts execution by invoking the method mai n of some
specified class, passing it a single argument, which is an array of strings. In the
examplesin this specification, thisfirst classistypically called Test .

The precise semantics of Java Virtua Machine startup are given in Chapter 5 of
The Java Virtual Machine Specification, Java SE 7 Edition. Here we present an
overview of the process from the viewpoint of the Java programming language.

The manner in which the initial class is specified to the Java Virtual Machine is
beyond the scope of this specification, but it is typical, in host environments that
use command lines, for the fully-qualified name of the class to be specified as a
command-line argument and for following command-line arguments to be used as
strings to be provided as the argument to the method nai n.

315

12.1

316

Java Virtual Machine Sartup EXECUTION

For example, in a UNIX implementation, the command line:
java Test reboot Bob Dot Enzo

will typically start a Java Virtual Machine by invoking method nai n of class Test (aclass
in an unnamed package), passing it an array containing the four strings "r eboot ", "Bob",
"Dot ", and "Enzo".

We now outline the steps the Java Virtual Machine may take to execute Test , as
an example of the loading, linking, and initialization processes that are described
further in later sections.

12.1.1 Load the Class Test

Theinitia attempt to execute the method mai n of classTest discoversthat the class
Test isnot loaded - that is, that the Java Virtual Machine does not currently contain
a binary representation for this class. The Java Virtual Machine then uses a class
loader to attempt to find such a binary representation. If this processfails, then an
error isthrown. Thisloading processis described further in 812.2.

12.1.2 Link Test: Verify, Prepare, (Optionally) Resolve

After Test isloaded, it must be initialized before mai n can beinvoked. And Test ,
like all (class or interface) types, must be linked before it is initialized. Linking
involves verification, preparation, and (optionally) resolution. Linking is described
further in 812.3.

Verification checks that the loaded representation of Test is well-formed, with a
proper symbol table. Verification also checks that the code that implements Test
obeys the semantic requirements of the Java programming language and the Java
Virtual Machine. If a problem is detected during verification, then an error is
thrown. Verification is described further in §12.3.1.

Preparation involves alocation of static storage and any data structures that are
used internally by the implementation of the Java Virtual Machine, such as method
tables. Preparation is described further in 812.3.2.

Resolution is the process of checking symbolic references from Test to other
classesand interfaces, by loading the other classesand interfacesthat are mentioned
and checking that the references are correct.

Theresolution stepisoptional at thetimeof initial linkage. Animplementation may
resolve symbolic referencesfrom aclassor interface that isbeing linked very early,
eventothepoint of resolving all symbolic referencesfromtheclassesand interfaces

EXECUTION Java Virtual Machine Sartup

that are further referenced, recursively. (This resolution may result in errors from
thesefurther loading and linking steps.) Thisimplementation choice representsone
extreme and is similar to the kind of "static" linkage that has been done for many
years in simple implementations of the C language. (In these implementations,
a compiled program is typically represented as an "a. out " file that contains a
fully-linked version of the program, including completely resolved linksto library
routines used by the program. Copies of these library routines are included in the
"a. out " file)

An implementation may instead choose to resolve a symbolic reference only when
it isactively used; consistent use of this strategy for al symbolic references would
represent the "laziest" form of resolution. Inthiscase, if Test had several symbolic
references to another class, then the references might be resolved one at a time,
as they are used, or perhaps not at all, if these references were never used during
execution of the program.

The only requirement on when resolution is performed is that any errors detected
during resolution must be thrown at a point in the program where some action
is taken by the program that might, directly or indirectly, require linkage to the
classor interface involved in the error. Using the "static" example implementation
choice described above, loading and linkage errors could occur before the program
is executed if they involved a class or interface mentioned in the class Test or
any of the further, recursively referenced, classes and interfaces. In a system that
implemented the "laziest" resolution, these errors would be thrown only when an
incorrect symbolic referenceis actively used.

The resolution process is described further in §12.3.3.

12.1.3 Initialize Test: Execute I nitializers

In our continuing example, the Java Virtual Machine is still trying to execute the
method nei n of class Test . Thisis permitted only if the class has been initialized
(812.4.1).

Initialization consists of execution of any class variable initidizers and static
initializers of the class Test , in textua order. But before Test can be initialized,
itsdirect superclass must be initialized, aswell asthe direct superclass of its direct
superclass, and so on, recursively. In the simplest case, Test has bj ect as its
implicit direct superclass; if class j ect has not yet been initialized, then it must
be initialized before Test is initialized. Class tbj ect has no superclass, so the
recursion terminates here.

121

317

12.2

318

Loading of Classes and Interfaces EXECUTION

If class Test has another class Super as its superclass, then super must be
initialized before Test . This requires loading, verifying, and preparing Super if
this has not aready been done and, depending on the implementation, may also
involve resolving the symbolic references from Super and so on, recursively.

Initialization may thus cause loading, linking, and initialization errors, including
such errorsinvolving other types.

Theinitialization process is described further in §12.4.

12.1.4 InvokeTest.main

Finally, after completion of the initialization for class Test (during which other
consequential loading, linking, and initializing may have occurred), the method
mai n of Test isinvoked.

The method mai n must be declared publ i ¢, st ati ¢, and voi d. It must specify a
formal parameter (88.4.1) whose declared typeisarray of st ri ng. Therefore, either
of the following declarations is acceptable;

public static void main(String[] args)

public static void main(String... args)

12.2 Loading of Classes and Interfaces

Loading refersto the process of finding the binary form of aclass or interface type
with a particular name, perhaps by computing it on the fly, but more typically by
retrieving a binary representation previously computed from source code by a Java
compiler, and constructing, from that binary form, ac ass object to represent the
class or interface.

The precise semantics of loading are given in Chapter 5 of The Java Virtual
Machine Specification, Java SE 7 Edition. Here we present an overview of the
process from the viewpoint of the Java programming language.

Thebinary format of aclassor interfaceisnormally thecl ass fileformat described
in The Java Virtual Machine Specification, Java SE 7 Edition cited above, but other
formats are possible, provided they meet the requirements specified in §13.1. The
method def i ned ass of classd assLoader may be used to construct d ass objects
from binary representationsin thecl ass file format.

Well-behaved class |oaders maintain these properties:

EXECUTION Loading of Classes and Interfaces

» Given the same name, a good class loader should always return the same class
object.

» If aclassloader L1 delegates loading of a class C to another loader L2, then for
any type T that occurs as the direct superclass or a direct superinterface of c, or
as the type of afield in c, or as the type of aformal parameter of a method or
constructor in C, or as areturn type of amethod in C, L1 and L2 should return
the same d ass object.

A malicious class loader could violate these properties. However, it could not
underminethe security of thetype system, becausethe JavaVirtual Machineguards
against this.

For further discussion of these issues, see The Java Virtual Machine Specification, Java
SE 7 Edition and the paper Dynamic Class Loading in the Java Virtual Machine, by Sheng
Liang and Gilad Bracha, in Proceedings of OOPSLA '98, published as ACM S GPLAN
Notices, Volume 33, Number 10, October 1998, pages 36-44. A basic principleof the design
of the Java programming language is that the run-time type system cannot be subverted
by code written in the Java programming language, not even by implementations of such
otherwise sensitive system classes as G assLoader and Securi t yManager .

12.2.1 TheL oading Process

The loading process isimplemented by the class d assLoader and its subclasses.

Different subclasses of O assLoader may implement different loading policies. In
particular, aclassloader may cache binary representations of classesand interfaces,
prefetch them based on expected usage, or load agroup of related classes together.
These activities may not be completely transparent to a running application if, for
example, anewly compiled version of aclassisnot found because an older version
is cached by a class loader. It is the responsibility of a class loader, however, to
reflect loading errors only at points in the program where they could have arisen
without prefetching or group loading.

If an error occurs during class loading, then an instance of one of the following
subclasses of class Li nkageEr r or will be thrown at any point in the program that
(directly or indirectly) uses the type:

* CassCrcularityError: A class or interface could not be loaded because it
would be its own superclass or superinterface (88.1.4, §9.1.3, §13.4.4).

* ClassFormatError: The binary data that purports to specify a requested
compiled class or interface is malformed.

* Nod assDef FoundEr r or : No definition for a requested class or interface could
be found by the relevant class loader.

12.2

319

12.3

320

Linking of Classes and Interfaces EXECUTION

Because |oading involves the allocation of new data structures, it may fail with an
Qut Of Menor yError.

12.3 Linking of Classes and I nterfaces

Linking is the process of taking a binary form of a class or interface type and
combining it into the run-time state of the Java Virtual Machine, so that it can be
executed. A class or interface type is always loaded before it islinked.

Three different activities are involved in linking: verification, preparation, and
resolution of symbolic references.

The precise semantics of linking are given in Chapter 5 of The Java Virtual
Machine Specification, Java SE 7 Edition. Here we present an overview of the
process from the viewpoint of the Java programming language.

This specification allowsan implementation flexibility asto when linking activities
(and, because of recursion, loading) take place, provided that the semantics of the
Java programming language are respected, that a class or interface is completely
verified and prepared beforeitisinitialized, and that errors detected during linkage
are thrown at a point in the program where some action is taken by the program
that might require linkage to the class or interface involved in the error.

For example, an implementation may choose to resolve each symbolic reference
inaclassor interface individually, only when it is used (lazy or late resolution), or
to resolve them all at once whilethe classis being verified (static resolution). This
means that the resolution process may continue, in some implementations, after a
class or interface has been initialized.

Because linking involves the allocation of new data structures, it may fail with an
Qut O Menor yError.

12.3.1 Verification of the Binary Representation

Verification ensures that the binary representation of a class or interface is
structuraly correct. For example, it checks that every instruction has a valid
operation code; that every branch instruction branches to the start of some other
instruction, rather than into the middle of an instruction; that every method is
provided with a structurally correct signature; and that every instruction obeysthe
type discipline of the Java Virtual Machine language.

EXECUTION Linking of Classes and Interfaces

If an error occurs during verification, then an instance of the following subclass
of classLi nkageError will be thrown at the point in the program that caused the
classto be verified:

* VerifyError: Thebinary definition for aclass or interface failed to pass a set of
required checksto verify that it obeys the semantics of the Java Virtual Machine
language and that it cannot violate theintegrity of the JavaVirtual Machine. (See
§13.4.2, §13.4.4, 813.4.9, and 813.4.17 for some examples.)

12.3.2 Preparation of aClassor Interface Type

Preparation involves creating the st at i ¢ fields (class variables and constants) for
aclass or interface and initializing such fields to the default values (84.12.5). This
does not require the execution of any source code; explicit initializers for static
fields are executed as part of initialization (812.4), not preparation.

Implementations of the Java Virtual Machine may precompute additional data structures
at preparation time in order to make later operations on a class or interface more efficient.
One particularly useful data structureisa'"method table" or other data structure that allows
any method to be invoked on instances of aclass without requiring a search of superclasses
at invocation time.

12.3.3 Resolution of Symbolic References

The binary representation of a class or interface references other classes and
interfacesand their fields, methods, and constructors symbolically, using the binary
names (813.1) of the other classes and interfaces (§13.1). For fields and methods,
these symbolic references include the name of the class or interface type of which
the field or method is a member, as well as the name of the field or method itself,
together with appropriate type information.

Before a symbolic reference can be used it must undergo resolution, wherein a
symbolic reference is checked to be correct and, typically, replaced with a direct
reference that can be more efficiently processed if the referenceis used repeatedly.

If an error occurs during resolution, then an error will be thrown. Most
typically, this will be an instance of one of the following subclasses of the class
I nconpat i bl ed assChangeEr ror, but it may also be an instance of some other
subclass of | nconpati bl eCl assChangeError or even an instance of the class
I nconpat i bl ed assChangeEr ror itself. Thiserror may be thrown at any point in
the program that uses a symbolic reference to the type, directly or indirectly:

* I11egal AccessError: A symbolicreference has been encountered that specifies
a use or assignment of a field, or invocation of a method, or creation of an

12.3

321

12.4

322

Initialization of Classes and Interfaces EXECUTION

instance of a class, to which the code containing the reference does not have
access because the field or method was declared with pri vat e, prot ect ed, or
default access (not publ i ¢), or because the class was not declared publ i c.

This can occur, for example, if a field that is originally declared public is
changed to be private after another class that refers to the field has been
compiled (813.4.7).

e InstantiationError: A symbolic reference has been encountered that is used
in class instance creation expression, but an instance cannot be created because
the reference turns out to refer to an interface or to an abstract class.

This can occur, for example, if aclassthat isoriginally not abst r act ischanged
to be abst ract after another class that refers to the class in question has been
compiled (813.4.1).

» NoSuchFi el dError : A symbolic reference has been encountered that refersto a
specific field of a specific class or interface, but the class or interface does not
contain afield of that name.

This can occur, for example, if afield declaration was deleted from a class after
another class that refersto the field was compiled (813.4.8).

* NoSuchMet hodErr or : A symbolic reference has been encountered that refersto
a specific method of a specific class or interface, but the class or interface does
not contain a method of that signature.

This can occur, for example, if a method declaration was deleted from a class
after another class that refers to the method was compiled (§13.4.12).

Additionally, an Unsat i sfi edLi nkError, a subclass of Li nkageError, may be
thrown if a class declares a nat i ve method for which no implementation can be
found. The error will occur if the method is used, or earlier, depending on what
kind of resolution strategy is being used by an implementation of the Java Virtual
Machine (812.3).

12.4 Initialization of Classes and I nterfaces

Initialization of aclass consists of executingitsstaticinitializersand theinitializers
for st ati c fields (class variables) declared in the class.

Initialization of an interface consists of executing the initializers for fields
(constants) declared in the interface.

EXECUTION Initialization of Classes and Interfaces

Before aclassisinitialized, its direct superclass must beinitialized, but interfaces
implemented by the class are not initialized. Similarly, the superinterfaces of an
interface are not initialized before the interface isinitialized.

12.4.1 When Initialization Occurs

A classor interfacetypeT will beinitialized immediately beforethefirst occurrence
of any one of the following:

* Tisaclassand aninstance of T is created.
» Tisaclassand ast ati ¢ method declared by T isinvoked.
» Astatic field declared by T isassigned.

» A static field declared by T is used and the field is not a constant variable
(84.12.9).

» Tisatop level class (87.6), and an assert statement (814.10) lexically nested
within T (88.1.3) is executed.

A referenceto astati ¢ field (88.3.1.1) causes initialization of only the class or
interface that actually declaresit, even though it might be referred to through the
name of a subclass, a subinterface, or a class that implements an interface.

Invocation of certain reflective methods in class cass and in package
java.l ang. refl ect also causes classor interfaceinitialization.

A class or interface will not beinitialized under any other circumstance.

The intent is that a class or interface type has a set of initializers that put it in a
consistent state, and that this state isthe first state that is observed by other classes.
The static initializers and class variable initializers are executed in textual order,
and may not refer to class variables declared in the class whose declarati ons appear
textually after the use, even though these class variables are in scope (88.3.2.3).
This restriction is designed to detect, at compile time, most circular or otherwise
malformed initializations.

The fact that initialization code is unrestricted allows examples to be constructed
(88.3.2.3) where the value of a class variable can be observed when it still has
its initial default value, before its initializing expression is evaluated, but such
examples are rarein practice. (Such examples can be also constructed for instance
variable initialization (812.5).) The full power of the Java programming language
isavailablein theseinitializers, programmers must exercise some care. This power
places an extra burden on code generators, but this burden would arise in any case
because the Java programming language is concurrent (812.4.2).

124

323

12.4 Initialization of Classes and Interfaces EXECUTION

Example 12.4.1-1. Superclasses Are I nitialized Before Subclasses

cl ass Super {
static { Systemout.print("Super "); }
}
class One {
static { Systemout.print("One "); }
}
cl ass Two extends Super {
static { Systemout.print("Two "); }
}

class Test {
public static void main(String[] args) {
One o = nul |
Two t = new Two();
Systemout.println((Object)o == (Object)t);

}
This program produces the outpuit:
Super Two fal se

The class One isnever initialized, because it not used actively and therefore is never linked
to. Theclass Two isinitialized only after its superclass Super has been initialized.

Example 12.4.1-2. Only The Class That Declaresst ati ¢ Field IsInitialized

cl ass Super {
static int taxi = 1729;

cl ass Sub extends Super {
static { Systemout.print("Sub "); }

}

class Test {
public static void main(String[] args) {
System out. println(Sub.taxi);

}
}

This program prints only:
1729

because the class Sub is never initialized; the reference to Sub. t axi is areference to a
field actually declared in class Super and does not trigger initialization of the class Sub.

Example 12.4.1-3. Interface I nitialization Does Not I nitialize Superinterfaces

interface | {
int i =1, ii = Test.out("ii", 2);

324

EXECUTION Initialization of Classes and Interfaces 12.4

}

interface J extends | {
int j = Test.out("j", 3), jj = Test.out("jj", 4);

}

interface K extends J {
int k = Test.out("k", 5);
}
class Test {
public static void main(String[] args) {
Systemout.printin(J.i);
Systemout.printin(Kj);

}

static int out(String s, int i) {
Systemout.printin(s + "=" + i);
return i;

}

}
This program produces the outpult:

1
j=3
jj=4
3

ThereferencetoJ. i istoafield that isaconstant variable (84.12.4); therefore, it does not
cause| to beinitialized (813.4.9).

Thereferenceto K. j isareference to afield actually declared in interface J that is not a
constant variable; this causes initialization of the fields of interface J, but not those of its
superinterface | , nor those of interface K.

Despite the fact that the name K is used to refer to field j of interface J, interface K is not
initialized.

12.4.2 Detailed Initialization Procedure

Because the Java programming language is multithreaded, initialization of a class
or interface requires careful synchronization, since some other thread may betrying
toinitialize the same class or interface at the sametime. Thereisalso the possibility
that initialization of aclass or interface may be requested recursively as part of the
initialization of that class or interface; for example, avariableinitializer in class A
might invoke amethod of an unrelated class B, which might inturn invoke amethod
of class A. The implementation of the Java Virtual Machine is responsible for
taking care of synchronization and recursive initialization by using the following
procedure.

325

12.4

326

Initialization of Classes and Interfaces EXECUTION

The procedure assumes that the d ass object has already been verified and
prepared, and that the O ass object contains state that indicates one of four
situations:

Thisd ass object is verified and prepared but not initialized.
Thisd ass object is being initialized by some particular thread T.
Thisd ass object isfully initialized and ready for use.

This d ass object is in an erroneous state, perhaps because initialization was
attempted and failed.

For each class or interface C, there is a unique initialization lock LC. The mapping
from cto LCis|eft to the discretion of the Java Virtua Machine implementation.
The procedure for initializing C is then as follows:

1

Synchronize ontheinitialization lock, Lc, for C. Thisinvolveswaiting until the
current thread can acquire LC.

If thed ass object for cindicatesthat initialization isin progressfor c by some
other thread, then release LC and block the current thread until informed that
the in-progress initialization has completed, at which time repeat this step.

If the d ass object for cindicates that initialization isin progress for C by the
current thread, then this must be a recursive request for initialization. Release
Lc and complete normally.

If the O ass object for C indicates that C has already been initialized, then no
further action isrequired. Release LC and complete normally.

If the d ass object for C isin an erroneous state, then initialization is not
possible. Release LC and throw aNod assDef FoundErr or .

Otherwise, record the fact that initialization of the c ass object for Ccisin
progress by the current thread, and release LC.

Then, initializethef i nal classvariables and fields of interfaces whose values
are compile-time constant expressions (88.3.2.1, 89.3.1, §13.4.9, §15.28).

Next, if Cis a class rather than an interface, and its superclass sc has not
yet been initialized, then recursively perform this entire procedure for sc. If
necessary, verify and prepare sc first. If the initialization of sc completes
abruptly because of athrown exception, then acquireLc, label thed ass object
for caserroneous, notify al waiting threads, release LC, and complete abruptly,
throwing the same exception that resulted from initializing sc.

EXECUTION Creation of New Class Instances 12.5

8. Next, determine whether assertions are enabled (814.10) for C by querying its
defining class loader.

9. Next, execute either the class variable initializers and static initializers of the
class, or the field initidizers of the interface, in textual order, as though they
were asingle block.

10. If the execution of the initializers completes normally, then acquire Lc, label
thed ass object for casfully initialized, notify all waiting threads, releaseLC,
and complete this procedure normally.

11. Otherwise, the initializers must have completed abruptly by throwing some
exception E. If the class of Eisnot Error or one of its subclasses, then create
a new instance of the class ExceptionlnlnitializerError, with E as the
argument, and use this object in place of E in the following step. But if a
new instance of ExceptionlninitializerError cannot be created because
an Qut O Menor yEr r or occurs, then instead use an out O Menor yEr r or object
in place of E in the following step.

12. Acquire LC, label the d ass abject for C as erroneous, notify al waiting
threads, release LC, and complete this procedure abruptly with reason E or its
replacement as determined in the previous step.

An implementation may optimize this procedure by eliding the lock acquisition in step 1
(and releasein step 4/5) when it can determine that theinitialization of the class has already
completed, provided that, in terms of the memory model, all happens-before orderings that
would exist if the lock were acquired, still exist when the optimization is performed.

Code generators need to preserve the points of possibleinitialization of aclassor interface,
inserting an invocation of the initialization procedure just described. If this initialization
procedure completes normally and the G ass object is fully initialized and ready for use,
then the invocation of the initialization procedure is no longer necessary and it may be
eliminated from the code - for example, by patching it out or otherwise regenerating the
code.

Compile-time analysis may, in some cases, be able to eliminate many of the checks
that a type has been initialized from the generated code, if an initialization order for a
group of related types can be determined. Such analysis must, however, fully account for
concurrency and for the fact that initialization code is unrestricted.

12.5 Creation of New Class | nstances

A new class instance is explicitly created when evauation of a class instance
creation expression (815.9) causes a class to be instantiated.

327

125

328

Creation of New Class Instances EXECUTION

A new class instance may be implicitly created in the following situations:

» Loading of aclassor interfacethat containsast ri ng literal (83.10.5) may create
anew String object to represent that literal. (This might not occur if the same
St ri ng has previously been interned (83.10.5).)

» Execution of an operation that causes boxing conversion (85.1.7). Boxing
conversion may create a new object of a wrapper class associated with one of
the primitive types.

» Execution of a string concatenation operator (815.18.1) that is not part of a
constant expression (815.28) sometimescreatesanew St r i ng object to represent
the result. String concatenation operators may also create temporary wrapper
objects for avalue of a primitive type.

Each of these situations identifies a particular constructor (88.8) to be called with
specified arguments (possibly none) as part of the class instance creation process.

Whenever a new class instance is created, memory space is allocated for it with
room for all the instance variables declared in the class type and al the instance
variables declared in each superclass of the class type, including al the instance
variables that may be hidden (88.3).

If there is not sufficient space available to allocate memory for the object, then
creation of the class instance completes abruptly with an cut Of MenoryError.
Otherwise, al the instance variables in the new object, including those declared in
superclasses, areinitialized to their default values (84.12.5).

Just before a reference to the newly created object is returned as the result, the
indicated constructor is processed to initialize the new object using the following
procedure:

1. Assign the argumentsfor the constructor to newly created parameter variables
for this constructor invocation.

2. If this constructor begins with an explicit constructor invocation (88.8.7.1) of
another constructor inthe sameclass (usingt hi s), then evaluate the arguments
and process that constructor invocation recursively using these same five
steps. If that constructor invocation completes abruptly, then this procedure
completes abruptly for the same reason; otherwise, continue with step 5.

3. This constructor does not begin with an explicit constructor invocation of
another constructor in the same class (using t hi s). If this constructor is for
a class other than vj ect, then this constructor will begin with an explicit
or implicit invocation of a superclass constructor (using super). Evaluate the
arguments and processthat superclass constructor invocation recursively using

EXECUTION Creation of New Class Instances

these same five steps. If that constructor invocation completes abruptly, then
this procedure completes abruptly for the same reason. Otherwise, continue
with step 4.

4. Executetheinstanceinitializersand instance variableinitializersfor thisclass,
assigning the values of instance variable initializers to the corresponding
instance variables, in the left-to-right order in which they appear textually in
the source code for the class. If execution of any of these initializers results
in an exception, then no further initializers are processed and this procedure
completes abruptly with that same exception. Otherwise, continue with step 5.

5. Execute the rest of the body of this constructor. If that execution completes
abruptly, then this procedure completes abruptly for the same reason.
Otherwise, this procedure completes normally.

Unlike C++, the Java programming language does not specify altered rules for
method dispatch during the creation of a new class instance. If methods are
invoked that are overridden in subclasses in the object being initialized, then these
overriding methods are used, even before the new object is completely initialized.

Example 12.5-1. Evaluation of Instance Creation

class Point {
int x, vy;
Point() { x =1; y =1; }

cl ass Col oredPoi nt extends Point {
int color = OxFFOOFF;
}
class Test {
public static void main(String[] args) {
Col oredPoi nt cp = new Col oredPoi nt ();
System out. println(cp.color);

}

Here, a new instance of Col or edPoi nt is created. First, space is allocated for the new
Col or edPoi nt , to hold the fields x, y, and col or . All these fields are then initialized to
their default values (in this case, 0 for each field). Next, the Col or edPoi nt constructor
with noargumentsisfirstinvoked. Since Col or edPoi nt declaresno constructors, adefault
constructor of the form:

Col oredPoi nt () { super(); }
is provided for it automatically by the Java compiler.

This constructor then invokes the Poi nt constructor with no arguments. The Poi nt
constructor does not begin with an invocation of a constructor, so the Java compiler

12.5

329

125

330

Creation of New Class Instances EXECUTION

provides an implicit invocation of its superclass constructor of no arguments, as though it
had been written:

Point() { super(); x =1; y =1; }
Therefore, the constructor for Obj ect which takes no argumentsisinvoked.

The class Obj ect has no superclass, so the recursion terminates here. Next, any instance
initializers and instance variable initializers of bj ect are invoked. Next, the body of the
constructor of Obj ect that takesno argumentsis executed. No such constructor is declared
in oj ect , so the Java compiler supplies adefault one, which in this special caseis:

OGoject() { }
This constructor executes without effect and returns.

Next, al initializers for the instance variables of class Poi nt are executed. As it happens,
the declarations of x and y do not provide any initialization expressions, so no action is
required for this step of the example. Then the body of the Poi nt constructor is executed,
settingx to1 andy to 1.

Next, the initidizers for the instance variables of class Col or edPoi nt are executed.
This step assigns the value 0xFFOOFF to col or. Finally, the rest of the body of the
Col or edPoi nt constructor is executed (the part after the invocation of super); there
happen to be no statements in the rest of the body, so no further action is required and
initialization is complete.

Example 12.5-2. Dynamic Dispatch During I nstance Creation

cl ass Super {

Super() { printThree(); }

void printThree() { Systemout.printin("three"); }
}
cl ass Test extends Super {

int three = (int)Math.Pl; // That is, 3

void printThree() { Systemout.println(three); }

public static void main(String[] args) {

Test t = new Test();
t.printThree();

}
This program produces the outpuit:

0
3

This shows that the invocation of pri nt Thr ee in the constructor for class Super does
not invoke the definition of pr i nt Thr ee in class Super , but rather invokes the overriding
definition of print Three in class Test. This method therefore runs before the field

EXECUTION Finalization of Class Instances

initializersof Test have been executed, which iswhy thefirst value output is0, the default
valuetowhich thefieldt hr ee of Test isinitialized. The later invocation of pri nt Thr ee
in method nai n invokesthe samedefinition of pri nt Thr ee, but by that point theinitializer
for instance variablet hr ee has been executed, and so the value 3 is printed.

12.6 Finalization of Class | nstances

The class Ohj ect has aprot ect ed method called fi nal i ze; this method can be
overridden by other classes. The particular definition of finalize that can be
invoked for an object is called the finalizer of that object. Before the storage for an
object isreclaimed by the garbage collector, the Java Virtual Machine will invoke
the finalizer of that object.

Finalizers provide a chance to free up resources that cannot be freed automatically
by an automati ¢ storage manager. In such situations, simply reclaiming the memory
used by an object would not guaranteethat the resourcesit held would bereclaimed.

The Java programming language does not specify how soon a finalizer will be
invoked, except to say that it will happen before the storage for the object isreused.

The Java programming language does not specify which thread will invoke the
finalizer for any given object.

Itisimportant to note that many finalizer threadsmay be active (thisis sometimes needed on
large shared memory multiprocessors), and that if alarge connected data structure becomes
garbage, all of the fi nal i ze methods for every object in that data structure could be
invoked at the same time, each finalizer invocation running in a different thread.

The Java programming language imposes no ordering on f i nal i ze method calls.
Finalizers may be called in any order, or even concurrently.

As an example, if acircularly linked group of unfinalized objects becomes unreachable
(or finalizer-reachable), then al the objects may become finalizable together. Eventually,
the finalizers for these objects may be invoked, in any order, or even concurrently
using multiple threads. If the automatic storage manager later finds that the objects are
unreachable, then their storage can be reclaimed.

Itisstraightforward to implement aclassthat will cause aset of finalizer-like methodsto be
invoked in a specified order for a set of objects when all the objects become unreachable.
Defining such aclassis left as an exercise for the reader.

It is guaranteed that the thread that invokes the finalizer will not be holding any
user-visible synchronization locks when the finalizer is invoked.

12.6

331

12.6

332

Finalization of Class Instances EXECUTION

If an uncaught exception isthrown during the finalization, the exception isignored
and finalization of that object terminates.

The completion of an object's constructor happens-before (817.4.5) the execution
of itsfi nal i ze method (in the formal sense of happens-before).

Thefinal i ze method declared in class Obj ect takes no action. The fact that class
Obj ect declaresafi nal i ze method meansthat thefi nal i ze method for any class
can always invoke the fi nal i ze method for its superclass. This should always
be done, unless it is the programmer's intent to nullify the actions of the finalizer
in the superclass. (Unlike constructors, finalizers do not automatically invoke the
finalizer for the superclass; such an invocation must be coded explicitly.)

For efficiency, an implementation may keep track of classes that do not override the
final i ze method of class Obj ect , or overrideit in atrivial way.

For example:

protected void finalize() throws Throwabl e {
super.finalize();

}

We encourage implementations to treat such objects as having a finalizer that is not
overridden, and to finalize them more efficiently, as described in §12.6.1.

A finalizer may be invoked explicitly, just like any other method.

The package j ava.l ang.ref describes weak references, which interact with
garbage collection and finalization. As with any API that has special interactions
with the Java programming language, implementors must be cognizant of any
requirements imposed by the j ava. | ang. ref API. This specification does not
discussweak referencesin any way. Readersarereferred to the APl documentation
for details.

12.6.1 Implementing Finalization

Every object can be characterized by two attributes: it may be reachable, finalizer-
reachable, or unreachable, and it may also be unfinalized, finalizable, or finalized.

A reachable object is any object that can be accessed in any potentia continuing
computation from any live thread.

A finalizer-reachable object can be reached from some finalizabl e object through
some chain of references, but not from any live thread.

An unreachable object cannot be reached by either means.

EXECUTION Finalization of Class Instances

An unfinalized object has never had its finalizer automatically invoked.
A finalized object has had its finalizer automatically invoked.

A finalizable object has never had its finalizer automatically invoked, but the Java
Virtua Machine may eventually automatically invoke its finalizer.

An object o is not finalizable until its constructor has invoked the constructor
for j ect on o and that invocation has completed successfully (that is, without
throwing an exception). Every pre-finalization writeto afield of an object must be
visible to the finalization of that object. Furthermore, none of the pre-finalization
reads of fields of that object may see writes that occur after finalization of that
object isinitiated.

Optimizing transformations of aprogram can be designed that reduce the number of
objects that are reachable to be less than those which would naively be considered
reachable. For example, a Java compiler or code generator may choose to set a
variable or parameter that will no longer be used to nul | to cause the storage for
such an object to be potentially reclaimable sooner.

Another example of this occurs if the values in an object's fields are stored in
registers. The program may then accesstheregistersinstead of the object, and never
access the object again. Thiswould imply that the object is garbage. Note that this
sort of optimization is only alowed if references are on the stack, not stored in

the heap.
For example, consider the Finalizer Guardian pattern:

class Foo {
private final Object finalizerGuardian = new Object() {
protected void finalize() throws Throwable {
/* finalize outer Foo object */

}
}

The finalizer guardian forces super.finalize to be called if a subclass overrides
final i ze and does not explicitly call super. finali ze.

If these optimizations are allowed for references that are stored on the heap, then a Java
compiler can detect that the fi nal i zer Guar di an field is never read, null it out, collect
the object immediately, and call the finalizer early. This runs counter to the intent: the
programmer probably wanted to call the Foo finalizer when the Foo instance became
unreachable. This sort of transformation istherefore not legal: the inner class object should
be reachable for aslong as the outer class object is reachable.

Transformations of this sort may result in invocations of thef i nal i ze method occurring
earlier than might be otherwise expected. In order to alow the user to prevent this, we

12.6

333

12.6

334

Finalization of Class Instances EXECUTION

enforce the notion that synchronization may keep the object alive. If an object's finalizer
can result in synchronization on that object, then that object must be alive and considered
reachable whenever a lock isheld on it.

Note that this does not prevent synchronization elimination: synchronization only keeps
an object diveif afinalizer might synchronize on it. Since the finalizer occurs in another
thread, in many cases the synchronization could not be removed anyway.

12.6.2 Interaction with the Memory M odel

It must be possible for the memory model (817.4) to decide when it can commit
actions that take place in a finalizer. This section describes the interaction of
finalization with the memory model.

Each execution has a number of reachability decision points, labeled di. Each
action either comes-before di or comes-after di. Other than as explicitly mentioned,
the comes-before ordering described in this section is unrelated to all other
orderings in the memory model.

If risaread that seesawritew and r comes-before di, then w must come-before di.

If x and y are synchronization actions on the same variable or monitor such that
so(x, y) (817.4.4) and y comes-before di, then x must come-before di.

At each reachability decision point, some set of objects are marked as unreachable,
and some subset of those objects are marked as finalizable. These reachability
decision points are also the points at which references are checked, enqueued, and
cleared according to the rules provided in the APl documentation for the package
java.l ang.ref.

The only objectsthat are considered definitely reachable at a point di are those that
can be shown to be reachable by the application of these rules:

» Anobject Bisdefinitely reachable at di fromst at i ¢ fieldsif there existsawrite
wltoastatic fieldv of aclasscsuchthat the value written by wl isareference
to B, the class Cc is loaded by a reachable class oader, and there does not exist a
writew2 tov such that hb(w2, wl) isnot true and both wl and w2 come-beforedi.

* Anobject Bisdefinitely reachablefrom Aat di if thereisawrite w1 to an el ement
v of A such that the value written by w1 is a reference to B and there does not
exist awrite w2 to v such that hb(w2, wl) is not true and both w1l and w2 come-
before di.

« If an object Cis definitely reachable from an object B, and object B is definitely
reachable from an object A, then cis definitely reachable from A.

If an object X is marked as unreachable at di, then:

EXECUTION Unloading of Classes and Interfaces 12.7

» X must not be definitely reachable at di from st at i ¢ fields; and

« All active uses of X in thread t that come-after di must occur in the finalizer
invocation for X or as aresult of thread t performing a read that comes-after di
of areferenceto x; and

» All reads that come-after di that see areference to X must see writes to elements
of objectsthat were unreachable at di, or see writes that came-after di.

Anactionaisanactiveuseof Xif and only if at |east one of thefollowing conditions
holds:

e areads or writes an e ement of X

» a locks or unlocks x and there is a lock action on X that happens-after the
invocation of the finalizer for X

* awritesareference to x

» aisanactive use of an object v, and X is definitely reachable from v
If an object x is marked as finalizable at di, then:

» X must be marked as unreachable at di; and

* di must be the only place where X is marked as finalizable; and

* actions that happen-after the finalizer invocation must come-after di.

12.7 Unloading of Classes and Interfaces

An implementation of the Java programming language may unload classes.

A class or interface may be unloaded if and only if its defining class loader may be
reclaimed by the garbage collector as discussed in 812.6.

Classes and interfaces |oaded by the bootstrap |oader may not be unloaded.

Class unloading isan optimization that hel ps reduce memory use. Obviously, the semantics
of a program should not depend on whether and how a system chooses to implement an
optimization such as class unloading. To do otherwise would compromise the portability
of programs. Conseguently, whether a class or interface has been unloaded or not should
be transparent to a program.

However, if a class or interface C was unloaded while its defining loader was potentially
reachable, then C might be reloaded. One could never ensure that this would not happen.
Even if the class was not referenced by any other currently loaded class, it might be

335

12.8 Program Exit EXECUTION

referenced by some class or interface, D, that had not yet been loaded. When Disloaded by
C's defining loader, its execution might cause reloading of C.

Reloading may not be transparent if, for example, the class has st at i ¢ variables (whose
state would be lost), stetic initializers (which may have side effects), or nat i ve methods
(which may retain static state). Furthermore, the hash value of the d ass object is
dependent onitsidentity. Thereforeitis, in general, impossibleto reload aclassor interface
in acompletely transparent manner.

Since we can never guarantee that unloading a class or interface whose loader is potentially
reachable will not cause reloading, and reloading is never transparent, but unloading must
be transparent, it follows that one must not unload a class or interface while its loader is
potentially reachable. A similar line of reasoning can be used to deduce that classes and
interfaces loaded by the bootstrap loader can never be unloaded.

One must also argue why it is safe to unload a class C if its defining class loader can
be reclaimed. If the defining loader can be reclaimed, then there can never be any live
references to it (this includes references that are not live, but might be resurrected by
finalizers). This, inturn, can only betrueif there are can never be any livereferencesto any
of the classes defined by that loader, including C, either from their instances or from code.

Class unloading is an optimization that is only significant for applications that load large
numbers of classes and that stop using most of those classes after some time. A prime
example of such an application is a web browser, but there are others. A characteristic of
such applications is that they manage classes through explicit use of class loaders. As a
result, the policy outlined above works well for them.

Strictly speaking, it is not essential that the issue of class unloading be discussed by this

specification, as class unloading is merely an optimization. However, the issue is very
subtle, and so it is mentioned here by way of clarification.

12.8 Program Exit

A program terminates all its activity and exits when one of two things happens:
* All the threads that are not daemon threads terminate.

» Somethread invokestheexi t method of classRunt i me or class Syst em and the
exi t operation is not forbidden by the security manager.

336

CHAPTER 13

Binary Compatibility

DEVELOPM ENT tools for the Java programming language should support
automatic recompil ation as hecessary whenever source codeisavailable. Particular
implementations may also store the source and binary of types in a versioning
database and implement a d assLoader that uses integrity mechanisms of the
databaseto prevent linkage errorsby providing binary-compatible versions of types
to clients.

Developers of packages and classes that are to be widely distributed face a
different set of problems. In the Internet, which is our favorite example of awidely
distributed system, it is often impractical or impossible to automatically recompile
the pre-existing binaries that directly or indirectly depend on a type that is to be
changed. Instead, this specification defines a set of changes that developers are
permitted to make to a package or to a class or interface type while preserving (not
breaking) compatibility with pre-existing binaries.

Within the framework of Release-to-Release Binary Compatibility in SOM
(Forman, Conner, Danforth, and Raper, Proceedings of OOPSLA '95), Java
programming language binaries are binary compatible under al relevant
transformations that the authors identify (with some caveats with respect to the
addition of instance variables). Using their scheme, hereisalist of someimportant
binary compatible changes that the Java programming language supports:

» Reimplementing existing methods, constructors, and initializers to improve
performance.

» Changing methods or constructors to return values on inputs for which they
previously either threw exceptions that normally should not occur or failed by
going into an infinite loop or causing a deadlock.

» Adding new fields, methods, or constructors to an existing class or interface.

» Déleting pri vat e fields, methods, or constructors of a class.

337

13.1

338

The Form of a Binary BINARY COMPATIBILITY

* When an entire packageisupdated, del eting default (package-only) accessfields,
methods, or constructors of classes and interfaces in the package.

» Reordering the fields, methods, or constructorsin an existing type declaration.

» Moving amethod upward in the class hierarchy.

Reordering the list of direct superinterfaces of aclass or interface.
* Inserting new class or interface types in the type hierarchy.

This chapter specifies minimum standards for binary compatibility guaranteed by
all implementations. The Java programming language guarantees compatibility
when binaries of classes and interfaces are mixed that are not known to be from
compatible sources, but whose sources have been modified in the compatible ways
described here. Note that we are discussing compatibility between releases of an
application. A discussion of compatibility among releases of the Java SE platform
is beyond the scope of this chapter.

We encourage development systems to provide facilities that alert developers to
the impact of changes on pre-existing binaries that cannot be recompiled.

This chapter first specifies some properties that any binary format for the Java
programming language must have (813.1). It next defines binary compatibility,
explaining what it is and what it is not (813.2). It finally enumerates a large set
of possible changes to packages (813.3), classes (813.4), and interfaces (813.5),
specifying which of these changes are guaranteed to preserve binary compatibility
and which are not.

13.1 TheForm of aBinary

Programs must be compiled either into thecl ass file format specified by The Java
Virtual Machine Specification, Java SE 7 Edition, or into arepresentation that can
be mapped into that format by a class loader written in the Java programming
language.

Furthermore, the resulting cl ass file must have certain properties. A number of
these properties are specifically chosen to support source code transformations that
preserve binary compatibility. The required properties are:

1. Theclassor interface must be named by its binary name, which must meet the
following constraints:

* The binary name of atop level type (87.6) isits canonical name (86.7).

BINARY COMPATIBILITY The Form of a Binary 13.1

 The binary name of a member type (88.5, §9.5) consists of the binary name
of its immediately enclosing type, followed by $, followed by the simple
name of the member.

» The binary name of a local class (§814.3) consists of the binary name of
its immediately enclosing type, followed by $, followed by a non-empty
sequence of digits, followed by the simple name of the local class.

» The binary name of an anonymous class (815.9.5) consists of the binary
name of itsimmediately enclosing type, followed by $, followed by a non-
empty sequence of digits.

» The binary name of atype variable declared by a generic class or interface
(88.1.2, §9.1.2) is the binary name of its immediately enclosing type,
followed by $, followed by the simple name of the type variable.

» The binary name of atype variable declared by a generic method (88.4.4) is
the binary name of the type declaring the method, followed by $, followed
by the descriptor of the method as defined in The Java Virtual Machine
Soecification, Java SE 7 Edition, followed by $, followed by the simple name
of the type variable.

» Thebinary name of atype variable declared by ageneric constructor (88.8.4)
is the binary name of the type declaring the constructor, followed by $,
followed by the descriptor of the constructor as defined in The Java Virtual
Machine Specification, Java SE 7 Edition, followed by $, followed by the
simple name of the type variable.

2. A reference to another class or interface type must be symboalic, using the
binary name of the type.

3. References to fields that are constant variables (84.12.4) are resolved at
compiletimeto the constant value that is denoted. No reference to such afield
should be present in the code in a binary file (except in the class or interface
containing the field, which will have code to initialize it). Such a field must
always appear to have been initialized (812.4.2); the default initial value for
the type of such afield must never be observed. See §13.4.9 for adiscussion.

4. Given alegal expression denoting a field access in a class C, referencing a
non-constant (813.4.9) field named f declared in a (possibly distinct) class or
interface D, we define the qualifying type of the field reference as follows:

* If the expression is of the form Primary. f then:

* If the compile-time type of Primary is an intersection type (84.9) v1 & ...
& V,, then the qualifying type of the referenceisv;.

339

13.1

340

The Form of a Binary BINARY COMPATIBILITY

+ Otherwise, the compile-time type of Primary isthe qualifying type of the
reference.

* If the expression is of the form super.f then the superclass of C is the
qualifying type of the reference.

* If the expression is of the form X. super . f then the superclass of X is the
qualifying type of the reference.

« |f thereferenceisof theform X. f, where X denotes aclass or interface, then
the class or interface denoted by X is the qualifying type of the reference.

* If theexpressionisreferenced by asimple name, thenif f isamember of the
current classor interface, C, then let T be C. Otherwise, let T be the innermost
lexically enclosing class of which f is a member. In either case, T is the
qualifying type of the reference.

The reference to f must be compiled into a symbolic reference to the erasure
(84.6) of the qualifying type of the reference, plus the simple name of the
field, . The reference must also include a symbolic reference to the erasure
of the declared type of the field so that the verifier can check that the typeis
as expected.

Given a method invocation expression in a class or interface C referencing a
method named mdeclared (or implicitly declared (89.2)) in a(possibly distinct)
class or interface D, we define the qualifying type of the method invocation as
follows:

» If Disj ect then the qualifying type of the expression is j ect .
» Otherwise:
* If the expression is of the form Primary. mthen:

+ |f the compile-timetype of Primary isanintersectiontype (84.9) v; & ...
& V,, then the qualifying type of the method invocation isv;.

= Otherwise, the compile-time type of Primary is the qualifying type of
the method invocation.

* If the expression is of the form super. mthen the superclass of Cis the
qualifying type of the method invocation.

+ If the expression is of the form X. super . mthen the superclass of x isthe
qualifying type of the method invocation.

BINARY COMPATIBILITY The Form of a Binary

+ If the reference is of the form X. m where X denotes a class or interface,
then the class or interface denoted by X isthe qualifying type of the method
invocation.

+ If the method is referenced by a simple name, then if mis a member of
the current class or interface, C, then let T be c. Otherwise, let T be the
innermost lexically enclosing class of which misamember. In either case,
T isthe qualifying type of the method invocation.

A reference to a method must be resolved at compile time to a symbolic
reference to the erasure (84.6) of the qualifying type of theinvocation, plusthe
erasure of the signature (88.4.2) of the method. The signature of amethod must
include all of the following as determined by §15.12.3:

» The simple name of the method
» The number of parameters to the method
» A symbolic reference to the type of each parameter

A reference to a method must also include either a symbolic reference to the
erasure of the return type of the denoted method or an indication that the
denoted method is declared voi d and does not return avalue.

Given aclass instance creation expression (815.9) or a constructor invocation
statement (88.8.7.1) in a class or interface C referencing a constructor m
declared in a (possibly distinct) class or interface b, we define the qualifying
type of the constructor invocation as follows:

 If the expression is of the form new D(...) oOr X. new IX...), then the
qualifying type of the invocation isD.

* If the expression is of the form newD(...){...} or X.newD(...){...},
then the qualifying type of the expression is the compile-time type of the
expression.

* If the expression is of the form super (...) or Primary. super(...) then
the qualifying type of the expression isthe direct superclass of C.

* If the expression is of the form t hi s(. . .), then the qualifying type of the
expressionisc.

A reference to a constructor must be resolved at compile time to a symbolic
reference to the erasure (84.6) of the qualifying type of the invocation, plus
the signature of the constructor (88.8.2). The signature of a constructor must
include both:

13.1

341

13.1

342

The Form of a Binary BINARY COMPATIBILITY

* The number of parameters of the constructor
» A symbolic reference to the type of each formal parameter

In addition, the constructor of a non-private inner member class must be
compiled such that it has asitsfirst parameter, an additional implicit parameter
representing the immediately enclosing instance (88.1.3).

Any constructsintroduced by aJavacompiler that do not have a corresponding
construct in the source code must be marked as synthetic, except for default
constructors, the class initialization method, and the val ues and val ue
methods of the Enumclass.

A binary representation for a class or interface must also contain all of the
following:

1

If itisaclassand isnot class bj ect , then a symbolic reference to the erasure
(84.6) of the direct superclass of this class.

A symbolic reference to the erasure of each direct superinterface, if any.

A specification of each field declared in the class or interface, given as the
simple name of the field and a symbolic reference to the erasure of the type
of thefield.

If itisaclass, then the erased signature of each constructor, asdescribed above.

For each method declared in the class or interface (excluding, for an interface,
itsimplicitly declared methods (89.2)), its erased signature and return type, as
described above.

The code needed to implement the class or interface:
» For aninterface, code for the field initializers

» For aclass, code for the field initializers, the instance and static initializers,
and the implementation of each method or constructor

Every type must contain sufficient information to recover its canonical name
(86.7).

Every member type must have sufficient information to recover itssource level
access modifier.

Every nested classmust have asymbolic referencetoitsimmediately enclosing
class.

BINARY COMPATIBILITY What Binary Compatibility Is and Is Not

10. Every classthat contains a nested class must contain symbolic referencesto all
of itsmember classes, and to all local and anonymous classes that appear in its
methods, constructors, and static or instance initializers.

Thefollowing sections discuss changesthat may be madeto classand interfacetype
declarations without breaking compatibility with pre-existing binaries. Under the
tranglation requirements given above, the Java Virtual Machine and itscl ass file
format support these changes. Any other valid binary format, such asacompressed
or encrypted representation that is mapped back into cl ass files by a class loader
under the above requirements, will necessarily support these changes as well.

13.2 What Binary Compatibility Isand Is Not

A change to atype is binary compatible with (equivalently, does not break binary
compatibility with) pre-existing binaries if pre-existing binaries that previously
linked without error will continue to link without error.

Binaries are compiled to rely on the accessible members and constructors of other
classes and interfaces. To preserve binary compatibility, aclass or interface should
treat its accessible members and constructors, their existence and behavior, as a
contract with its users.

The Java programming language is designed to prevent additions to contracts
and accidental name collisions from breaking binary compatibility. Specifically,
addition of more methods overloading a particular method name does not break
compatibility with pre-existing binaries. The method signature that the pre-existing
binary will use for method lookup is chosen by the method overload resolution
algorithm at compile time (815.12.2).

If the Java programming language had been designed so that the particular method to be
executed was chosen at run time, then such an ambiguity might bedetected at runtime. Such
arule would imply that adding an additional overloaded method so as to make ambiguity
possible at a call site could break compatibility with an unknown number of pre-existing
binaries. See §13.4.23 for more discussion.

Binary compatibility is not the same as source compatibility. In particular, the
example in §13.4.6 shows that a set of compatible binaries can be produced from
sourcesthat will not compileall together. Thisexampleistypical: anew declaration
isadded, changing the meaning of aname in an unchanged part of the source code,
while the pre-existing binary for that unchanged part of the source code retainsthe
fully-qualified, previous meaning of the name. Producing a consistent set of source

13.2

343

13.3

Evolution of Packages BINARY COMPATIBILITY

code requires providing aqualified name or field access expression corresponding
to the previous meaning.

13.3 Evolution of Packages

A new top level classor interface type may be added to a package without breaking
compatibility with pre-existing binaries, provided the new type does not reuse a
name previously given to an unrelated type.

If anew type reuses a name previously given to an unrelated type, then a conflict
may result, since binaries for both types could not be loaded by the same class
loader.

Changesintop level classand interface typesthat are not publ i ¢ and that are not a
superclassor superinterface, respectively, of apubl i c type, affect only typeswithin
the package in which they are declared. Such types may be deleted or otherwise
changed, even if incompatibilities are otherwise described here, provided that the
affected binaries of that package are updated together.

13.4 Evolution of Classes

This section describes the effects of changes to the declaration of a class and its
members and constructors on pre-existing binaries.

13.4.1 abstract Classes

If aclass that was not declared abstract is changed to be declared abst r act,
then pre-existing binaries that attempt to create new instances of that class will
throw either an I nstantiati onError a link time, or (if a reflective method is
used) an I nst anti ati onException a run time; such a change is therefore not
recommended for widdly distributed classes.

Changing aclassthat isdeclared abst r act to nolonger bedeclared abst r act does
not break compatibility with pre-existing binaries.
13.4.2 final Classes

If a class that was not declared fi nal is changed to be declared fi nal , then a
Veri fyError isthrownif abinary of apre-existing subclass of thisclassis|oaded,

BINARY COMPATIBILITY Evolution of Classes

becausefi nal classes can have no subclasses; such achange is not recommended
for widely distributed classes.

Changing a class that is declared fi nal to no longer be declared fi nal does not
break compatibility with pre-existing binaries.

13.4.3 public Classes

Changing aclassthat is not declared publ i ¢ to be declared publ i ¢ does not break
compatibility with pre-existing binaries.

If aclass that was declared publ i ¢ is changed to not be declared publ i ¢, then an
Il 1 egal AccessError isthrown if apre-existing binary islinked that needs but no
longer has access to the class type; such a change is not recommended for widely
distributed classes.

13.4.4 Superclasses and Superinterfaces

A dassCrcul ari tyError isthrown at load time if a class would be a superclass
of itself. Changes to the class hierarchy that could result in such a circularity
when newly compiled binaries are loaded with pre-existing binaries are not
recommended for widely distributed classes.

Changing the direct superclass or the set of direct superinterfaces of a class type
will not break compatibility with pre-existing binaries, provided that the total set of
superclasses or superinterfaces, respectively, of the class type loses no members.

If achangeto the direct superclass or the set of direct superinterfaces resultsin any
class or interface no longer being a superclass or superinterface, respectively, then
linkage errors may result if pre-existing binaries are loaded with the binary of the
modified class. Such changes are not recommended for widely distributed classes.

Example 13.4.4-1. Changing A Superclass

Suppose that the following test program:

class Hyper { char h ="h'; }
cl ass Super extends Hyper { char s ="'s"; }
cl ass Test extends Super {
public static void printH(Hyper h) {
System out. println(h. h);
}
public static void main(String[] args) {
print H new Super());

}

13.4

345

134 Evolution of Classes BINARY COMPATIBILITY

is compiled and executed, producing the output:
h

Suppose that a new version of class Super isthen compiled:
class Super { char s ="s"; }

Thisversion of class Super isnot asubclass of Hyper . If wethen run the existing binaries
of Hyper and Test with the new version of Super, then a Veri fyError isthrown at
link time. The verifier objects because the result of new Super () cannot be passed as an
argument in place of aformal parameter of type Hyper , because Super is not a subclass

of Hyper .

It is instructive to consider what might happen without the verification step: the program
might run and print:

S

This demonstrates that without the verifier, the Java type system could be defeated by
linking inconsi stent binary files, even though each was produced by acorrect Javacompiler.

The lesson isthat an implementation that lacks a verifier or failsto useit will not maintain
type safety and is, therefore, not a valid implementation.

The requirement that alternatives in a multi-cat ch clause (814.20) not be subclasses or
superclasses of each other is only a source restriction. Assuming the following client code
islegd:

try {

t hr owAor B() ;
} catch(ExceptionA | ExceptionB e) {
}

where Except i onAand Except i onB do not have a subclass/superclass relationship when
the client is compiled, it is binary compatible with respect to the client for Excepti onA
and Except i onB to have such arelationship when the client is executed.

Thisisanalogous to other situations where a class transformation that is binary compatible
for aclient might not be source compatible for the same client.
13.45 ClassType Parameters

Adding or removing a type parameter of a class does not, in itself, have any
implications for binary compatibility.

If such atype parameter is used in the type of afield or method, that may have the
normal implications of changing the af orementioned type.

346

BINARY COMPATIBILITY Evolution of Classes

Renaming a type parameter of a class has no effect with respect to pre-existing
binaries.

Changing the first bound of a type parameter of a class may change the erasure
(84.6) of any member that uses that type parameter in its own type, and this may
affect binary compatibility. The change of such abound isanalogousto the change
of the first bound of atype parameter of a method or constructor (§13.4.13).

Changing any other bound has no effect on binary compatibility.

13.4.6 ClassBody and Member Declarations

No incompatibility with pre-existing binaries is caused by adding an instance
(respectively st at i ¢) member that hasthe same name and accessibility (for fields),
or same name and accessibility and signature and return type (for methods), as an
instance (respectively st at i ¢) member of asuperclass or subclass. No error occurs
even if the set of classes being linked would encounter a compile-time error.

Deleting a class member or constructor that is not declared pri vat e may cause a
linkage error if the member or constructor is used by a pre-existing binary.

Example 13.4.6-1. Changing A Class Body

class Hyper {
void hello() { Systemout.printin("hello fromHyper"); }
}

cl ass Super extends Hyper {
void hello() { Systemout.println("hello from Super"); }

}

class Test {
public static void main(String[] args) {
new Super (). hello();
}
}

This program produces the output:
hell o from Super

Suppose that a new version of class Super is produced:
cl ass Super extends Hyper {}

Then, recompiling Super and executing this new binary with the original binariesfor Test
and Hyper produces the output:

hel l o from Hyper

13.4

347

13.4

348

Evolution of Classes BINARY COMPATIBILITY

as expected.

The super keyword can be used to access a method declared in a
superclass, bypassing any methods declared in the current class. The expression
super . ldentifier isresolved, at compile time, to a method min the superclass s. If
the method mis an instance method, then the method which isinvoked at run time
isthe method with the same sighature as mthat isamember of the direct superclass
of the class containing the expression involving super .

Example 13.4.6-2. Changing A Super class

class Hyper {
void hello() { Systemout.println("hello fromHyper"); }
}

cl ass Super extends Hyper { }
cl ass Test extends Super {
public static void main(String[] args) {
new Test (). hello();

}
void hello() {
super. hel l o();
}
}
This program produces the output:
hel l o from Hyper

Suppose that a new version of class Super is produced:

cl ass Super extends Hyper {
void hello() { Systemout.println("hello from Super"); }

}

Then, if Super and Hyper arerecompiled but not Test , then running the new binarieswith
the existing binary of Test produces the output:

hell o from Super

as you might expect.

13.4.7 Accessto Membersand Constructors

Changing the declared access of amember or constructor to permit less access may
break compatibility with pre-existing binaries, causing alinkage error to be thrown
when these binaries are resolved. Less access is permitted if the access modifier is
changed from default accessto pri vat e access; from pr ot ect ed access to default

BINARY COMPATIBILITY Evolution of Classes 13.4

or private access, or from public access to prot ect ed, default, or private
access. Changing a member or constructor to permit less access is therefore not
recommended for widely distributed classes.

Perhaps surprisingly, the binary format is defined so that changing a member or
constructor to be more accessible does not cause a linkage error when a subclass
(already) defines a method to have less access.

Example 13.4.7-1. Changing Accessibility
If the package poi nt s defines the class Poi nt :

package points;
public class Point {
public int x, vy;
protected void print() {
Systemout.printin("(" + x +"," +y +")");
}
}

used by the program:

cl ass Test extends points. Point {
public static void main(String[] args) {
Test t = new Test();
t.print();
}
protected void print() {
Systemout.println("Test");
}
}

then these classes compile and Test executes to produce the output:
Test

If the method pri nt in class Poi nt is changed to be publ i ¢, and then only the Poi nt

classis recompiled, and then executed with the previously existing binary for Test , then
no linkage error occurs. This happens even though it is improper, at compile time, for a
publ i ¢ method to be overridden by a pr ot ect ed method (as shown by the fact that the
classTest could not be recompiled using thisnew Poi nt classunlesspri nt inTest were
changed to be publ i c.)

Allowing superclasses to change protected methods to be public without
breaking binaries of pre-existing subclasses helps make binaries less fragile.
The dternative, where such a change would cause a linkage error, would create
additional binary incompatibilities.

349

13.4

350

Evolution of Classes BINARY COMPATIBILITY

13.4.8 Fideld Declarations

Widely distributed programs should not expose any fields to their clients. Apart
from the binary compatibility issues discussed below, this is generaly good
software engineering practice. Adding a field to a class may break compatibility
with pre-existing binaries that are not recompiled.

Assume a reference to afield f with qualifying type T. Assume further that f is
in fact an instance (respectively st at i ¢) field declared in asuperclass of T, S, and
that the type of f isX.

If anew field of type X with the same name ast isadded to asubclass of Sthat isa
superclass of T or T itself, then alinkage error may occur. Such alinkage error will
occur only if, in addition to the above, either one of the following conditions hold:

» Thenew field isless accessible than the old one.
» Thenew fieldisast ati ¢ (respectively instance) field.

In particular, no linkage error will occur in the case where a class could no longer
be recompiled because a field access previoudy referenced afield of a superclass
with an incompatible type. The previously compiled class with such a reference
will continue to reference the field declared in a superclass.

Example 13.4.8-1. Adding A Field Declaration

class Hyper { String h = "hyper"; }
cl ass Super extends Hyper { String s = "super"; }
class Test {
public static void main(String[] args) {
System out. println(new Super().h);
}
}

This program produces the output:
hyper
Suppose anew version of class Super is produced:
cl ass Super extends Hyper {
String s = "super"”;

int h =0;
}

Then, recompiling Hyper and Super , and executing the resulting new binarieswith the old
binary of Test produces the output:

hyper

BINARY COMPATIBILITY Evolution of Classes

The field h of Hyper is output by the origina binary of Test. While this may seem
surprising at first, it servesto reduce the number of incompatibilities that occur at run time.
(Inanideal world, all sourcefilesthat needed recompilation would be recompiled whenever
any one of them changed, eliminating such surprises. But such a mass recompilation is
often impractical or impossible, especialy in the Internet. And, as was previously noted,
such recompilation would sometimes require further changes to the source code.)

As another example, if the program:

class Hyper { String h = "Hyper"; }
cl ass Super extends Hyper { }
cl ass Test extends Super {
public static void main(String[] args) {
String s = new Test (). h;
System out. println(s);

}

is compiled and executed, it produces the output:
Hyper

Suppose that a new version of class Super isthen compiled:
cl ass Super extends Hyper { char h = "'h'; }

If theresulting binary isused with theexisting binariesfor Hyper and Test , then the output
isdtill:

Hyper

even though compiling the source for these binaries:

class Hyper { String h = "Hyper"; }
cl ass Super extends Hyper { char h = "h'; }
cl ass Test extends Super {
public static void main(String[] args) {
String s = new Test (). h;
Systemout. println(s);

}

would result in a compile-time error, because the h in the source code for mai n would now
be construed as referring to the char field declared in Super, and achar value can't be
assignedtoastri ng.

Deleting afield from aclasswill break compatibility with any pre-existing binaries
that reference this field, and a NoSuchFi el dError will be thrown when such a

13.4

351

13.4

352

Evolution of Classes BINARY COMPATIBILITY

reference from a pre-existing binary islinked. Only pri vat e fields may be safely
deleted from awidely distributed class.

For purposes of binary compatibility, adding or removing a field f whose type
involves type variables (84.4) or parameterized types (84.5) is equivalent to the
addition (respectively, removal) of a field of the same name whose type is the
erasure (84.6) of thetypeof 1.

13.4.9 final Fieldsand Constants

If afield that was not declared f i nal is changed to be declared fi nal , then it can
break compatibility with pre-existing binaries that attempt to assign new values to
the field.

Example 13.4.9-1. Changing A Variable To Befi nal

class Super { static char s; }
class Test extends Super {
public static void main(String[] args) {
s ='a';
System out. println(s);

}

This program produces the output:
a

Suppose that a new version of class Super is produced:
class Super { static final char s ="'b"; }

If Super isrecompiled but not Test , then running the new binary with the existing binary
of Test resultsinal | | egal AccessError.

Deleting the keyword f i nal or changing the value to which afield isinitialized
does not break compatibility with existing binaries.

If afield is a constant variable (84.12.4), then deleting the keyword fi nal or
changing its value will not break compatibility with pre-existing binaries by
causing them not to run, but they will not see any new value for the usage of the
field unlessthey arerecompiled. Thisistrue evenif the usageitself isnot acompile-
time constant expression (§15.28).

This result is a side-effect of the decision to support conditional compilation, as
discussed at the end of 814.21.

BINARY COMPATIBILITY Evolution of Classes

Example 13.4.9-2. Conditional Compilation

If the example:

class Flags { static final bool ean debug = true; }
class Test {
public static void main(String[] args) {
if (Flags. debug)
Systemout.println("debug is true");

}
is compiled and executed, it produces the output:
debug is true
Suppose that a new version of class Fl ags is produced:
class Flags { static final bool ean debug = fal se; }

If FI ags isrecompiled but not Test , then running the new binary with the existing binary
of Test produces the output:

debug is true

because the value of debug was a compile-time constant expression, and could have been
used in compiling Test without making areference to the class Fl ags.

Thisbehavior would not changeif FI ags were changed to beaninterface, asinthemodified
example:

interface Flags { bool ean debug = true; }
class Test {
public static void main(String[] args) {
if (Flags. debug)
Systemout. println("debug is true");

}

The best way to avoid problems with "inconstant constants” in widely-distributed
code is to declare as compile-time constants only values which truly are unlikely
ever to change. Other than for true mathematical constants, we recommend that
source code make very sparing use of class variablesthat are declared st at i ¢ and
final . If the read-only nature of fi nal isrequired, a better choice isto declare a
private static variable and a suitable accessor method to get its value.

Thus we recommend:

private static int N,

13.4

353

13.4

354

Evolution of Classes BINARY COMPATIBILITY

public static int getN() { return N, }
rather than:

public static final int N=...;
There is no problem with:

public static int N=...;

if N need not be read-only. We also recommend, as a general rule, that only truly
constant values be declared in interfaces.

We note, but do not recommend, that if afield of primitivetype of an interface may
change, its value may be expressed idiomatically asin:

interface Flags {
bool ean debug = new Bool ean(true). bool eanVal ue();
}

ensuring that thisvalueisnot aconstant. Similar idiomsexist for the other primitive
types.

One other thing to note is that static final fields that have constant values
(whether of primitive or St ri ng type) must never appear to have the default initial
valuefor their type (84.12.5). Thismeansthat all such fieldsappear to beinitialized
first during classinitialization (88.3.2.1, §9.3.1, §12.4.2).

13.4.10 static Fields

If afield that is not declared pri vat e was not declared st ati ¢ and is changed
to be declared static, or vice versa, then a linkage error, specifically an
I nconpat i bl eCl assChangeError, will result if the field is used by a pre-existing
binary which expected afield of the other kind. Such changes are not recommended
in code that has been widely distributed.

13.4.11 transient Fields

Adding or deleting at ransi ent modifier of afield does not break compatibility
with pre-existing binaries.

13.4.12 Method and Constructor Declarations

Adding amethod or constructor declaration to a class will not break compatibility
with any pre-existing binaries, even in the case where a type could no longer be

BINARY COMPATIBILITY Evolution of Classes

recompiled because an invocation previously referenced a method or constructor
of a superclass with an incompatible type. The previously compiled class with
such a reference will continue to reference the method or constructor declared in
asuperclass.

Assume areference to a method mwith qualifying type T. Assume further that mis
in fact an instance (respectively st at i ¢) method declared in asuperclassof T, S.

If anew method of type X with the same signature and return type as mis added to
asubclass of s that isasuperclass of T or T itself, then alinkage error may occur.
Such a linkage error will occur only if, in addition to the above, either one of the
following conditions hold:

» The new method is less accessible than the old one.
» Thenew method isast ati ¢ (respectively instance) method.

Deleting a method or constructor from a class may break compatibility
with any pre-existing binary that referenced this method or constructor; a
NoSuchMet hodEr ror may be thrown when such a reference from a pre-existing
binary is linked. Such an error will occur only if no method with a matching
signature and return typeis declared in a superclass.

If the source code for a non-inner class contains no declared constructors, the Java
compiler automatically supplies a default constructor with no parameters (88.8.9).
Adding one or more constructor declarations to the source code of such a class
will prevent this default constructor from being supplied automatically, effectively
deleting a constructor, unless one of the new constructors also has no parameters,
thus replacing the default constructor. The automatically supplied constructor with
no parameters is given the same access modifier as the class of its declaration, so
any replacement should have as much or more access if compatibility with pre-
existing binaries is to be preserved.

13.4.13 Method and Constructor Type Parameters

Adding or removing atype parameter of amethod or constructor does not, in itself,
have any implications for binary compatibility.

If such atype parameter is used in the type of the method or constructor, that may
have the normal implications of changing the aforementioned type.

Renaming a type parameter of a method or constructor has no effect with respect
to pre-existing binaries.

13.4

355

13.4

356

Evolution of Classes BINARY COMPATIBILITY

Changingthefirst bound of atype parameter of amethod or constructor may change
the erasure (84.6) of any member that uses that type parameter inits own type, and
this may affect binary compatibility. Specifically:

* If thetype parameter is used asthe type of afield, the effect isasif thefield was
removed and a field with the same name, whose type is the new erasure of the
type variable, was added.

* If thetype parameter is used asthetype of any formal parameter of amethod, but
not as the return type, the effect isasif that method were removed, and replaced
with a new method that is identical except for the types of the aforementioned
formal parameters, which now have the new erasure of the type parameter as
their type.

« If the type parameter is used as areturn type of a method, but not as the type of
any formal parameter of the method, the effect isasif that method were removed,
and replaced with anew method that isidentical except for the return type, which
is now the new erasure of the type parameter.

* If the type parameter is used as areturn type of a method and as the type of one
or more formal parameters of the method, the effect is as if that method were
removed, and replaced with a new method that isidentical except for the return
type, which is now the new erasure of the type parameter, and except for the
types of the aforementioned formal parameters, which now have the new erasure
of the type parameter as their types.

Changing any other bound has no effect on binary compatibility.

13.4.14 Method and Constructor Formal Parameters

Changing the name of a formal parameter of a method or constructor does not
impact pre-existing binaries.

Changing the name of a method, or the type of a formal parameter to a method
or constructor, or adding a parameter to or deleting a parameter from a method or
constructor declaration creates a method or constructor with a new signature, and
has the combined effect of deleting the method or constructor with the old signature
and adding a method or constructor with the new signature (§13.4.12).

Changing the type of the last formal parameter of amethod from T[] to avariable
arity parameter (88.4.1) of type 7 (i.e. to T...), and vice versa, does not impact
pre-existing binaries.

For purposes of binary compatibility, adding or removing a method or constructor
m whose signature involves type variables (84.4) or parameterized types (84.5)

BINARY COMPATIBILITY Evolution of Classes

is equivalent to the addition (respectively, removal) of an otherwise equivaent
method whose signature is the erasure (84.6) of the signature of m

13.4.15 Method Result Type

Changing the result type of a method, or replacing a result type with voi d, or
replacing voi d with a result type, has the combined effect of deleting the old
method and adding a new method with the new result type or newly voi d result
(see §13.4.12).

For purposes of binary compatibility, adding or removing a method or constructor
mwhose return type involves type variables (84.4) or parameterized types (84.5)
isequivalent to the addition (respectively, removal) of the an otherwise equivalent
method whose return type is the erasure (84.6) of the return type of m

13.4.16 abstract Methods

Changing a method that is declared abst ract to no longer be declared abst r act
does not break compatibility with pre-existing binaries.

Changing a method that is not declared abst ract to be declared abst ract will
break compatibility with pre-existing binaries that previously invoked the method,
causing an Abst r act Met hodEr r or .

Example 13.4.16-1. Changing A Method To Beabst r act

class Super { void out() { Systemout.printin("Qut"); } }
class Test extends Super {
public static void main(String[] args) {
Test t = new Test();
Systemout.printin("Way ");
t.out();

}
This program produces the outpuit:

ay
Qut

Suppose that a new version of class Super is produced:

abstract class Super {
abstract void out();

}

13.4

357

13.4

358

Evolution of Classes BINARY COMPATIBILITY

If Super isrecompiled but not Test , then running the new binary with the existing binary
of Test resultsinan Abst r act Met hodEr r or , because class Test has no implementation
of the method out , and isthereforeis (or should be) abst r act .

13.4.17 final Methods

Changing amethod that isdeclared f i nal to no longer be declared fi nal does not
break compatibility with pre-existing binaries.

Changing an instance method that is not declared f i nal to bedeclared fi nal may
break compatibility with existing binaries that depend on the ahility to override the
method.

Example 13.4.17-1. Changing A Method To Befi nal

class Super { void out() { Systemout.printin("out"); } }
cl ass Test extends Super {
public static void main(String[] args) {
Test t = new Test();
t.out();

}
void out() { super.out(); }

}
This program produces the output:
out
Suppose that a new version of class Super is produced:
class Super { final void out() { Systemout.printin("!"); } }
If Super isrecompiled but not Test , then running the new binary with the existing binary

of Test resultsinaVeri f yError becausetheclass Test improperly triesto override the
instance method out .

Changing aclass (st at i ¢) method that is not declared f i nal to be declared i nal
does not break compatibility with existing binaries, because the method could not
have been overridden.

13.4.18 native Methods

Adding or deleting a nat i ve modifier of a method does not break compatibility
with pre-existing binaries.

The impact of changes to types on pre-existing nati ve methods that are not
recompiled is beyond the scope of this specification and should be provided with

BINARY COMPATIBILITY Evolution of Classes

the description of an implementation. Implementations are encouraged, but not
required, to implement nat i ve methods in away that limits such impact.

13.4.19 static Methods

If a method that is not declared pri vat e is aso declared st ati ¢ (that is, a class
method) and is changed to not be declared st at i ¢ (that is, to an instance method),
or viceversa, then compatibility with pre-existing binaries may be broken, resulting
in a linkage time error, namely an | nconpati bl ed assChangeError, if these
methods are used by the pre-existing binaries. Such changes are not recommended
in code that has been widely distributed.

13.4.20 synchroni zed Methods

Adding or deleting a synchroni zed modifier of a method does not break
compatibility with pre-existing binaries.

13.4.21 Method and Constructor Throws

Changestothet hr ows clause of methodsor constructors do not break compatibility
with pre-existing binaries; these clauses are checked only at compile time.

13.4.22 Method and Constructor Body

Changes to the body of a method or constructor do not break compatibility with
pre-existing binaries.

The keyword fi nal on a method does not mean that the method can be safely
inlined; it means only that the method cannot be overridden. Itisstill possiblethat a
new version of that method will be provided at link-time. Furthermore, the structure
of the original program must be preserved for purposes of reflection.

Therefore, we note that a Java compiler cannot expand amethod inline at compile
time. In general we suggest that implementations use late-bound (run-time) code
generation and optimization.

13.4.23 Method and Constructor Overloading

Adding new methodsor constructorsthat overload existing methods or constructors
does not break compatibility with pre-existing binaries. The signature to be used
for each invocation was determined when these existing binaries were compiled;

13.4

359

13.4

360

Evolution of Classes BINARY COMPATIBILITY

therefore newly added methods or constructors will not be used, even if their
signatures are both applicable and more specific than the signature originally
chosen.

While adding a new overloaded method or constructor may cause a compile-time
error the next time a class or interface is compiled because there is no method or
constructor that ismost specific (815.12.2.5), no such error occurs when aprogram
is executed, because no overload resolution is done at execution time.

Example 13.4.23-1. Adding An Overloaded Method

cl ass Super {
static void out(float f) {
Systemout.printin("float");

}
}

class Test {
public static void main(String[] args) {
Super . out (2);
}
}
This program produces the output:
fl oat
Suppose that a new version of class Super is produced:
cl ass Super {
static void out(float f) { Systemout.printin("float"); }
static void out(int i) { Systemout.println("int"); }

}

If Super isrecompiled but not Test , then running the new binary with the existing binary
of Test still produces the output:

f1 oat
However, if Test isthen recompiled, using this new Super , the output is then:
int

as might have been naively expected in the previous case.

BINARY COMPATIBILITY Evolution of Interfaces

13.4.24 Method Overriding

If an instance method is added to a subclass and it overrides a method in a
superclass, then the subclass method will be found by method invocations in pre-
existing binaries, and these binaries are not impacted.

If aclass method is added to a class, then this method will not be found unless the
qualifying type of the reference is the subclass type.

13.4.25 Static Initializers

Adding, deleting, or changing a static initializer (88.7) of a class does not impact
pre-existing binaries.

13.4.26 Evolution of Enums

Adding or reordering constants in an enum type will not break compatibility with
pre-existing binaries.

If apre-existing binary attempts to access an enum constant that no longer exists,
the client will fail at run time with a NoSuchFi el dEr r or . Therefore such achange
is not recommended for widely distributed enums.

In all other respects, the binary compatibility rules for enums are identical to those
for classes.

13.5 Evolution of Interfaces

This section describes the impact of changes to the declaration of an interface and
its members on pre-existing binaries.

13.5.1 public Interfaces

Changing an interface that is not declared publ i ¢ to be declared publ i ¢ does not
break compatibility with pre-existing binaries.

If an interface that is declared publ i ¢ is changed to not be declared publ i ¢, then
an il egal AccessError isthrownif apre-existing binary islinked that needs but
no longer has access to the interface type, so such a change is not recommended
for widely distributed interfaces.

135

361

135

362

Evolution of Interfaces BINARY COMPATIBILITY

13.5.2 Superinterfaces

Changes to the interface hierarchy cause errors in the same way that changes to
the class hierarchy do, as described in 813.4.4. In particular, changes that result in
any previous superinterface of a class no longer being a superinterface can break
compatibility with pre-existing binaries, resulting in aVeri f yError .

13.5.3 Interface Members

Adding a method to an interface does not break compatibility with pre-existing
binaries.

A field added to a superinterface of ¢ may hide a field inherited from
a superclass of c. If the origina reference was to an instance field, an
I nconpat i bl ed assChangeError will result. If the origina reference was an
assignment, an I | | egal AccessError will result.

Deleting a member from an interface may cause linkage errors in pre-existing
binaries.
Example 13.5.3-1. Deleting An Interface Member
interface | { void hello(); }
class Test inplenments | {
public static void main(String[] args) {

I anl = new Test();
anl . hello();

}
public void hello() { Systemout.println("hello"); }

}

This program produces the output:
hel |l o

Suppose that a new version of interface | iscompiled:
interface | {}

If I isrecompiled but not Test , then running the new binary with the existing binary for
Test will result inaNoSuchMet hodEr r or .

13.5.4 Interface Type Parameters

The effects of changes to the type parameters of an interface are the same as those
of analogous changes to the type parameters of aclass.

BINARY COMPATIBILITY Evolution of Interfaces

13.5.5 Fidld Declarations

The considerations for changing field declarations in interfaces are the same as
thoseforstatic final fieldsin classes, asdescribed in §13.4.8 and §13.4.9.

13.5.6 abstract Methods

Theconsiderationsfor changingabst r act method declarationsininterfacesarethe
same asthosefor abst r act methodsin classes, asdescribed in §13.4.14, §13.4.15,
813.4.21, and §813.4.23.

13.5.7 Evolution of Annotation Types

Annotation types behave exactly like any other interface. Adding or removing an
element from an annotation type is analogous to adding or removing a method.
There are important considerations governing other changes to annotation types,
but these have no effect on the linkage of binaries by the Java Virtual Machine.
Rather, such changes affect the behavior of reflective APIs that manipulate
annotations. The documentation of these APIs specifies their behavior when
various changes are made to the underlying annotation types.

Adding or removing annotations has no effect on the correct linkage of the binary
representations of programs in the Java programming language.

135

363

CHAPTER 1 |

Blocks and Statements

T HE sequence of execution of aprogram is controlled by statements, which are
executed for their effect and do not have values.

Some statements contain other statements as part of their structure; such other
statements are substatements of the statement. We say that statement simmediately
contains statement U if there is no statement T different from s and U such that
S contains T and T contains U. In the same manner, some statements contain
expressions (815) as part of their structure.

The first section of this chapter discusses the distinction between norma and
abrupt completion of statements (814.1). Most of the remaining sections explain
the various kinds of statements, describing in detail both their normal behavior and
any special treatment of abrupt completion.

Blocks are explained first (814.2), followed by local class declarations (§14.3) and
local variable declaration statements (§14.4).

Next a grammatical maneuver that sidesteps the familiar "dangling else”" problem
(814.5) is explained.

The last section (814.21) of this chapter addresses the requirement that every
statement be reachable in a certain technical sense.

14.1 Normal and Abrupt Completion of Statements

Every statement has a normal mode of execution in which certain computational
stepsare carried out. Thefollowing sections describe the normal mode of execution
for each kind of statement.

365

14.1

366

Normal and Abrupt Completion of Statements BLOCKS AND STATEMENTS

If all the stepsare carried out as described, with no indication of abrupt completion,
the statement is said to complete normally. However, certain events may prevent
a statement from completing normally:

» Thebr eak (814.15), cont i nue (814.16), andr et ur n (814.17) statements cause a
transfer of control that may prevent normal completion of statementsthat contain
them.

» Evaluation of certain expressions may throw exceptions from the Java Virtual
Machine (815.6). An explicit throw (814.18) statement also results in an
exception. An exception causes a transfer of control that may prevent normal
completion of statements.

If such an event occurs, then execution of one or more statements may be
terminated before all steps of their normal mode of execution have completed; such
statements are said to complete abruptly.

An abrupt completion always has an associated reason, which is one of the
following:

* A break with no label

* A break with agiven label

* A conti nue with no label

* A continue with agiven label
* Areturn withnovaue

e Areturnwithagivenvaue

* A throw with a given value, including exceptions thrown by the Java Virtual
Machine

The terms "complete normally” and "complete abruptly" also apply to the
evaluation of expressions (815.6). The only reason an expression can complete
abruptly isthat an exception isthrown, because of either at hr owwith agivenvalue
(814.18) or arun-time exception or error (811, 815.6).

If a statement evaluates an expression, abrupt completion of the expression aways
causes the immediate abrupt completion of the statement, with the same reason.
All succeeding steps in the normal mode of execution are not performed.

Unless otherwise specified in this chapter, abrupt completion of a substatement
causes the immediate abrupt completion of the statement itself, with the same
reason, and all succeeding stepsin the normal mode of execution of the statement
are not performed.

BLOCKS AND STATEMENTS Blocks

Unless otherwise specified, a statement completes normally if all expressions it
evaluates and all substatements it executes complete normally.

14.2 Blocks

A block is a sequence of statements, local class declarations, and local variable
declaration statements within braces.

Block:
{ BlockStatementsypt }

BlockSatements:
BlockStatement
BlockStatements BlockStatement

BlockStatement:
LocalVariableDeclarationSatement
ClassDeclaration
Satement

A block is executed by executing each of the local variable declaration statements
and other statements in order from first to last (left to right). If al of these block
statements complete normally, then the block completes normally. If any of these
block statements complete abruptly for any reason, then the block completes
abruptly for the same reason.

14.3 Local Class Declarations

A local classis anested class (88) that is not a member of any class and that has
aname (86.2, 86.7).

All local classes areinner classes (88.1.3).

Every local class declaration statement is immediately contained by a block
(814.2). Locad class declaration statements may be intermixed freely with other
kinds of statementsin the block.

It is a compile-time error if alocal class declaration contains any of the access
modifierspubl i c, prot ect ed, Or pri vat e (86.6), or themodifier st ati c (88.1.1).

14.2

367

14.3 Local Class Declarations BLOCKS AND STATEMENTS

The scope and shadowing of alocal class declaration is specified in 86.3 and §6.4.

Example 14.3-1. Local Class Declarations

Hereis an example that illustrates several aspects of the rules given above:

class G obal {
class Cyclic {}

void foo() {
new Cyclic(); // create a @obal.Cyclic
class Cyclic extends Cyclic {} // circular definition

{
class Local {}
{
class Local {} // conpile-tine error
}

class Local {} // conpile-tinme error
cl ass Anot herLocal {
voi d bar () {
class Local {} // ok
}
}

class Local {} // ok, not in scope of prior Local
}

Thefirst statement of method f oo creates an instance of the member class@ obal . Cycli ¢
rather than an instance of thelocal class Cycl i ¢, because the local class declaration is not
yet in scope.

The fact that the scope of alocal class encompasses its own declaration (not only its body)
means that the definition of thelocal classCycl i c isindeed cyclic because it extendsitself
rather than @ obal . Cycl i c. Consequently, the declaration of the local class Cycl i ¢ will
be rejected at compile time.

Since local class names cannot be redeclared within the same method (or constructor or
initializer, asthe case may be), the second and third declarations of Local resultincompile-
time errors. However, Local can be redeclared in the context of another, more deeply
nested, class such as Anot her Local .

The fourth and last declaration of Local islegal, since it occurs outside the scope of any
prior declaration of Local .

368

BLOCKS AND STATEMENTS Local Variable Declaration Satements 14.4

14.4 Local Variable Declaration Statements

A local variable declaration statement declares one or more local variable names.

Local VariableDeclarationSatement:
Local VariableDeclaration ;

Local VariableDeclaration:
VariableModifiersyy: Type VariableDeclarators

The following are repeated from §8.4.1 and §8.3 to make the presentation here clearer:

VariableModifiers:
VariableModifier
VariableModifiers VariableModifier

VariableModifier: one of
Annotation i nal

VariableDeclarators:
VariableDeclarator
VariableDeclarators, VariableDeclarator

VariableDeclarator:
VariableDeclaratorld
VariableDeclaratorld = Variablelnitializer

VariableDeclaratorld:
Identifier
VariableDeclaratorld]

Variablelnitializer:
Expression
Arraylnitializer

Every local variable declaration statement is immediately contained by a block.
Local variable declaration statements may be intermixed freely with other kinds of
statements in the block.

A local variable declaration can also appear in the header of a for statement
(814.14). Inthis caseit is executed in the same manner asiif it were part of alocal
variable declaration statement.

369

14.4

370

Local Variable Declaration Statements BLOCKS AND STATEMENTS

14.4.1 Local Variable Declaratorsand Types

Each declarator in aloca variable declaration declares one local variable, whose
name isthe Identifier that appears in the declarator.

If the optional keyword fi nal appears at the start of the declarator, the variable
being declared is afinal variable (84.12.4).

If an annotation a (89.7) on a local variable declaration corresponds to
an annotation type T, and T has a (meta)annotation m that corresponds to
j ava. | ang. annot at i on. Tar get , then m must have an element whose vaue is
j ava. | ang. annot at i on. El enent Type. LOCAL_VARI ABLE, or acompile-time error
occurs.

The declared type of alocal variable is denoted by the Type that appears in the
local variable declaration, followed by any bracket pairs that follow the Identifier
in the declarator.

A loca variable of type fl oat aways contains a value that is an element of the
float value set (84.2.3); similarly, alocal variable of type doubl e always contains
avalue that is an element of the double value set. It is not permitted for a local
variable of typef I oat to contain an element of the float-extended-exponent value
set that is not al'so an element of the float value set, nor for alocal variable of type
doubl e to contain an element of the double-extended-exponent val ue set that is not
also an element of the double value set.

The scope and shadowing of alocal variable is specified in 86.3 and §6.4.

14.4.2 Execution of Local Variable Declarations

A local variable declaration statement is an executable statement. Every timeit is
executed, the declaratorsare processed in order from left toright. If adeclarator has
an initialization expression, the expression is evaluated and its value is assigned
to the variable.

If adeclarator doesnot have aninitialization expression, then every referenceto thevariable
must be preceded by execution of an assignment to the variable, or a compile-time error
occurs by the rules of §16.

Each initialization (except the first) is executed only if evaluation of the preceding
initialization expression completes normally.

Execution of the local variable declaration completes normally only if evaluation
of the last initialization expression completes normally.

BLOCKS AND STATEMENTS Satements

If the local variable declaration contains no initialization expressions, then
executing it always completes normally.

145 Statements

There are many kinds of statements in the Java programming language. Most
correspond to statements in the C and C++ languages, but some are unique.

AsinCand C++, thei f statement of the Java programming language suffersfrom
the so-called "dangling el se problem," illustrated by this misleadingly formatted
example:

if (door.isQpen())
if (resident.isVisible())
resident.greet("Hello!");
el se door.bell.ring(); // A "dangling else"

The problem is that both the outer i f statement and the inner i f statement might
conceivably own the el se clause. In this example, one might surmise that the
programmer intended the el se clause to belong to the outer i f statement.

The Java programming language, like C and C++ and many programming
languages before them, arbitrarily decrees that an el se clause belongs to the
innermost i f to which it might possibly belong. This rule is captured by the
following grammar:

14.5

371

145 Satements BLOCKS AND STATEMENTS

Satement:
SatementWithoutTrailingSubstatement
LabeledSatement
|fThenSatement
[fThenElseSatement
WhileSatement
For Satement

SatementWithoutTrailingSubstatement:
Block
EmptyStatement
ExpressionStatement
AssertSatement
SwitchSatement
DoSatement
BreakSatement
ContinueStatement
ReturnSatement
SynchronizedStatement
ThrowSatement
TryStatement

SatementNoShortlf:
SatementWithoutTrailingSubstatement
LabeledSatementNoShort!f
[fThenElseSatementNoShortl f
WhileSatementNoShort! f
For SatementNoShort! f

The following are repeated from §14.9 to make the presentation here clearer:

IfThenSatement:
it (Expression) Statement

IfThenElseStatement:
if (Expression) SatementNoShortif el se Satement

IfThenElseSatementNoShortlf:
it (Expression) SatementNoShortlf el se SatementNoShortl! f

372

BLOCKS AND STATEMENTS The Empty Satement 14.6

Statements are thus grammatically divided into two categories: those that might
endinanif statement that has no el se clause (a"short i f statement™) and those
that definitely do not.

Only statements that definitely do not end in ashort i f statement may appear as
an immediate substatement before the keyword el se inani f statement that does
have an el se clause.

Thissimplerule preventsthe "dangling el se" problem. The execution behavior of
a statement with the "no short i f " restriction isidentical to the execution behavior
of the same kind of statement without the "no short i f " restriction; the distinction
is drawn purely to resolve the syntactic difficulty.

14.6 The Empty Statement

An empty statement does nothing.

EmptyStatement:

Execution of an empty statement always completes normally.

14.7 Labeed Statements

Statements may have label prefixes.

LabeledSatement:
Identifier ;: Satement

LabeledSatementNoShor tif:
Identifier ;: SatementNoShort!f

The Identifier is declared to be the label of the immediately contained Satement.

Unlike C and C++, the Java programming language has no goto Statement;
identifier statement labels are used with break (814.15) or conti nue (814.16)
statements appearing anywhere within the labeled statement.

The scope of alabel of alabeled statement istheimmediately contained Statement.

373

14.8

374

Expression Satements BLOCKS AND STATEMENTS

It is a compile-time error if the name of alabel of alabeled statement (814.7) is
used within the scope of the label as alabel of another labeled statement.

Thereis no restriction against using the same identifier as alabel and as the name
of apackage, class, interface, method, field, parameter, or local variable. Use of an
identifier to label a statement does not obscure (86.4.2) a package, class, interface,
method, field, parameter, or local variable with the same name. Use of anidentifier
asaclass, interface, method, field, local variable or asthe parameter of an exception
handler (814.20) does not obscure a statement |abel with the same name.

A labeled statement is executed by executing theimmediately contained Satement.

If the statement is labeled by an Identifier and the contained Statement completes
abruptly because of a br eak with the same Identifier, then the labeled statement
completes normally. In all other cases of abrupt completion of the Statement, the
labeled statement completes abruptly for the same reason.

14.8 Expression Statements

Certain kinds of expressions may be used as statements by following them with
semicolons.

ExpressionSatement:
SatementExpression ;

SatementExpression:
Assignment
Prel ncrementExpression
PreDecrementExpression
PostlncrementExpression
PostDecrementExpression
MethodInvocation
ClasslnstanceCreationExpression

An expression statement is executed by evaluating the expression; if the expression
has avalue, the value is discarded.

Execution of the expression statement completesnormally if and only if evaluation
of the expression completes normally.

Unlike C and C++, the Java programming language alows only certain forms of
expressions to be used as expression statements. Note that the Java programming language

BLOCKS AND STATEMENTS Theif Statement

does not allow a"cast to voi d" - voi d isnot atype - so the traditional C trick of writing
an expression statement such as:

(void)... ; [/l incorrect!

doesnot work. On the other hand, the Java programming language allowsall the most useful
kinds of expressionsin expressions statements, and it does not require a method invocation
used as an expression statement to invoke avoi d method, so such atrick is amost never
needed. If atrick is needed, either an assignment statement (815.26) or a local variable
declaration statement (814.4) can be used instead.

149 Theif Statement

The i f statement alows conditional execution of a statement or a conditional
choice of two statements, executing one or the other but not both.

IfThenSatement:
i f (Expression) Satement

IfThenElseStatement:
i f (Expression) SatementNoShortlf el se Statement

IfThenEl seSatementNoShortlf:
i f (Expression) SatementNoShortlf el se StatementNoShortl

The Expression must have type bool ean or Bool ean, or a compile-time error
occurs.

14.9.1 Theif-then Statement

Anif-then statement is executed by first evaluating the Expression. If the result
is of type Bool ean, it is subject to unboxing conversion (85.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
compl etes abruptly for some reason, thei f - t hen statement completes abruptly for
the same reason.

Otherwise, execution continues by making a choice based on the resulting value:

» |f the value is true, then the contained Statement is executed; the i f -t hen
statement completesnormally if and only if execution of the Satement compl etes
normally.

14.9

375

14.10

376

The assert Statement BLOCKS AND STATEMENTS

e |If the value is fal se, no further action is taken and the i f -t hen Statement
completes normally.

14.9.2 Theif-then-el se Statement

Anif-then-el se statement is executed by first evaluating the Expression. If the
result is of type Bool ean, it is subject to unboxing conversion (85.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, then thei f - t hen- el se statement completes
abruptly for the same reason.

Otherwise, execution continues by making a choice based on the resulting value:

 |f thevalueist rue, then the first contained Satement (the one before the el se
keyword) is executed; thei f - t hen- el se statement completes normally if and
only if execution of that statement completes normally.

« If thevalueisf al se, then the second contained Satement (the one after theel se
keyword) is executed; thei f - t hen- el se statement completes normally if and
only if execution of that statement completes normally.

1410 Theassert Statement

Anassertionisanassert statement containing aboolean expression. An assertion
is either enabled or disabled. If the assertion is enabled, execution of the assertion
causes evaluation of the boolean expression and an error is reported if the
expression evaluatestof al se. |f theassertionisdisabled, execution of the assertion
has no effect whatsoever.

AssertSatement:
assert Expressionl;
assert Expressionl: Expression2;

It isacompile-time error if Expressionl does not have type bool ean or Bool ean.

Inthesecond formof theasser t statement, itisacompile-timeerror if Expression2
isvoi d (815.1).

Anassert statement that is executed after its class has completed initialization is
enabled if and only if the host system has determined that the top level class that
lexically containsthe assert statement enables assertions.

BLOCKS AND STATEMENTS The assert Statement

Whether or not atop level class enables assertions is determined no later than the
earliest of theinitialization of the top level class and the initialization of any class
nested in the top level class, and cannot be changed after it has been determined.

An assert statement that is executed before its class has completed initialization
is enabled.

This rule is motivated by a case that demands special treatment. Recall that the assertion
status of aclassis set no later than thetime it isinitialized. It is possible, though generally
not desirable, to execute methods or constructors prior to initialization. This can happen
when a class hierarchy contains a circularity in its static initialization, as in the following
example:

public class Foo {
public static void main(String[] args) {
Baz.testAsserts();
/1 W1l execute after Baz is initialized.

}
}
class Bar {
static {
Baz.testAsserts();
/1 WIIl execute before Baz is initialized!
}
}

cl ass Baz extends Bar {
static void testAsserts() {
bool ean enabl ed = fal se;
assert enabled = true;
Systemout.println("Asserts " +
(enabl ed ? "enabl ed" : "disabled"));
}
}

Invoking Baz. t est Assert s() causesBaz to beinitialized. Before this can happen, Bar
must be initialized. Bar 's static initializer again invokes Baz. t est Assert s() . Because
initialization of Baz is already in progress by the current thread, the second invocation
executes immediately, though Baz is not initialized (§12.4.2).

Because of the rule above, if the program above is executed without enabling assertions,
it must print:

Asserts enabl ed
Asserts disabl ed

A disabled assert statement does nothing. In particular, neither Expressionl
nor Expression2 (if it is present) are evaluated. Execution of a disabled assert
statement always completes normally.

14.10

377

14.10

378

The assert Statement BLOCKS AND STATEMENTS

An enabled assert statement is executed by first evaluating Expressionl. If the
result is of type Bool ean, it is subject to unboxing conversion (85.1.8).

If evaluation of Expressionl or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the assert statement completes abruptly for
the same reason.

Otherwise, execution continues by making a choice based on the value of
Expressionl:

 Ifthevalueist r ue, nofurther actionistaken andtheassert statement completes
normally.

» If thevalueisf al se, the execution behavior depends on whether Expression2
is present:

* If Expression2 is present, it is evaluated.

+ |f the evaluation completes abruptly for some reason, the assert Statement
completes abruptly for the same reason.

+ |f the evaluation completes normally, an Asserti onError instance whose
"detail message" isthe resulting value of Expression2 is created.

+ |If the instance creation completes abruptly for some reason, the assert
statement compl etes abruptly for the same reason.

+ If the instance creation completes normally, the assert statement
completes abruptly by throwing the newly created Asserti onError
object.

* If Expression2 is not present, an Asserti onError instance with no "detail
message” is created.

+ |f the instance creation completes abruptly for some reason, the assert
statement compl etes abruptly for the same reason.

= |If the instance creation completes normally, the assert statement completes
abruptly by throwing the newly created Asserti onError object.

For example, after unmarshalling al of the arguments from a data buffer, a programmer
might assert that the number of bytes of data remaining in the buffer is zero. By verifying
that the boolean expression is indeed t r ue, the system corroborates the programmer's
knowledge of the program and increases one's confidence that the program is free of bugs.

Typically, assertion-checking is enabled during program development and testing, and
disabled for deployment, to improve performance.

BLOCKS AND STATEMENTS The swi tch Statement 14.11

Because assertions may be disabled, programs must not assume that the expressions
contained in assertionswill be evaluated. Thus, these boolean expressions should generally
be free of side effects.

Evaluating such a boolean expression should not affect any state that is visible after the
evaluation is complete. It is not illegal for a boolean expression contained in an assertion
to have a side effect, but it is generally inappropriate, as it could cause program behavior
to vary depending on whether assertions were enabled or disabled.

Along similar lines, assertions should not be used for argument-checking in public
methods. Argument-checking istypically part of the contract of amethod, and this contract
must be upheld whether assertions are enabled or disabled.

Another problem with using assertions for argument checking is that
erroneous arguments should result in an appropriate run-time exception
(such as 111 egal Argument Exception, Arrayl ndexQut Of BoundsException, or
Nul | Poi nt er Except i on). An assertion failure will not throw an appropriate exception.
Again, it isnot illegal to use assertions for argument checking on publ i ¢ methods, but it
is generally inappropriate. It isintended that Asserti onErr or never be caught, but it is
possible to do so, thus the rules for t ry statements should treat assertions appearing in a
t ry block similarly to the current treatment of t hr ow statements.

14.11 Theswi t ch Statement

The swi t ch statement transfers control to one of several statements depending on
the value of an expression.

379

1411 Theswi t ch Statement BLOCKS AND STATEMENTS

SwitchStatement:
switch (Expression) SwitchBlock

SwitchBlock:
{ SwitchBlockStatementGroupsgp: SwitchLabel sop }

SwitchBlockStatementGroups:
SwitchBlockStatementGroup
SwitchBlockStatementGroups SwitchBlockStatementGroup

SwitchBlockStatementGroup:
SwitchLabels BlockStatements

SwitchLabels:
SwitchLabel
SwitchLabels SwitchLabel

SwitchLabdl:
case ConstantExpression :
case EnumConstantName :
defaul t :

EnumConstantName:
Identifier

The type of the Expression must be char, byte, short, i nt, Character, Byte,
Short, I nteger, String, or an enum type (88.9), or acompile-time error occurs.

The body of aswi t ch statement is known as a switch block.

Any statement immediately contained by the switch block may be |abeled with one
or more switch labels, which are case or def aul t labels.

These labels are said to be associated with the swi t ch statement, as are the values
of the constant expressions (815.28) or enum constants (88.9.1) in the case labels.

All of the following must be true, or a compile-time error occurs:

* Every case constant expression associated with a swit ch statement must be
assignable (85.2) to the type of the swi t ch Expression.

» Notwo of thecase constant expressions associated with aswi t ch statement may
have the same value.

* No switch label isnul I .

380

BLOCKS AND STATEMENTS The swi t ch Statement

» At most onedef aul t label may be associated with the same swi t ch statement.

The prohibition against using nul | as a switch label prevents one from writing code that
can never be executed. If the swi t ch expression is of areference type, that is, Stri ng or
a boxed primitive type or an enum type, then arun-time error will occur if the expression
evaluates to nul | at run time. In the judgment of the designers of the Java programming
language, this is a better outcome than silently skipping the entire swi t ch statement or
choosing to execute the statements (if any) after the def aul t label (if any).

A Java compiler is encouraged (but not required) to provide a warning if a swi tch on
an enum-valued expression lacks adef aul t label and lacks case labels for one or more
of the enum type's constants. (Such a statement will silently do nothing if the expression
evaluates to one of the missing constants.)

In C and C++ the body of aswi t ch statement can be astatement and statementswith case
labelsdo not have to beimmediately contained by that statement. Consider the simpleloop:

for (i =0; i <n; ++i) foo();

where n is known to be positive. A trick known as Duff's device can be used in C or C++
to unrall the loop, but thisis not valid code in the Java programming language:

int q = (n+7)/8;
switch (n%8) {
case 0: do { foo(); /| Great C hack, Tom
case foo(); /1 but it's not valid here.
case foo();
case foo();
case foo();
case foo();
case foo();
case foo();
} while (--q > 0);

N

Ll S A

}

Fortunately, thistrick does not seem to bewidely known or used. Moreover, it isless needed
nowadays; this sort of code transformation is properly in the province of state-of-the-art
optimizing compilers.

When the swi t ch statement is executed, first the Expression is evaluated. If the
Expression evaluates to nul I , aNul | Poi nt er Except i on is thrown and the entire
swi t ch statement completes abruptly for that reason. Otherwise, if the result is of
areference type, it is subject to unboxing conversion (85.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the swi t ch statement completes abruptly for
the same reason.

14.11

361

14.11

382

The swi t ch Statement BLOCKS AND STATEMENTS

Otherwise, execution continues by comparing the val ue of the Expression with each
case constant, and thereis a choice:

* If one of the case constantsis equal to the value of the expression, then we say

that the case matches, and all statements after the matching case label in the
swi t ch block, if any, are executed in sequence.

If al these statements complete normally, or if there are no statements after the
matching case label, then the entire swi t ch statement completes normally.

* |f no case matches but there is a def aul t label, then all statements after the

matching def aul t label inthe swi t ch block, if any, are executed in sequence.

If al these statements complete normally, or if there are no statements after the
def aul t labdl, then the entire swi t ch statement completes normally.

* |f nocase matches and thereisno def aul t label, then no further action istaken

and the swi t ch statement completes normally.
If any statement immediately contained by the Block body of the swi t ch statement

completes abruptly, it is handled as follows:

« If execution of the Statement completes abruptly because of a br eak with no

label, no further action istaken and the swi t ch statement compl etes normally.

« |If execution of the Satement compl etes abruptly for any other reason, theswi t ch

statement compl etes abruptly for the same reason.

The case of abrupt completion because of abr eak with alabel ishandled by the general
rule for labeled statements (814.7).

Example 14.11-1. Fall-Through in the swi t ch Statement

Asin C and C++, execution of statementsin aswi t ch block "falls through labels.”
For example, the program:

class TooMany {
static void howvany(int k) {
switch (k) {
case 1: Systemout.print("one ");
case 2: Systemout.print("too ");
case 3: Systemout.println("many");
}
}
public static void main(String[] args) {
howMvany(3) ;
howivany(2) ;
howvany(1);

BLOCKS AND STATEMENTS The whi | e Satement 14.12

}

contains aswi t ch block in which the code for each case falls through into the code for
the next case. Asaresult, the program prints:

many
too many
one too many

If codeis not to fall through case to case in this manner, then br eak statements should
be used, asin this example:

class TwoMany {
static void howvany(int k) {
switch (k) {

case 1: Systemout.println("one");
break; // exit the switch

case 2: Systemout.println("twe");
break; // exit the switch

case 3: Systemout.println("many");
break; // not needed, but good style

}
}
public static void main(String[] args) {
howMvany(1);
howivany(2) ;
howvany(3) ;
}

}
This program prints:

one
two
many

14.12 Thewhi | e Statement

Thewhi | e statement executes an Expression and a Satement repeatedly until the
value of the Expressionisf al se.

WhileSatement:
whi | e (Expression) Satement

WhileSatementNoShortlf:
whi | e (Expression) SatementNoShortlf

383

14.12

384

The whi | e Statement BLOCKS AND STATEMENTS

The Expression must have type bool ean or Bool ean, Or a compile-time error
occurs.

A whi | e statement is executed by first evaluating the Expression. If the result is of
type Bool ean, it is subject to unboxing conversion (85.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the whi | e statement completes abruptly for
the same reason.

Otherwise, execution continues by making a choice based on the resulting value:

 |f the value istrue, then the contained Satement is executed. Then there is a
choice:

+ If execution of the Satement completes normally, then the entire while
statement is executed again, beginning by re-evaluating the Expression.

+ If execution of the Satement completes abruptly, see 814.12.1.
* If the (possibly unboxed) value of the Expressionisf al se, no further action is
taken and the whi | e statement completes normally.

If the (possibly unboxed) value of the Expressionisf al se thefirst timeitis evaluated,
then the Statement is not executed.

14.12.1 Abrupt Completion of whi | e Statement

Abrupt completion of the contained Satement is handled in the following manner:

« If execution of the Satement completes abruptly because of a br eak with no
label, no further action istaken and the whi | e statement completes normally.

* If execution of the Satement completes abruptly because of acont i nue with no
label, then the entire whi | e statement is executed again.

 If execution of the Statement completes abruptly because of a conti nue with
label L, then thereis achoice:
+ If thewhi | e statement haslabel L, then the entire whi | e statement is executed
again.
+ If the whi | e statement does not have label L, the whi | e statement completes
abruptly because of acont i nue with label L.

* If execution of the Statement completes abruptly for any other reason, thewhi | e
statement compl etes abruptly for the same reason.

BLOCKS AND STATEMENTS The do Satement 14.13

The case of abrupt completion because of abr eak with alabel ishandled by the general
rule for labeled statements (§14.7).

14.13 Thedo Statement

Thedo statement executes a Satement and an Expression repeatedly until thevalue
of the Expressionisf al se.

DoSatement:
do Statement whi | e (Expression) ;

The Expression must have type bool ean or Bool ean, Or a compile-time error
occurs.

A do statement is executed by first executing the Satement. Then thereisachoice:

» If execution of the Statement completes normally, then the Expression is
evaluated. If the result is of type Bool ean, it is subject to unboxing conversion
(85.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the do statement compl etes abruptly for the
same reason.

Otherwise, thereis a choice based on the resulting value:
* If thevalueist r ue, then the entire do statement is executed again.

+ If thevalueisf al se, no further action istaken and the do statement compl etes
normally.

« |If execution of the Satement completes abruptly, see §14.13.1.

Executing ado statement always executes the contained Statement at least once.

14.13.1 Abrupt Completion of do Statement
Abrupt completion of the contained Statement is handled in the following manner:

 If execution of the Statement completes abruptly because of a br eak with no
label, then no further action istaken and the do statement completes normally.

385

1413 The do Statement BLOCKS AND STATEMENTS

* If execution of the Statement completes abruptly because of a conti nue with
no label, then the Expression is evaluated. Then there is a choice based on the
resulting value:

+ If thevalueist r ue, then the entire do statement is executed again.

+ If thevalueisf al se, no further action istaken and the do statement completes
normally.

* If execution of the Statement completes abruptly because of a conti nue with
label L, then thereisachoice:

+ If the do statement has label L, then the Expression is evaluated. Then there
isachoice:

+ |f the value of the Expression is true, then the entire do statement is
executed again.

+ |f the value of the Expressionisf al se, no further action istaken and the do
statement completes normally.

+ If thedo statement does not have labdl L, the do statement completes abruptly
because of aconti nue with label L.

« If execution of the Satement completes abruptly for any other reason, the do
statement compl etes abruptly for the same reason.

The case of abrupt completion because of abr eak with alabel ishandled by the general
rule for labeled statements (§14.7).

Example 14.13-1. Thedo Statement

The following code is one possible implementation of the t oHex St ri ng method of class
I nteger:

public static String toHexString(int i) {
StringBuffer buf = new StringBuffer(8);
do {
buf . append(Character.forDigit(i & OxF, 16));
i >>>= 4;
} while (i = 0);
return buf.reverse().toString();

}

Because at least one digit must be generated, the do statement is an appropriate control
structure.

386

BLOCKS AND STATEMENTS Thefor Statement 14.14

14.14 Thefor Statement

Thef or statement has two forms;
e Thebasicfor statement.

* The enhanced f or statement

ForSatement:
BasicFor Satement
EnhancedFor Satement

14.14.1 Thebasicfor Statement

The basic for statement executes some initialization code, then executes an
Expression, a Satement, and some update code repeatedly until the value of the
Expressionisf al se.

BasicFor Statement:
for (Forlnityy ; EXpressiongy ; ForUpdatey,) Satement

For SatementNoShortlf:
for (Forlnityy ; Expressiong, ; ForUpdatey,) SatementNoShortlf

Forlnit:
SatementExpressionList
LocalVariableDeclaration

ForUpdate:
SatementExpressionList

SatementExpressionList:
SatementExpression
SatementExpressionList, SatementExpression

The Expression must have type bool ean or Bool ean, Or a compile-time error
occurs.

The scope and shadowing of alocal variable declared in the Forlnit part of abasic
for statement is specified in §6.3 and §6.4.

387

14.14

388

The f or Statement BLOCKS AND STATEMENTS

14.14.1.1 Initialization of f or Statement

A for statement is executed by first executing the ForInit code:

If the ForInit codeisalist of statement expressions (814.8), the expressions are
evaluated in sequence from left to right; their values, if any, are discarded.

If evaluation of any expression completes abruptly for some reason, the f or
statement completes abruptly for the same reason; any Forlnit statement
expressions to the right of the one that completed abruptly are not evaluated.

If the Forlnit code is alocal variable declaration, it is executed as if it were a
local variable declaration statement (814.4) appearing in a block.

If execution of the local variable declaration completes abruptly for any reason,
thef or statement completes abruptly for the same reason.

If the Forlnit part is not present, no action is taken.

14.14.1.2 lIteration of f or Satement

Next, af or iteration step is performed, as follows:

If the Expression is present, it is evaluated. If the result is of type Bool ean, itis
subject to unboxing conversion (85.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly, thef or statement completes abruptly for the same reason.

Otherwise, there isthen a choice based on the presence or absence of the Expression and
the resulting value if the Expression is present; see next bullet.

If the Expression is not present, or it is present and the value resulting from

its evaluation (including any possible unboxing) is t rue, then the contained
Satement is executed. Then thereis a choice:

+ If execution of the Satement completes normally, then the foll owing two steps
are performed in sequence:

1. Firdt, if the ForUpdate part is present, the expressions are evaluated
in sequence from left to right; their values, if any, are discarded. If
evaluation of any expression completes abruptly for some reason, the
for statement completes abruptly for the same reason; any ForUpdate
statement expressions to the right of the one that completed abruptly are
not evaluated.

If the ForUpdate part is not present, no action is taken.

BLOCKS AND STATEMENTS The f or Statement

2. Second, another f or iteration step is performed.
* If execution of the Satement completes abruptly, see 814.14.1.3.

* If the Expression is present and the value resulting from its evaluation (including
any possible unboxing) isf al se, no further actionistaken andthef or statement
completes normally.

If the (possibly unboxed) value of the Expressionisf al se thefirst timeit is evaluated,
then the Statement is not executed.

If the Expression is not present, then the only way af or statement can complete
normally is by use of abr eak statement.

14.14.1.3 Abrupt Completion of f or Statement
Abrupt completion of the contained Satement is handled in the following manner:

 |f execution of the Statement completes abruptly because of a br eak with no
label, no further action istaken and thef or statement completes normally.

* If execution of the Satement completes abruptly because of acont i nue with no
label, then the following two steps are performed in sequence:

1. First, if the ForUpdate part is present, the expressions are evaluated in
sequence from left to right; their values, if any, are discarded.

If the ForUpdate part is not present, no action is taken.
2. Second, another f or iteration step is performed.

* If execution of the Statement completes abruptly because of a conti nue with
label L, then thereis achoice:

+ If the for statement has label L, then the following two steps are performed
in sequence:

1. Firdt, if the ForUpdate part is present, the expressions are evaluated in
sequence from left to right; their values, if any, are discarded.

If the ForUpdate is not present, no action is taken.
2. Second, another f or iteration step is performed.

+ If the for statement does not have label L, the for statement completes
abruptly because of acont i nue with label L.

« |If execution of the Statement completes abruptly for any other reason, the f or
statement compl etes abruptly for the same reason.

14.14

389

1414 Thefor Satement BLOCKS AND STATEMENTS

Note that the case of abrupt completion because of abr eak with alabel is handled by
the general rule for labeled statements (§14.7).

14.14.2 Theenhanced f or statement

The enhanced f or statement has the form:
EnhancedFor Satement:

for (FormalParameter : Expression) Satement
The following is repeated from §8.4.1 and §8.3 to make the presentation here clearer:

Formal Parameter:
VariableModifiersyy Type VariableDeclaratorld

VariableDeclarator|d:
I dentifier
VariableDeclaratorld []

Thetypeof the Expressionmust bel t er abl e or anarray type (810.1), or acompile-
time error occurs.

The scope and shadowing of alocal variable declared in the Formal Parameter part
of an enhanced f or statement is specified in 86.3 and §6.4.

The meaning of the enhanced f or statement isgiven by trandation into abasicf or
statement, as follows;

* If the type of Expression is a subtype of 1t erabl e, then the trandation is as
follows.

If the type of Expression is a subtype of | t er abl e<x> for some type argument
X, then let | be the typejava. util.|terator <x>; otherwise, let | be the raw
typejava. util.lterator.

The enhanced f or statement is equivalent to abasic f or statement of the form:

for (I #i = Expression.iterator(); #i.hasNext();) {
Var i abl eModi fi ersqpe Target Type ldentifier =
(Target Type) #i.next();
St at enent

390

BLOCKS AND STATEMENTS The f or Statement

#i is an automatically generated identifier that is distinct from any other
identifiers (automatically generated or otherwise) that are in scope (86.3) at the
point where the enhanced f or statement occurs.

If Type (in the FormalParameter production) is a reference type, then
TargetType is Type; otherwise, TargetType is the upper bound of the capture
conversion of the type argument of I, or vj ect if I israw.

Li st<? extends Integer> 1 = ...
for (float i : I) ...

will be trandated to:

for (lterator<integer> #i = |.iterator(); #i.hasNext();) {
float #i0 = (Integer)#i.next();

» Otherwise, the Expression necessarily has an array type, T[] .

LetL; ... Ly be the (possibly empty) sequence of labels immediately preceding
the enhanced f or statement.

The enhanced f or statement is equivalent to abasic f or statement of the form:

T[] #a = Expression;

Li: Lot ... Lm

for (int #i = 0; #i < #a.length; #i++) {
Vari abl eModi fiersope Target Type ldentifier = #a[#i],;
St at ement

}

#a and #i are automatically generated identifiersthat are distinct from any other
identifiers (automatically generated or otherwise) that are in scope at the point
where the enhanced f or statement occurs.

TargetType is the type of the loop variable as denoted by the Type that appears
in the Formal Parameter followed by any bracket pairs that follow the Identifier
in the Formal Parameter (810.2).

Example 14.14-1. Enhanced-f or And Arrays

The following program, which calcul ates the sum of an integer array, shows how enhanced
f or worksfor arrays:

int sun(int[] a) {
int sum= 0;
for (int i : a) sum+=1i;
return sum

14.14

391

1415 The br eak Statement BLOCKS AND STATEMENTS

Example 14.14-2. Enhanced-f or And Unboxing Conversion

The following program combines the enhanced f or statement with auto-unboxing to
trandate a histogram into a frequency table:

Map<String, |nteger> histogram= ...;
double total = O;

for (int i : histogramvalues())
total +=1i;

for (Map. Entry<String, Integer> e : histogramentrySet())
Systemout.println(e.getKey() + " " + e.getValue() / total);

}

14.15 Thebreak Statement

A br eak statement transfers control out of an enclosing statement.

BreakSatement:
break ldentifierqp ;

A break statement with no label attempts to transfer control to the innermost
enclosing switch, while, do, or for statement of the immediately enclosing
method or initiaizer; this statement, which is caled the break target, then
immediately completes normally.

To be precise, a break statement with no label always completes abruptly, the
reason being abr eak with no label.

If no switch, while, do, Or for statement in the immediately enclosing method,
constructor, or initializer contains the break statement, a compile-time error
occurs.

A br eak statement with label Identifier attemptsto transfer control to the enclosing
labeled statement (814.7) that has the same Identifier as its label; this statement,
whichiscalled the break target, then immediately completesnormally. Inthiscase,
the break target need not be aswi t ch, whi | e, do, Or f or Statement.

To be precise, abr eak statement with label Identifier always completes abruptly,
the reason being abr eak with label Identifier.

A br eak statement must refer to alabel within theimmediately enclosing method,
constructor, or initializer. There are no non-local jumps. If no labeled statement

392

BLOCKS AND STATEMENTS The break Statement 14.15

with ldentifier as its label in the immediately enclosing method, constructor, or
initializer contains the br eak statement, a compile-time error occurs.

It can be seen, then, that abr eak statement always completes abruptly.

The preceding descriptions say "attempts to transfer control” rather than just "transfers
control" becauseif thereareany t r y statements (814.20) within the break target whoset ry
blocks or cat ch clauses contain the br eak statement, then any f i nal | y clauses of those
t ry statements are executed, in order, innermost to outermost, before control istransferred
to the break target. Abrupt completion of afinal | y clause can disrupt the transfer of
control initiated by abr eak statement.

Example 14.15-1. Thebr eak Statement

In the following example, a mathematical graph is represented by an array of arrays. A
graph consists of a set of nodes and a set of edges; each edge is an arrow that points from
some node to some other node, or from a node to itself. In this example it is assumed that
there are no redundant edges; that is, for any two nodes P and Q, where Q may be the same
asP, thereis at most one edge fromPto Q

Nodes are represented by integers, and there is an edge from node i to node edges[i]
[j] for every i andj for which the array reference edges[i][j] does not throw an
Arrayl ndexCQut Of BoundsExcept i on.

Thetask of the method | oseEdges, given integersi andj , isto construct anew graph by
copying a given graph but omitting the edge from node i to nodej , if any, and the edge
fromnodej tonodei , if any:

class Graph {
int edges[][];
public Graph(int[][] edges) { this.edges = edges; }

public Graph | oseEdges(int i, int j) {
int n = edges.|ength;
int[][] newedges = new int[n][];
for (int k =0; k <n; ++k) {

edgel i st:
{
int z;
sear ch:
{
if (k ==1) {
for (z = 0; z < edges[k].length; ++z) {

if (edges[k][z] == j) break search;

}
} elseif (k ==j) {
for (z = 0; z < edges[k].length; ++z) {
if (edges[k][z] == i) break search;
}

393

1416 Thecontinue Statement BLOCKS AND STATEMENTS

/1 No edge to be deleted; share this list.
newedges[k] = edges[k];
break edgeli st;

} //search

/1 Copy the list, onmtting the edge at position z.
int m= edges[k].length - 1;
int ne[] = newint[ni;
System arraycopy(edges[k], 0, ne, 0, z);
System arraycopy(edges[k], z+1, ne, z, mz);
newedges[k] = ne;
} //edgelist
}

return new G aph(newedges);
}

Note the use of two statement labels, edgel i st and search, and the use of break
statements. This allows the code that copies alist, omitting one edge, to be shared between
two separate tests, the test for an edge from nodei to nodej , and the test for an edge from
nodej tonodei .

14.16 Theconti nue Statement

A cont i nue statement may occur only in awhi | e, do, or f or Statement; statements
of these three kinds are called iteration statements. Control passes to the loop-
continuation point of an iteration statement.

ContinueStatement:
cont i nue ldentifierqgy ;

A conti nue statement with no label attempts to transfer control to the innermost
enclosing whi I e, do, or for statement of the immediately enclosing method,
constructor, or initializer; this statement, which is called the continue target, then
immediately ends the current iteration and begins a new one.

To be precise, such aconti nue statement always completes abruptly, the reason
being acont i nue with no label.

If nowhi | e, do, or f or statement of theimmediately enclosing method, constructor,
or initializer contains the cont i nue statement, a compile-time error occurs.

A continue statement with label Identifier attempts to transfer control to the
enclosing labeled statement (814.7) that has the same Identifier as its label; that
statement, which is called the continue target, then immediately ends the current
iteration and begins a new one.

394

BLOCKS AND STATEMENTS The cont i nue Statement

To be precise, a continue statement with label Identifier always completes
abruptly, the reason being acont i nue with label Identifier.

The continue target must be awhi | e, do, or f or statement, or acompile-time error
occurs.

A continue statement must refer to a label within the immediately enclosing
method, constructor, or initializer. There are no non-local jumps. If no labeled
statement with Identifier as its label in the immediately enclosing method,
constructor, or initializer contains the cont i nue statement, a compile-time error
OCCUrsS.

It can be seen, then, that acont i nue statement always completes abruptly.

See the descriptions of the whi | e statement (§814.12), do statement (814.13), and f or
statement (814.14) for a discussion of the handling of abrupt termination because of
conti nue.

The preceding descriptions say "attempts to transfer control” rather than just "transfers
control" becauseif thereare any t r y statements (814.20) within the continue target whose
try blocksor cat ch clauses contain the cont i nue statement, then any fi nal | y clauses
of those t ry statements are executed, in order, innermost to outermost, before control is
transferred to the continue target. Abrupt completion of afi nal | y clause can disrupt the
transfer of control initiated by acont i nue statement.

Example 14.16-1. Thecont i nue Statement

In the Gr aph class in §14.15, one of the br eak statements is used to finish execution of
the entire body of the outermost f or loop. This break can be replaced by acont i nue if
thef or loop itself islabeled:

class Graph {
int edges[][];
public Gaph(int[][] edges) { this.edges = edges; }

public Graph | oseEdges(int i, int j) {
int n = edges.|ength;
int[][] newedges = new int[n][];

edgel i sts:
for (int k =0; k <n; ++k) {
int z;
search:
{
if (k==1i) {
for (z = 0; z < edges[k].length; ++z) {

if (edges[k][z] == j) break search;

}
} elseif (k ==j) {
for (z = 0; z < edges[k].length; ++z) {
if (edges[k][z] == i) break search;

14.16

395

14.17

396

The r et ur n Statement BLOCKS AND STATEMENTS

}

/1 No edge to be deleted; share this list.
newedges[k] = edges[k];
conti nue edgelists;

} //search

/1 Copy the list, onmtting the edge at position z.
int m= edges[k].length - 1;
int ne[] = newint[ni;
System arraycopy(edges[k], 0, ne, 0, z);
System arraycopy(edges[k], z+1, ne, z, mz);
newedges[k] = ne;

} //edgelists

return new G aph(newedges);

}

Which to use, if either, islargely a matter of programming style.

14.17 Thereturn Statement

A return Sstatement returns control to the invoker of a method (88.4, §15.12) or
constructor (88.8, §15.9).

ReturnSatement:
ret urn EXpressiongp ;

A r et ur n Statement is contained in theinnermost constructor, method, or initializer
whose body enclosesther et ur n statement.

Itisacompile-timeerror if ar et ur n statement iscontained in aninstanceinitializer
or astatic initializer (88.6, §8.7).

A return statement with no Expression must be contained in a method that is
declared, using the keyword voi d, not to return any value (88.4), or in aconstructor
(88.8), or acompile-time error occurs.

A r et ur n statement with no Expression attempts to transfer control to the invoker
of the method or constructor that containsit. To beprecise, ar et ur n statement with
no Expression always completes abruptly, the reason being a return with no value.

A ret ur n statement with an Expression must be contained in amethod declaration
that is declared to return avalue (88.4), or a compile-time error occurs.

BLOCKS AND STATEMENTS The t hr ow Statement

The Expression must denote a variable or value of sometype T, or acompile-time
error occurs.

The type T must be assignable (85.2) to the declared result type of the method, or
a compile-time error occurs.

A ret ur n statement with an Expression attemptsto transfer control to the invoker
of the method that contains it; the value of the Expression becomes the value of
the method invocation. More precisely, execution of such ar et ur n statement first
evaluates the Expression. If the evaluation of the Expression completes abruptly
for some reason, then the r et ur n statement completes abruptly for that reason. If
evaluation of the Expression completes normally, producing a value v, then the
r et ur n Statement completes abruptly, the reason being a return with value v.

If the expression is of type f1 oat and is not FP-strict (815.4), then the value may
be an element of either the float value set or the float-extended-exponent value set
(84.2.3). If the expression is of type doubl e and is not FP-strict, then the value
may be an element of either the double value set or the doubl e-extended-exponent
value set.

It can be seen, then, that ar et ur n statement always completes abruptly.

The preceding descriptions say "attempts to transfer control” rather than just "transfers
control" because if thereareany t r y statements (814.20) within the method or constructor
whose try blocks or cat ch clauses contain the r et ur n statement, then any final I y
clauses of thoset r y statementswill be executed, in order, innermost to outermost, before
control is transferred to the invoker of the method or constructor. Abrupt completion of a
final |y clause can disrupt the transfer of control initiated by ar et ur n statement.

14.18 Thet hr ow Statement

A throw Statement causes an exception (811) to be thrown. The result is an
immediate transfer of control (811.3) that may exit multiple statements and
multiple constructor, instance initializer, static initializer and field initializer
evaluations, and method invocations until atry statement (814.20) is found that
catches the thrown value. If no such t ry statement is found, then execution of the
thread (817) that executed the t hr owis terminated (811.3) after invocation of the
uncaught Except i on method for the thread group to which the thread belongs.

ThrowStatement:
t hr ow Expression ;

14.18

397

14.18

398

The t hr ow Statement BLOCKS AND STATEMENTS

The Expression in at hr ow statement must denote either 1) a variable or value of
areference type which is assignable (85.2) to the type Thr owabl e, or 2) the null
reference, or a compile-time error occurs.

The reference type of the Expression will always be a class type (since no interface types
are assignable to Thr owabl e) which is not parameterized (since a subclass of Thr owabl e
cannot be generic (88.1.2)).

At least one of the following three conditions must be true, or acompile-time error
occurs:

» Thetype of the Expression is an unchecked exception class (811.1.1) or the null
type (84.1).

* Thet hrow statement is contained in the t ry block of atry statement (814.20)
and it is not the case that the t ry statement can throw an exception of the type
of the Expression. (In this case we say the thrown value is caught by the try
statement.)

* Thet hr ow statement is contained in a method or constructor declaration and the
type of the Expressionisassignable (85.2) to at least onetypelisted inthet hr ows
clause (88.4.6, 88.8.5) of the declaration.

The exception typesthat at hr ow statement can throw are specified in 811.2.2.
A t hr ow statement first evaluates the Expression. Then:

* If evaluation of the Expression completes abruptly for some reason, then the
t hr ow completes abruptly for that reason.

* If evaluation of the Expression completes normally, producing anon-nul | value
V, then the t hr ow statement completes abruptly, the reason being at hr ow with
value V.

« |If evaluation of the Expression completesnormally, producing anul | value, then
aninstanceV of classNul | Poi nt er Except i on is created and thrown instead of
nul | . The t hr ow statement then completes abruptly, the reason being at hr ow
withvaluev .

It can be seen, then, that at hr ow statement always completes abruptly.

If there are any enclosing t ry statements (814.20) whose t ry blocks contain the
t hr ow Statement, then any fi nal | y clauses of thoset ry statements are executed
as control istransferred outward, until the thrown valueis caught. Note that abrupt
completion of afinal Iy clause can disrupt the transfer of control initiated by a
t hr ow Statement.

BLOCKS AND STATEMENTS The synchr oni zed Satement

If at hr owstatement is contained in amethod declaration, but itsvalueis not caught
by somet ry statement that containsit, then theinvocation of the method completes
abruptly because of thet hr ow.

If at hr ow statement is contained in a constructor declaration, but its value is not
caught by some try statement that contains it, then the class instance creation
expression that invoked the constructor will complete abruptly because of the
t hr ow (815.9.4).

If at hr ow Statement is contained in a static initializer (88.7), then a compile-time
check (811.2.3) ensures that either its value is always an unchecked exception or
its value is dways caught by some try statement that contains it. If at run time,
despite this check, the value is not caught by somet ry statement that contains the
t hr ow Sstatement, then thevalueisrethrown if it isan instance of classEr r or or one
of its subclasses; otherwise, it is wrapped in an ExceptionlnlnitializerError
object, which is then thrown (812.4.2).

If at hr ow statement is contained in an instance initializer (88.6), then a compile-
time check (811.2.3) ensuresthat either its value is always an unchecked exception
or its value is aways caught by some t ry statement that contains it, or the type
of the thrown exception (or one of its superclasses) occursin thet hr ows clause of
every constructor of the class.

By convention, user-declared throwable types should usually be declared to be subclasses
of class Except i on, whichisasubclass of class Thr owabl e (§811.1.1).

14.19 Thesynchroni zed Statement

A synchroni zed statement acquires a mutual-exclusion lock (817.1) on behalf of
the executing thread, executes a block, then releases the lock. While the executing
thread owns the lock, no other thread may acquire the lock.

SynchronizedSatement:
synchroni zed (Expression) Block

The type of Expression must be areference type, or a compile-time error occurs.
A synchroni zed statement is executed by first evaluating the Expression. Then:

* If evaluation of the Expression completes abruptly for some reason, then the
synchr oni zed statement compl etes abruptly for the same reason.

14.19

399

1419 Thesynchroni zed Satement BLOCKS AND STATEMENTS

» Otherwise, if the value of the Expression isnul |, aNul | Poi nt er Excepti on iS
thrown.

» Otherwise, let the non-nul I value of the Expression be v. The executing thread
locks the monitor associated with v. Then the Block is executed, and then there
isachoice:

* If execution of the Block completes normally, then the monitor is unlocked
and the synchr oni zed statement completes normally.

+ If execution of the Block completes abruptly for any reason, then the monitor
isunlocked and the synchr oni zed statement compl etes abruptly for the same
reason.

The locks acquired by synchroni zed statements are the same as the locks that
are acquired implicitly by synchr oni zed methods (88.4.3.6). A single thread may
acquire alock more than once.

Acquiring the lock associated with an object doesnot initself prevent other threads
from accessing fields of the object or invoking un-synchr oni zed methods on the
object. Other threads can also use synchr oni zed methods or the synchr oni zed
statement in a conventional manner to achieve mutual exclusion.

Example 14.19-1. The synchr oni zed Statement

class Test {
public static void main(String[] args) {
Test t = new Test();
synchroni zed(t) {
synchroni zed(t) {
Systemout.println("made it!");

}

}

This program produces the outpult:
made it!

Note that this program would deadlock if a single thread were not permitted to lock a
monitor more than once.

400

BLOCKS AND STATEMENTS Thetry statement 14.20

1420 Thetry statement

A try statement executes a block. If avalue isthrown and thet ry statement has
one or more cat ch clauses that can catch it, then control will be transferred to the
first such cat ch clause. If thetry statement has afi nal | y clause, then another
block of code is executed, no matter whether thet ry block completes normally or
abruptly, and no matter whether acat ch clause isfirst given control.

TryStatement:
try Block Catches
try Block Catchesyy Finally
TryWithResour cesStatement

Catches:
CatchClause
Catches CatchClause

CatchClause:
cat ch (CatchFormalParameter) Block

CatchFormal Parameter:
VariableModifiersyy: CatchType VariableDeclaratorld

CatchType:
ClassType
ClassType| CatchType

Finally:
final |y Block

The Block immediately after the keyword try is called thetry block of thetry
statement.

The Block immediately after the keyword fi nal | y iscalled thefi nal | y block of
thetry statement.

A try statement may have cat ch clauses, also called exception handlers.
A cat ch clause has exactly one parameter, which is called an exception parameter.
The scope and shadowing of an exception parameter is specified in §86.3 and §6.4.

401

14.20

402

Thetry statement BLOCKS AND STATEMENTS

An exception parameter may denote itstype as either asingle classtype or aunion
of two or more class types (called alternatives). The alternatives of a union are
syntactically separated by | .

A cat ch clause whose exception parameter is denoted as a single class type is
caled a uni-cat ch clause.

A cat ch clause whose exception parameter is denoted as a union of typesiscalled
amulti-cat ch clause.

Each class type used in the denotation of the type of an exception parameter must
bethe class Thr owabl e or asubclass of Thr owabl e, or acompile-time error occurs.

It isacompile-time error if atype variable is used in the denotation of the type of
an exception parameter.

It isacompile-time error if aunion of types contains two alternatives b and Dy (i
*J) where D isasubtype of O (84.10.2).

Thedeclared type of an exception parameter that denotesitstypewith asingle class
typeisthat classtype.

The declared type of an exception parameter that denotes its type as a union with
aternativesD; | Dy | ...| D,islub(Dy, Dy, ..., Dy) (815.12.2.7).

An exception parameter of a multi-cat ch clause isimplicitly declared fi nal if it
isnot explicitly declared i nal .

It is a compile-time error if an exception parameter that is implicitly or explicitly
declared fi nal isassigned to within the body of the cat ch clause.

Inauni-cat ch clause, an exception parameter that isnot declared f i nal (implicitly
or explicitly) is considered effectively final if it never occurswithin its scope asthe
left-hand operand of an assignment operator (815.26).

An implicitly final exception parameter is fi nal by virtue of its declaration, while an
effectively final exception parameter is (asit were) f i nal by virtue of how it isused. An
exception parameter of amulti-cat ch clause isimplicitly final, so will never occur as the
left-hand operand of an assignment operator, but it is not considered effectively final.

If an exception parameter is effectively final (in auni-cat ch clause) or implicitly fina (in
amulti-cat ch clause), then adding an explicit f i nal modifier to its declaration will not
introduce any compile-time errors. However, if the exception parameter of a uni-cat ch
clause is explicitly declared fi nal , then removing the fi nal modifier may introduce
compile-time errors. This is because the exception parameter, while still effectively final,
can no longer be referenced by, for example, local classes. On the other hand, if there are
no compile-time errors, it is possible to further change the program so that the exception
parameter is re-assigned and no longer effectively final.

BLOCKS AND STATEMENTS The try statement

The exception typesthat at ry statement can throw are specified in §11.2.2.

The relationship of the exceptionsthrown by thet ry block of atry statement and
caught by the cat ch clauses (if any) of thet ry statement is specified in 811.2.3.

Exception handlers are considered in left-to-right order: the earliest possiblecat ch
clause acceptsthe exception, receiving asits argument the thrown exception object,
as specified in 811.3.

A multi-cat ch clause can be thought of as a sequence of uni-cat ch clauses. That is,
a cat ch clause whose exception parameter type is denoted as a union Dy| Dy| ...| Dy iS
equivaent to a sequence of n cat ch clauses whose exception parameters have class types
D1, Dy, ..., Dy, respectively. For example, the following code:

try {
. throws ReflectiveOperationException ...
}
catch (C assNot FoundException | |11 egal AccessException ex) {
body ...
}

is semantically equivalent to the following code:

try {
. throws ReflectiveOperationException ...
} catch (final O assNot FoundException ex1) {
body ...
} catch (final Il egal AccessException ex2) {
body ...
}

whereby the multi-cat ch clause with two aternatives has been trandated into two
separate cat ch clauses, one for each alternative. A Java compiler is neither required nor
recommended to compile a multi-cat ch clause by duplicating code in this manner, since
it is possible to represent the multi-cat ch clausein acl ass file without duplication.

A finally clause ensures that thefi nal | y block is executed after thet ry block
and any cat ch block that might be executed, no matter how control leavesthetry
block or cat ch block. Handling of thef i nal I y block israther complex, so the two
casesof at ry statement with and without af i nal | y block are described separately
(814.20.1, 814.20.2).

A try statement is permitted to omit cat ch clausesand afinal | y clauseif itisa
t r y-with-resour ces statement (814.20.3).

14.20

403

1420 Thetry statement BLOCKS AND STATEMENTS

14.20.1 Execution of try-cat ch

A try statement without afinal I y block is executed by first executing thetry
block. Then thereis achoice:

« |If execution of thet ry block completes normally, then no further action istaken
and thet ry statement completes normally.

* If execution of thetry block completes abruptly because of at hr ow of avalue
Vv, then thereis a choice:

* If the run-time type of Vv is assignment compatible with (85.2) a catchable
exception class of any catch clause of the try statement, then the first
(leftmost) such cat ch clause is selected. The value Vv is assigned to the
parameter of the selected cat ch clause, and the Block of that cat ch clauseis
executed, and then thereis a choice:

= If that block completes normally, then the try statement completes
normally.

+ |f that block completes abruptly for any reason, then the try statement
completes abruptly for the same reason.

+ If the run-time type of v is not assgnment compatible with a catchable
exception class of any catch clause of the try statement, then the try
statement completes abruptly because of at hr ow of the value v.

« If execution of thet ry block completes abruptly for any other reason, then the
t ry statement completes abruptly for the same reason.

Example 14.20.1-1. Catching An Exception

class Blewt extends Exception {
Blewmt() { }
Blewmt(String s) { super(s); }
}
class Test {
static void blowJp() throws Blemt { throw new Blemt(); }

public static void main(String[] args) {
try {
bl owlp() ;
} catch (RuntinmeException r) {
System out. println("Caught RuntimeException");
} catch (Blewt b) {
Systemout. println("Caught Blewmt");

}

404

BLOCKS AND STATEMENTS The try statement

Here, the exception Bl ew t isthrown by the method bl owUp. Thet ry- cat ch statement
in the body of mai n hastwo cat ch clauses. The run-time type of the exception isBl ewl t
which is not assignable to a variable of type Runt i neExcept i on, but is assignable to a
variable of type Bl ewl t , so the output of the exampleis:

Caught Blewt

14.20.2 Execution of try-finally andtry-catch-finally

A try statement with af i nal | y block isexecuted by first executing thet ry block.
Then thereis achoice:

* If execution of the try block completes normally, then the final Iy block is
executed, and then there is a choice:

+ If thefinal Iy block completes normally, then the t ry statement completes
normally.

+ If thefinal Iy block completes abruptly for reason s, then thet ry statement
completes abruptly for reason s.

« If execution of thetry block completes abruptly because of at hr ow of avalue
Vv, then thereis a choice:

+ If the run-time type of Vv is assignment compatible with a catchable exception
class of any cat ch clause of thet ry statement, then the first (Ieftmost) such
catch clause is selected. The value Vv is assigned to the parameter of the
selected cat ch clause, and the Block of that cat ch clause is executed. Then
thereisachoice:

= If the cat ch block completes normally, then thef i nal I y block is executed.
Then thereis a choice:

+ If the finally block completes normally, then the try statement
completes normally.

+ If the final Iy block completes abruptly for any reason, then the try
statement compl etes abruptly for the same reason.

= If thecat ch block completes abruptly for reason R, then thef i nal 1 y block
is executed. Then thereisachoice:

+ If the finally block completes normally, then the try statement
completes abruptly for reason R.

+ If the finally block completes abruptly for reason s, then the try
statement compl etes abruptly for reason s (and reason R is discarded).

14.20

405

1420 Thetry statement BLOCKS AND STATEMENTS

+ If the run-time type of v is not assgnment compatible with a catchable
exception class of any cat ch clause of thetry statement, then thefinal Iy
block is executed. Then thereis achoice:

= If thefi nal | y block completes normally, thenthet ry statement completes
abruptly because of at hr ow of the value v.

+ |f thefi nal | y block completesabruptly for reason s, thenthet r y statement
completes abruptly for reason s (and the t hr ow of value Vv is discarded and

forgotten).

* If execution of thet ry block completes abruptly for any other reason R, then the
final |y block is executed, and then there is a choice:

+ If thefinal Iy block completes normally, then the t ry statement completes
abruptly for reason R.

+ If thefinal Iy block completes abruptly for reason s, then thet ry statement
completes abruptly for reason s (and reason R is discarded).

Example 14.20.2-1. Handling An Uncaught Exception With final Iy

class Blewt extends Exception {
Blewmt() { }
Blewt(String s) { super(s); }
}
class Test {
static void blowp() throws Blewt {
t hrow new Nul | Poi nt er Exception();
}
public static void main(String[] args) {
try {
bl owlp() ;
} catch (Blewt b) {
Systemout. println("Caught Blewmt");

} finally {
System out. printl n("Uncaught Exception");
}

}

This program produces the outpult:

Uncaught Exception
Exception in thread "nmin" java.lang. Nul | Poi nt er Exception

at Test.bl owmJp(Test.java: 7)
at Test.nmin(Test.java: 11)

The Nul | Poi nter Exception (which is a kind of RuntinmeException) that is
thrown by method bl owp is not caught by the try statement in mai n, because a

406

BLOCKS AND STATEMENTS Thetry statement 14.20

Nul | Poi nt er Except i on isnot assignable to avariable of type Bl ew t . This causes the
final | y clauseto execute, after which thethread executing mai n, whichisthe only thread
of thetest program, terminates because of an uncaught exception, which typically resultsin
printing the exception name and a simple backtrace. However, a backtrace is not required
by this specification.

The problem with mandating a backtrace is that an exception can be created at one point in
the program and thrown at alater one. It is prohibitively expensive to store a stack tracein
an exception unless it is actually thrown (in which case the trace may be generated while
unwinding the stack). Hence we do not mandate a back trace in every exception.

14.20.3 try-with-resources

A try-with-resources statement is parameterized with variables (known as
resources) that are initialized before execution of the try block and closed
automatically, inthereverse order from which they wereinitialized, after execution
of thet ry block. cat ch clausesand afi nal | y clause are often unnecessary when
resources are closed automatically.

TryWithResour cesStatement:
t ry ResourceSpecification Block Catchesop: Finallyopt

ResourceSpecification:
(Resources; opt)

Resour ces:
Resource
Resource; Resources

Resource:
VariableModifiersyy Type VariableDeclaratorld = Expression

A ResourceSpecification declares one or more local variables with initializer
expressions to act as resources for thet ry statement.

A resource declared in a ResourceSpecification is implicitly declared fi nal
(84.12.4) if itis not explicitly declared f i nal .

The type of a variable declared in a ResourceSpecification must be a subtype of
Aut od oseabl e, or acompile-time error occurs.

The scope and shadowing of a variable declared in a ResourceSpecification is
specified in §6.3 and §6.4.

407

14.20

408

Thetry statement BLOCKS AND STATEMENTS

Itisacompile-time error for a ResourceSpecification to declare two variableswith
the same name.

Resourcesareinitialized inleft-to-right order. If aresourcefailstoinitiaize (thatis,
itsinitializer expression throwsan exception), then all resourcesinitialized sofar by
thet r y-with-resources statement are closed. If all resourcesinitialize successfully,
thetry block executes as normal and then all non-null resources of thet r y-with-
resources statement are closed.

Resources are closed in the reverse order from that in which they wereinitiaized.
A resource is closed only if it initialized to a non-null value. An exception from
the closing of one resource does not prevent the closing of other resources. Such
an exception is suppressed if an exception was thrown previously by an initializer,
thet ry block, or the closing of aresource.

A t ry-with-resources statement with a Resour ceSpecification clause that declares
multiple resourcesis treated as if it were multiple t r y-with-resources statements,
each of which has a Resour ceSpecification clause that declares a single Resource.
When a try-with-resources statement with n Resources (n > 1) is trandated,
the result is a t ry-with-resources statement with n-1 Resources. After n such
trandations, there are n nested try-cat ch-final | y statements, and the overall
tranglation is compl ete.

14.20.3.1 Basictry-with-resources

A t ry-with-resources statement with no cat ch clausesor fi nal | y clauseis called
abasic t r y-with-resources statement.

The meaning of abasic t r y-with-resources statement:

try (VariableMdifierso, R Identifier = Expression ...)
Bl ock

isgiven by thefollowing trandationtoalocal variabledeclarationand at r y-cat ch-
final | y statement:

BLOCKS AND STATEMENTS Thetry statement
{
final VariableMdifiers mnus_final R ldentifier = Expression;
Thr owabl e #primaryExc = nul | ;
try ResourceSpecification_tail
Bl ock
catch (Throwabl e #t) {
#pri maryExc = #t;
t hrow #t ;
} finally {
if (ldentifier !'=null) {
if (#primaryExc !'= null) {
try {
Identifier.close();
} catch (Throwabl e #suppressedExc) {
#pri mar yExc. addSuppr essed(#suppr essedExc) ;
} else {
ldentifier.close();
}
}
}
}

VariableModifiersyy_minus_final is defined as VariableModifiersyy without
final,if present.

#t, #pri mar yExc, and#suppr essedExc areautomatically generated identifiersthat
are distinct from any other identifiers (automatically generated or otherwise) that
are in scope at the point where the t r y-with-resources statement occurs.

If the ResourceSpecification declares one resource, then
Resourcepecification_tail isempty (and thetry-cat ch-fi nal | y statement is not
itself at r y-with-resources statement).

If the ResourceSpecification declasles n > 1 resources, then
ResourceSpecification _tail consists of the 2nd, 3rd, ..., n'th resources declared in
ResourceSpecification, in the same order (and the t ry-cat ch-fi nal | y statement
isitself at ry-with-resources statement).

Reachability and definite assignment rules for the basic try-with-resources
statement are implicitly specified by the trandation above.

Inabasict ry-with-resources statement that manages a single resource:

« If theinitialization of the resource completes abruptly because of at hr ow of a
value v, then the t r y-with-resources statement completes abruptly because of a
t hr ow of the value v.

14.20

409

1420 Thetry statement BLOCKS AND STATEMENTS

 If the initidization of the resource completes normally, and the try block
completes abruptly because of at hr ow of avaluev, then:

+ If theautomatic closing of the resource completesnormally, thenthet r y-with-
resources statement compl etes abruptly because of at hr ow of the value v.

+ If the automatic closing of the resource completes abruptly because of a
t hr owof avalue vz, thenthet r y-with-resources statement compl etes abruptly
because of at hr ow of value v with v2 added to the suppressed exception list
of V.

 If the initidization of the resource completes normally, and the try block
completes normally, and the automatic closing of the resource completes
abruptly because of at hr ow of avalue v, then thet r y-with-resources statement
completes abruptly because of at hr ow of the value v.

Inabasict ry-with-resources statement that manages multiple resources:

« If the initialization of a resource completes abruptly because of at hrow of a
valuev, then:

+ If the automatic closings of all successfully initialized resources (possibly
zero) complete normally, then the t r y-with-resources statement completes
abruptly because of at hr owof thevaluev.

+ If the automatic closings of all successfully initialized resources (possibly
zero) complete abruptly because of t hr ows of values vi...vn, then the try-
with-resources statement compl etes abruptly because of at hr owof thevaluev
with any remaining values Vv1...vn added to the suppressed exception list of V.

 If the initialization of al resources completes normally, and the try block
completes abruptly because of at hr ow of avaluev, then:

+ If the automatic closings of all initialized resources complete normally, then
the t r y-with-resources statement completes abruptly because of at hr ow of
thevaluev.

+ If theautomatic closings of one or moreinitialized resources complete abruptly
because of t hr ows of values vi...vn, then the t r y-with-resources statement
completes abruptly because of at hrow of the value v with any remaining
values V1...vn added to the suppressed exception list of v.

 If the initialization of every resource completes normally, and the t ry block
completes normally, then:

+ If oneautomatic closing of an initialized resource completes abruptly because
of at hr ow of value v, and all other automatic closings of initialized resources

410

BLOCKS AND STATEMENTS Unreachable Satements

complete normally, then thet r y-with-resources statement compl etes abruptly
because of at hr ow of the value v.

+ If more than one automatic closing of an initialized resource completes
abruptly because of t hrows of values vi...vn, then the t r y-with-resources
statement completes abruptly because of at hr ow of the value vi with any
remaining values v2...vn added to the suppressed exception list of v1 (where
V1 is the exception from the rightmost resource failing to close and vn is the
exception from the leftmost resource failing to close).

14.20.3.2 Extended t r y-with-resources

A t ry-with-resources statement with at least one cat ch clause and/or afinal 'y
clauseis called an extended t r y-with-resources statement.

The meaning of an extended t r y-with-resources statement:

try ResourceSpecification
Bl ock

Cat chesgpt

Fi nal | yopt

is given by the following translation to a basic try-with-resources statement
(814.20.3.1) nested inside atry-catch or try-finally or try-catch-finally
Statement:

try {
try ResourceSpecification

Bl ock

}
Cat chesgpt
Fi nal | yopt

The effect of the trandation is to put the ResourceSpecification "inside" thetry
statement. Thisallowsacat ch clause of an extended t r y-with-resources statement
to catch an exception due to the automatic initialization or closing of any resource.

Furthermore, all resources will have been closed (or attempted to be closed) by
thetimethefinal I y block is executed, in keeping with the intent of thefi nal Iy

keyword.

14.21 Unreachable Statements

It is a compile-time error if a statement cannot be executed because it is
unreachable.

14.21

411

14.21 Unreachable Satements BLOCKS AND STATEMENTS

This section is devoted to a precise explanation of the word "reachable.” The idea is that
there must be some possible execution path from the beginning of the constructor, method,
instance initializer, or static initializer that contains the statement to the statement itself.
The analysistakesinto account the structure of statements. Except for the special treatment
of whi | e, do, andf or statementswhose condition expression hasthe constant valuet r ue,
the values of expressions are not taken into account in the flow analysis.

For example, a Java compiler will accept the code:

{
int n =5;
while (n >7) k = 2;
}

even though the value of n is known at compile time and in principle it can be known at
compile time that the assignment to k can never be executed.

The rulesin this section define two technical terms:

» whether a statement is reachable

» whether a statement can complete normally

The definitions here allow a statement to complete normally only if it isreachable.

To shorten the description of the rules, the customary abbreviation "iff" is used to
mean "if and only if."

A reachable br eak statement exits a statement if, within the break target, either
therearenot ry statementswhoset ry blocks contain thebr eak statement, or there
aretry statementswhoset ry blocks contain the br eak statement and all fi nal Iy
clauses of thoset ry statements can complete normally.

This definition is based on the logic around "attempts to transfer control” in §14.15.

A cont i nue statement continues a do statement if, within the do statement, either
thereare no t ry statementswhoset ry blocks contain the cont i nue statement, or
therearet ry statementswhoset ry blocks contain the cont i nue statement and all
finally clauses of thoset ry statements can complete normally.

The rules are as follows;

» Theblock that isthe body of aconstructor, method, instance initializer, or static
initializer is reachable.

* An empty block that is not a switch block can complete normally iff it is
reachable.

412

BLOCKS AND STATEMENTS Unreachable Satements 14.21

A non-empty block that is not a switch block can complete normally iff the last
statement in it can complete normally.

The first statement in a non-empty block that is not a switch block is reachable
iff the block is reachable.

Every other statement S in a non-empty block that is not a switch block is
reachable iff the statement preceding S can complete normally.

* A local class declaration statement can complete normally iff it is reachable.
» A local variable declaration statement can complete normally iff it is reachable.
» Anempty statement can complete normally iff it is reachable.
A labeled statement can complete normally if at least one of thefollowingistrue:
*+ The contained statement can complete normally.
* Thereisareachable br eak statement that exits the labeled statement.
The contained statement is reachable iff the labeled statement is reachable.
* An expression statement can complete normally iff it is reachable.
e Anif-then statement can complete normaly iff it is reachable.
Thet hen-statement is reachable iff thei f - t hen statement is reachable.

Anif-then-el se statement can complete normally iff the t hen-statement can
complete normally or the el se-statement can complete normally.

Thet hen-statement isreachable iff thei f - t hen- el se Statement is reachable.

The el se-statement isreachableiff thei f - t hen- el se Statement is reachable.

Thishandling of ani f statement, whether or not it has an el se part, is rather unusual.
Therationaleis given at the end of this section.

* Anassert statement can complete normally iff it isreachable.

* A swi t ch statement can complete normally iff at least one of the following is
true:

*+ The switch block is empty or contains only switch labels.

+ Thelast statement in the switch block can complete normally.

+ Thereisat least one switch label after the last switch block statement group.
* The switch block does not contain adef aul t label.

* Thereisareachable br eak statement that exitsthe swi t ch statement.

413

14.21 Unreachable Satements BLOCKS AND STATEMENTS

A switch block is reachable iff itsswi t ch statement is reachable.

A statement in a switch block is reachable iff its swi t ch statement is reachable
and at least one of the following istrue:

* |t bearsacase or def aul t label.

* There is a statement preceding it in the switch block and that preceding
statement can complete normally.

* A whi | e statement can complete normally iff at least one of thefollowingistrue:

+ Thewhi | e statement isreachable and the condition expressionisnot aconstant
expression (815.28) with valuet r ue.

* Thereisareachable br eak statement that exits the whi | e statement.

The contained statement is reachableiff thewhi | e statement isreachable and the
condition expression is not a constant expression whose valueisf al se.

* A do statement can complete normally iff at least one of the following is true:

+ The contained statement can complete normally and the condition expression
is not a constant expression (815.28) with valuet r ue.

* The do statement contains areachable cont i nue statement with no label, and
the do statement istheinnermost whi | e, do, or f or Statement that containsthat
cont i nue statement, and the cont i nue statement continuesthat do statement,
and the condition expression is not a constant expression with valuet r ue.

+ Thedo statement contains areachable cont i nue statement with alabel L, and
the do statement has label L, and the cont i nue statement continues that do
statement, and the condition expression is not aconstant expression with value
true.

* Thereisareachable br eak statement that exits the do statement.
The contained statement is reachable iff the do statement is reachable.

* A basic for statement can complete normally iff at least one of the following
istrue:

+ The for statement is reachable, there is a condition expression, and the
condition expression is not a constant expression (§15.28) with valuet r ue.

* Thereisareachable br eak statement that exitsthef or statement.

The contained statement is reachable iff the f or statement is reachable and the
condition expression is not a constant expression whose valueisf al se.

414

BLOCKS AND STATEMENTS Unreachable Satements 14.21

* Anenhanced f or statement can complete normally iff it is reachable.
* A break, continue, return, Or t hr ow Statement cannot complete normally.

* A synchroni zed statement can complete normally iff the contained statement
can complete normally.

The contained statement is reachable iff the synchronized Statement is
reachable.

* A try statement can complete normally iff both of the following are true:

* The try block can complete normally or any cat ch block can complete
normally.

+ If thet ry statement hasaf i nal | y block, thenthef i nal I y block can complete
normally.

* Thetry block isreachableiff thet ry statement is reachable.
» A cat ch block cisreachableiff both of the following are true:

+ Either thetype of C's parameter is an unchecked exception type or Thr owabl e;
Or some expression or t hr ow statement in the t ry block is reachable and can
throw a checked exception whose type is assignable to the parameter of the
cat ch clauseC.

An expression is reachable iff the innermost statement containing it is
reachable.
See 815.6 for normal and abrupt completion of expressions.

* Thereisno earlier cat ch block Ainthet ry statement such that the type of C's
parameter is the same as or a subclass of the type of A's parameter.

» TheBlock of acat ch block isreachable iff the cat ch block is reachable.

» If afinally block ispresent, it isreachableiff thetry statement isreachable.
One might expect thei f statement to be handled in the following manner:

¢ Anif-then statement can complete normally iff at least one of the following is true:

3

The i f-then statement is reachable and the condition expression is not a
constant expression whose valueist r ue.

.

Thet hen-statement can complete normally.

The t hen-statement is reachable iff thei f - t hen statement is reachable and the
condition expression is not a constant expression whose value isf al se.

415

14.21 Unreachable Satements BLOCKS AND STATEMENTS

e An if-then-el se statement can complete normally iff the t hen-statement can
complete normally or the el se-statement can complete normally.

Thet hen-statement isreachableiff thei f - t hen- el se statement isreachable and
the condition expression is not a constant expression whose value isf al se.

Theel se-statement isreachableiff thei f - t hen- el se statement isreachable and
the condition expression is not a constant expression whose valueist r ue.

This approach would be consistent with the treatment of other control structures. However,
in order to alow the if statement to be used conveniently for "conditional compilation”
purposes, the actual rules differ.

As an example, the following statement resultsin a compile-time error:

while (false) { x=3; }

because the statement x=3; is not reachable; but the superficially similar case:

if (false) { x=3; }

does not result in a compile-time error. An optimizing compiler may realize that the
statement x=3; will never be executed and may choose to omit the code for that statement
from the generated cl ass file, but the statement x=3; isnot regarded as "unreachable” in

the technical sense specified here.

Therational e for this differing treatment isto allow programmersto define "flag variables"
such as:

static final bool ean DEBUG = fal se;
and then write code such as:
if (DEBUG { x=3; }

The ideais that it should be possible to change the value of DEBUG from f al se tot rue
or fromtrue tof al se and then compile the code correctly with no other changes to the
program text.

This ability to "conditionally compile" has a significant impact on, and relationship to,
binary compatibility (813). If a set of classes that use such a "flag" variable are compiled
and conditional code is omitted, it does not suffice later to distribute just a new version
of the class or interface that contains the definition of the flag. A change to the value of
aflag is, therefore, not binary compatible with pre-existing binaries (813.4.9). (There are
other reasons for such incompatibility aswell, such asthe use of constantsin case labels
inswi t ch statements; see §13.4.9.)

416

CHAPTER 15

Expressions

M UCH of the work in a program is done by evaluating expressions, either for
their side effects, such as assignments to variables, or for their values, which can
be used as arguments or operands in larger expressions, or to affect the execution
sequence in statements, or both.

This chapter specifies the meanings of expressions and the rules for their
evaluation.

15.1 Evaluation, Denotation, and Result

When an expression in a program is evaluated (executed), the result denotes one
of three things:

» A variable (84.12) (in C, thiswould be called an Ivalue)
* Avaue(84.2, 84.3)
» Nothing (the expression is said to be void)

Evaluation of an expression can also produce side effects, because expressions
may contain embedded assignments, increment operators, decrement operators,
and method invocations.

An expression denotes nothing if and only if it is a method invocation (§15.12)
that invokes a method that does not return a value, that is, a method declared
voi d (88.4). Such an expression can be used only as an expression statement
(814.8), because every other context in which an expression can appear requires
the expression to denote something. An expression statement that is a method
invocation may also invoke a method that produces a result; in this case the value
returned by the method is quietly discarded.

417

15.2

418

Variables as Values EXPRESS ONS

Value set conversion (85.1.13) is applied to the result of every expression that
produces a value.

Each expression occursin either:

» The declaration of some (class or interface) type that is being declared: in a
field initializer, in a static initializer, in an instance initializer, in a constructor
declaration, in an annotation, or in the code for a method.

* Anannotation (89.7) of apackage or of atop level type declaration.

15.2 VariablesasValues

If an expression denotes a variable, and a value is required for use in further
evaluation, then the value of that variable is used. In this context, if the expression
denotes avariable or avalue, we may speak smply of the value of the expression.

If thevalue of avariable of typef | oat or doubl e isused inthis manner, then value
set conversion (85.1.13) is applied to the value of the variable.

15.3 Typeof an Expression

If an expression denotes avariable or avalue, then the expression has atype known
at compiletime. The rulesfor determining the type of an expression are explained
separately below for each kind of expression.

The value of an expression is assignment compatible (85.2) with the type of the
expression, unless heap pollution (84.12.2) occurs.

Likewise, the value stored in a variable is always compatible with the type of the
variable, unless heap pollution occurs.

In other words, the value of an expression whose type is T is always suitable for
assignment to avariable of typeT.

Note that an expression whose type is a class type F that is declared fi nal is
guaranteed to have a value that is either a null reference or an object whose class
isF itself, becausefi nal types have no subclasses.

EXPRESS ONS FP-strict Expressions

15.4 FP-strict Expressions

If the type of an expression isf | oat or doubl e, then thereis a question as to what
value set (84.2.3) the value of the expression is drawn from. This is governed by
the rules of value set conversion (85.1.13); these rules in turn depend on whether
or not the expression is FP-dtrict.

Every compile-time constant expression (815.28) is FP-strict.

If an expression is not a compile-time constant expression, then consider al the
class declarations, interface declarations, and method declarations that contain the
expression. If any such declaration bearsthest ri ct f p modifier (88.1.1.3, §8.4.3.5,
89.1.1.2), then the expression is FP-strict.

If aclass, interface, or method, X, is declared stri ctfp, then X and any class,
interface, method, constructor, instance initializer, static initializer or variable
initializer within X is said to be FP-strict.

Note that an annotation (89.7) element value (89.6) isalways FP-strict, becauseit isaways
a compile-time constant expression.

It follows that an expression is not FP-strict if and only if it is not a compile-
time constant expression and it does not appear within any declaration that hasthe
strictfp modifier.

Within an FP-strict expression, all intermediate values must be elements of the
float value set or the double value set, implying that the results of all FP-
strict expressions must be those predicted by IEEE 754 arithmetic on operands
represented using single and double formats.

Within an expression that is not FP-strict, some leeway is granted for an
implementation to use an extended exponent range to represent intermediate
results; the net effect, roughly speaking, is that a calculation might produce "the
correct answer" in situations where exclusive use of the float value set or double
value set might result in overflow or underflow.

15.5 Expressionsand Run-Time Checks

If the type of an expression is a primitive type, then the value of the expression is
of that same primitive type.

15.4

419

155

420

Expressions and Run-Time Checks EXPRESSONS

If the type of an expression is a reference type, then the class of the referenced
object, or even whether the value is areference to an object rather than nul 1 , isnot
necessarily known at compiletime. Thereareafew placesin the Javaprogramming
language where the actual class of a referenced object affects program execution
in a manner that cannot be deduced from the type of the expression. They are as
follows:

* Method invocation (815.12). The particular method used for an invocation
o.n(...) ischosen based on the methods that are part of the class or interface
that is the type of o. For instance methods, the class of the object referenced by
the run-time value of o participates because a subclass may override a specific
method already declared in a parent class so that this overriding method is
invoked. (The overriding method may or may not choose to further invoke the
original overridden mmethod.)

* Theinstanceof operator (815.20.2). An expression whose type is a reference
type may betested usingi nst anceof to find out whether the class of the object
referenced by the run-time value of the expression is assignment compatible
(85.2) with some other reference type.

 Casting (85.5, 815.16). The class of the object referenced by the run-time value
of the operand expression might not be compatible with the type specified by
the cast. For reference types, this may require a run-time check that throws an
exception if the class of the referenced object, as determined at run time, is not
assignment compatible (85.2) with the target type.

« Assignment to an array component of reference type (810.5, §15.13, §15.26.1).
The type-checking rules allow the array type S[] to be treated as a subtype of
T[] if sisasubtype of T, but this requires arun-time check for assignment to an
array component, similar to the check performed for a cast.

» Exception handling (814.20). An exception is caught by acat ch clause only if
the class of the thrown exception object isani nst anceof the type of the formal
parameter of the cat ch clause.

Situations where the class of an object is not statically known may lead to run-time
type errors.

Inaddition, there are situationswhere the statically known type may not be accurate
at run time. Such situations can arise in a program that gives rise to compile-time
unchecked warnings. Such warningsare given in response to operationsthat cannot
be statically guaranteed to be safe, and cannot immediately be subjected to dynamic
checking because they involve non-reifiable (84.7) types. As a result, dynamic

EXPRESSONS Normal and Abrupt Completion of Evaluation

checks later in the course of program execution may detect inconsistencies and
result in run-time type errors.

A run-time type error can occur only in these situations:

* In a cast, when the actua class of the object referenced by the value of the
operand expression is not compatible with the target type specified by the cast
operator (85.5, §15.16); in thiscase ad assCast Except i on iSthrown.

* |In an automatically generated cast introduced to ensure the validity of an
operation on anon-reifiable type (84.7).

* Inan assignment to an array component of reference type, when the actua class
of the object referenced by the value to be assigned is not compatible with the
actual run-time component type of the array (810.5, §15.13, §15.26.1); in this
case an Ar ray St or eExcept i on isthrown.

* When an exception is not caught by any catch clause of a try statement
(814.20); in this case the thread of control that encountered the exception first
attempts to invoke an uncaught exception handler (811.3) and then terminates.

15.6 Normal and Abrupt Completion of Evaluation

Every expression has anormal mode of evaluation in which certain computational
steps are carried out. The following sections describe the norma mode of
evaluation for each kind of expression.

If al the steps are carried out without an exception being thrown, the expression
is said to complete normally.

If, however, evaluation of an expression throwsan exception, then the expressionis
said to complete abruptly. An abrupt completion always has an associated reason,
which isaways at hr owwith agiven value.

Run-time exceptions are thrown by the predefined operators as follows:

* A classinstance creation expression (815.9), array creation expression (815.10),
array initializer expression (810.6), or string concatenation operator expression
(815.18.1) throws an cQut O MenoryError if there is insufficient memory
available.

» Anarray creation expression (815.10) throws aNegat i veAr r aySi zeExcept i on
if the value of any dimension expression is less than zero.

15.6

421

15.6

422

Normal and Abrupt Completion of Evaluation EXPRESS ONS

» A field accessexpression (815.11) throwsanNul | Poi nt er Except i on if thevalue
of the object reference expressionisnul | .

* A method invocation expression (815.12) that invokes an instance method
throws aNul | Poi nt er Except i on if the target referenceisnul | .

* An array access expression (815.13) throws a Nul | Poi nt er Except i on if the
value of the array reference expressionisnul | .

* An array access expression (815.13) throws an
Arrayl ndexQut Of BoundsExcept i on if the value of the array index expression
is negative or greater than or equal to thel engt h of the array.

* A cast expression (815.16) throws a d assCast Except i on if acast isfound to
be impermissible at run time.

* Aninteger division (815.17.2) or integer remainder (815.17.3) operator throws
an Ari thret i cExcepti on if the value of the right-hand operand expression is
zero.

* An assignment to an array component of reference type (815.26.1), a method
invocation expression (815.12), or a prefix or postfix increment (815.14.2,
815.15.1) or decrement operator (815.14.3, 815.15.2) may dl throw an
Qut O Menor yEr ror as aresult of boxing conversion (85.1.7).

* An assignment to an array component of reference type (815.26.1) throws an
ArraySt or eExcept i on when the value to be assigned is not compatible with the
component type of the array (810.5).

A method invocation expression can also result in an exception being thrown if an
exception occurs that causes execution of the method body to complete abruptly.

A classinstance creation expression can also result in an exception being thrown if
an exception occurs that causes execution of the constructor to complete abruptly.

Various linkage and virtual machine errors may also occur during the evaluation
of an expression. By their nature, such errors are difficult to predict and difficult
to handle.

If an exception occurs, then evaluation of one or more expressions may be
terminated before all steps of their normal mode of evaluation are complete; such
expressions are said to complete abruptly.

If evaluation of an expression requires evaluation of a subexpression, then abrupt
completion of the subexpression always causes the immediate abrupt completion
of theexpressionitself, with the same reason, and all succeeding stepsin thenormal
mode of evaluation are not performed.

EXPRESS ONS Evaluation Order

The terms "complete normally" and "complete abruptly" are also applied to the
execution of statements (814.1). A statement may complete abruptly for a variety
of reasons, not just because an exception is thrown.

15.7 Evaluation Order

The Java programming language guarantees that the operands of operators appear
to be evaluated in a specific evaluation order, namely, from left to right.

It isrecommended that code not rely crucially on this specification. Codeis usually clearer
when each expression contains at most one side effect, asits outermost operation, and when
code does not depend on exactly which exception arises as a consequence of the left-to-
right evaluation of expressions.

15.7.1 Evaluate Left-Hand Operand First

Theleft-hand operand of abinary operator appearsto be fully evaluated before any
part of the right-hand operand is evaluated.

If the operator is a compound-assignment operator (815.26.2), then evauation of
the left-hand operand includes both remembering the variable that the left-hand
operand denotes and fetching and saving that variable'svalue for usein theimplied
binary operation.

If evaluation of the left-hand operand of a binary operator completes abruptly, no
part of the right-hand operand appears to have been evaluated.

Example 15.7.1-1. L eft-Hand Operand I s Evaluated First

Inthefollowing program, the* operator hasaleft-hand operand that containsan assignment
to avariable and aright-hand operand that contains a reference to the same variable. The
value produced by the reference will reflect the fact that the assignment occurred first.

class Testl {
public static void main(String[] args) {
int i =2
int j = (i=3) * i;
Systemout.printin(j);
}
This program produces the output:

9

15.7

423

15.7 Evaluation Order EXPRESS ONS

It is not permitted for evaluation of the * operator to produce 6 instead of 9.
Example 15.7.1-2. Implicit L eft-Hand Operand In Operator Of Compound Assigment

Inthefollowing program, the two assignment statements both fetch and remember thevalue
of the left-hand operand, which is 9, before the right-hand operand of the addition operator
isevaluated, at which point the variableis set to 3.

class Test2 {

public static void main(String[] args) {
int a=29;
a += (a =3); [/ first exanple
System out. println(a);
int b =09;
b=b+ (b=23); [// second exanple
System out. println(b);

}
This program produces the output:

12
12

It is not permitted for either assignment (compound for a, simple for b) to produce the
result 6.

See also the examplein §15.26.2.

Example 15.7.1-3. Abrupt Completion of Evaluation of the L eft-Hand Operand

class Test3 {
public static void main(String[] args) {
int j =1;
try {
int i = forgetlt() / (j = 2);
} catch (Exception e) {
Systemout. printlin(e);
Systemout.printin("Nowj =" +j);
}
}

static int forgetlt() throws Exception {
t hrow new Exception("l'moutta here!");

}
}
This program produces the outpuit:
java.l ang. Exception: |'moutta here!

Now j =1

424

EXPRESS ONS Evaluation Order 15.7

That is, the left-hand operand f or get | t () of the operator / throws an exception before
the right-hand operand is evaluated and its embedded assignment of 2 toj occurs.

15.7.2 Evaluate Operands before Operation

The Java programming language guarantees that every operand of an operator
(except the conditional operators &&, | |, and ? :) appears to be fully evaluated
before any part of the operation itself is performed.

If the binary operator is an integer division / (815.17.2) or integer remainder
% (815.17.3), then its execution may raise an Arit hneti cExcepti on, but this
exception is thrown only after both operands of the binary operator have been
evaluated and only if these evaluations completed normally.

Example 15.7.2-1. Evaluation of Operands Before Operation

class Test {
public static void main(String[] args) {
int divisor = 0;
try {
int i =1/ (divisor * loseBig());
} catch (Exception e) {
Systemout. println(e);
}
}

static int |oseBig() throws Exception {
throw new Exception("Shuffle off to Buffalo!");
}
}
This program produces the output:
java. |l ang. Exception: Shuffle off to Buffalo!
and not:
java.l ang. Arithneti cException: / by zero
since no part of the division operation, including signaling of a divide-by-zero exception,
may appear to occur before the invocation of | oseBi g completes, even though the
implementation may be able to detect or infer that the division operation would certainly
result in a divide-by-zero exception.
