

Adaptive Back Sheet Material for Acoustic Liner Application

Carl H. Gerhold and Michael G. Jones
Liner Technology Facility
NASA Langley Research Center

Dawnielle Farrar
Johns Hopkins University-Applied Physics Laboratory

Benjamin S. Beck National Institute of Aerospace

NASA Aeronautics Research Mission Directorate (ARMD)

FY12 Seedling Phase II Technical Seminar

March 18-19, 2015

Outline

- Background
- Summary of Phase I Results
- Redesign of Piezo-electric
- Results to Date
 - Mechanical
 - Acoustic
- Summary and Conclusions

The Challenge

National Aeronautics Research Institute

Aircraft Engine Nacelle

- Engine size increases
- Frequency of source decreases
- Nacelle treatment area decreases
- => Need to get more performance out of less acoustic liner

SDOF Liner - Solid Back Plane

National Aeronautics Research Institute

=> Frequency of peak attenuation fixed by L₁

Liner-Compliant Back Plane

National Aeronautics Research Institute

=> Compliant back plane can expand frequency range of attenuation

Candidate Material

- PBLG Piezoelectric Composite Film
 - Composed of an a-helical polypeptide
 - Produced via corona charging to prealign macroscopic dipoles along helical axis
 - Responds to external force (sensor)
 - Responds to electric field (actuator)
 - Responds at acoustic frequencies
- Developed at Johns Hopkins University Applied Physics Laboratory

Objectives of Research

- Build sample coupons with piezo-electric material
- Determine acoustic and mechanical properties
- Estimate effect of material on liner attenuation

Phase I Sample Coupons

National Aeronautics Research Institute

Unencapsulated sample with electrode

Encapsulated sample (without electrode)

Phase I - Results

National Aeronautics Research Institute

Unencapsulated

- Responds to acoustic excitation
 - Useful as sensor
 - Failed when SPL > 100 dB
- Responds to voltage excitation
 - Use as actuator
 - Response much less than required
- Encapsulated
 - Survives up to 140 dB
 - Velocity response not improved
- Solved robustness problem
- Still have control authority problem

Phase II Goal

National Aeronautics Research Institute

- Revise Piezo-electric Sample Design
 - Incorporate improved robustness
 - Increase velocity response by 100x

 $2 \times 10^{-6} < X < 1 \times 10^{-5} \text{ m}$ @ 1000 Hz 0.013 < V < 0.063 m/sec

Investigate Electrode Designs

Evaluate Performance

National Aeronautics Research Institute

- Evaluate as Sensor
 - Measure voltage output with sound pressure input
- Evaluate as Actuator
 - Measure velocity with voltage excitation
- Evaluate as Absorber
 - Measure change of impedance with voltage excitation-calculate absorption

Normal Incidence Tube

Evaluate as Absorber

Evaluate as Absorber

National Aeronautics Research Institute

=> Control Authority Not Sufficient

Reformulated Design

National Aeronautics Research Institute

Sample in Vibration Test Set-up

Piezo-electric sample

- Manufactured in bundle-type fibers
- Piezo-electric dipoles are polarized in the direction of strain
- Intended to improve coupling coefficient of piezo-electric material

Vibration Analysis

1st ('Drum Head') resonance response at ~300 Hz 2nd resonance at ~ 550 Hz

Response to Voltage Excitation

- No displacement response could be detected
 - Up to 500 volt excitation
 - 100 < f < 3000 Hz, including first two resonant frequencies.

Evaluate Acoustic Performance

National Aeronautics Research Institute

Piezo-electric in Impedance Test Sample Holder

Normal Impedance Test Build-up Incorporating Piezo-electric

Evaluate Acoustic Performance

National Aeronautics Research Institute

Built-up Coupon for Impedance Test

Impedance Test Set-up

Measure Absorption Change

National Aeronautics Research Institute

No effect on absorption except near piezo-electric sample resonance

Vary Phase of Excitation

National Aeronautics Research Institute

Absorption varies with phase, but no consistent trend found

Conclusions

- Developed experiments to evaluate the piezoelectric film samples
 - Measured mechanical properties
 - Measured acoustic properties
- Developed mathematical model of liner absorption including compliant back wall
- Piezo-electric film properties achieved:
 - Robustness
 - Frequency response
- Property not achieved:
 - Control authority (out of plane displacement)

Thank You

National Aeronautics Research Institute

Adaptive Back Sheet Material for Acoustic Liner Application