
Selected projects of Audrius Meskauskas

High throughput analysis projects

My oldest projects I would like to tell about are research works, implementing bulk statistical
comparison between actual shape development and development, predicted by various mathematical
models. Experimenter photographs the developing object (like growing mushroom how it raises the cap
after turning into horizontal position). My task was to process the scanned photos and video tapes,
numerically comparing the observed shape with the shape as predicted at the given time by the various
mathematical models. These models were expressed as systems of partial differential equations. It was
my task to implement numeric solutions and automatically tune model parameters for every
experiment. We performed both statistical tests on how well various models fit the data and how
statistically model parameters are distributed. We (also me) proposed several new models and also first
time have made a clear proof that some popular past models do not match experimental data. From
these works we have published three publications in New Phytologist.

The project started as "user friendly", trying to use Matlab, Mathcad and Maple. After wasting
enough time with these tools I have concluded that they just do not do that we need. I have switched
completely into C++ in that all project was finally implemented and all published results were
obtained. The project used flat text files to store all data it processed. At the end we also wrote the
visualizer that demonstrates how changing parameters impacts the predicted shape, also in C (while I
was asked to rewrite visualizer as Java applet for publishing as a supplementary material on a web).

Later I used similar approach to implement and compare mathematical models of industrial
fermentation, even reusing some code. It was actually a simpler task as the experimenter provided a
number of automatically recorded curves, how do the various measured parameters change over time in
many repetitions.

Sight, web robot generator

With the raise of bioinformatics, a lot of researcher groups have started web servers, providing
one or another type of automated analysis of the user supplied data. Frequently it was interesting to
compbile multiple web services into pipelines but the sites have little support for this: they were sites
for human beings with web forms and HTML output. Even worse, the design of the sites was changing
over times, so any automated tool with complex workflow was short living: it was necessary to build it
quickly, launch like a rocket for a time and collect the results; a week after one or more services maybe
will not run as they were. In Ulm university I have developed and later used a user friendly tool for the
fast creating of web robots and then connecting them into workflows.

Sight is a user friendly application, implemented in Java using Swing. In various specialised
cases it uses some external libraries like Velocity template engine, Kopi Java compiler, Weka statistical
engine and the like. Sight, however, does not use any kind of web robot generation framework nor any
kind of workflow framework - at the time of programming there was no any really suitable.

Building the web robot starts from scrapping the page where the web form is located. The
operator can see which forms and which parameters (hidden parameters including) are present and
provide the sample values. Then the sample input is submitted. The submission code supported both
GET and POST and was able to follow HTTP, HTML and JavaScript - based redirects.

On the next step, the parser for the server output is generated. As the sites were very diverse, I
have developed a number of parsers:

● The table based parser locates values in the tables that were commonly used to format

the output. It is able to select one of several tables by order or below/above some signature text, also
step into nested tables.

● The Stalker parser uses the Stalker algorithm to generate regular expressions
surrounding values that the user must select. The Stalker algorithm simulates the evolution process. In
case if the algorithm cannot detect the signatures reliabley, they can be manually entered.

● The simpler and actually more useful version of the parser allowed to mark the noticed
signatures directly on the server output text with mouse. Human operator may be smarter in
understanding which parts of response and can serve as a good anchors.

● The XSLT parser was written for these rare servers that have been returning XML; it
uses the operator-provided transform to alter the near arbitrary XML into internally standard
intermediate form that can be easily parsed. The development GUI that I have written for this parser
allows to debug the proposed transform, seeing how it processes the provided server output.

● One more very simple parser expects the plain text table between the string signatures.
● Later I also added WDSL agent that was also able to send WDSL compliant requests.

Fig 1. One of the web agent generators (left) and the workflow builder (right).

After both sender and parser are configured, the tool uses Apache Velocity template engine to
generate a source code of the new robot/agent. The generated .java class implements all submission,
parsing and can return the data description structures containing names and types of the request and
response. One request usually results many responses like multiple search hits. After that, the class is
compiled with Kopi Java compiler (Sun's compiler was proprietary at that time) and dynamically
loaded.

Finally, I also wrote user friendly tool to connect these agents into workflow. To build the
workflow, it is necessary to know which named input parameter of the slave agent must be connected
to which named output of the master agent. The flow also contains some specialized agents that
provide initial input and write the output. Similarly as agent, the workflow was also generated with
template engine and compiled, after that it was ready to run.

Sight flows are much faster than the work of human operator. Not just all data passing is
automated; every agent runs in a separate thread and has its own input and output queue, so all
involved web servers (some quite slow) work in parallel, providing kind of distributed computing. The

flow can even run for some time if one of the servers is transiently out; data in the queues may still
provide enough work for other nodes.

We implemented 60 second pauses between requests, automatically increasing them if the server
takes long to respond. To avoid sending the same request, all responses were cached on a disk. The
system was likely civilized enough as we have never received any complaints from webmasters.

We published one research article on the system itself and later another on various interesting
results we obtained using it.

GNU Classpath

At the time of me joining, GNU Classpath was a top priority FSF project to provide a Free
alternative of the proprietary Java implementation from Sun Microsystems. Java was popular; Java was
attracting people and becoming the base of more and more FOSS projects, making them dependent on
the good will of the single company. The project was also a good place to meed top level developers
from commercial companies (Red Hat, Aicas) and various interesting research people who needed a
Free Java for various projects devoted to the virtual machine (the first JRE offering a JIT compiler was
CACAO, a reasearch JRE running GNU Classpath).

Because of the certification reasons, it was important to have complete implementation of the
system libraries. I have picked org.omg and javax.swing.text.html.parser where nobody was working
seriously.

I have used javax.swing.text.html.parser in web agent generator so this API was already familiar
to me. It is a SGML-driven library; you need to start from writing a helper parser for a provided SGML
document. The parser must maintain a stack of the current HTML tags (nested into each other where
appropriate) and close them automatically. For instance, <tr><td><td></tr> is a perfectly valid HTML
and the parser must fire two </td> events despite these two tags are not present in the input. The parser
was covered by the numerous automatic tests.

CORBA is actually a clear and logical communication library; just the original OMG
specification is written in a quite difficult style. I have implemented the basic GIOP protocol, the old
style ORB, the Portable Object Adapter, locator and activator support, RMI over IIOP and the naming
service. CORBA has some funny features inside; for instance bytes are aligned to allow easy structure
loading - this only adds overhead in Java as this language has no built-in structure type. The protocol
officially allows both Big and Little endian but Sun's Java only understood Big endian messages. I
added tansparent Little endian support to my implementation - be GNU Classpath at least somewhere
better than Sun's SE. The finished library was able to communicate with Sun's CORBA implementation
without any issues.

SourceForge contains the COST project (CORBA Open Source Testing) with numerous CORBA
tests that were contributed by major providers like IONA in the past. I used this test suite to check how
well my implementation actually performs; it has passed all tests that Sun's code passed, and it also
passed some more.

I also fixed some old and complex bugs in GNU Classpath JTable and JTree, making these
classes fully functional and ready to use, also contributed a number of tiny fixes and extensions over all
system library.

GNU Classpath was a school which converted the former programming researcher into
professional developer. This is where I have learn about CHANGELOG, patches, code repository, Ant
that we used to build run tests, GNU build tools (GNU Classpath also contains some C code), need to
comment the code, need to cover the code with tests and so on. The overall discipline inside the GNU
Classpath project was very strict; currently I know that many even commercial projects are developed
much more loosely. Also, this project gave good understanding about many dark corners of Java system
library.

Fig 2. GNU Classpath (top) talks with Sun's Java (bottom) via CORBA platform, playing a
simple distributed computer game. I have also tested this game between the two machines running
Classpath under Linux and Sun's side under Windows.

Three dimensional models of morphogenesis

This project was one of the first attempts to simulate three dimensional (rather than two dimensional)
development of the fungal structures. The analyzed mathematical models assumed that all involved
cells (hyphal threads) are actually identical, and the form emerges from chaos just through the identical
algorithm of behavior than runs in every cell. This our hypothesis was later reviewed in Nature, the top
level journal for biology, writing a dedicated article and citing our team as a first people who have
proposed this hypothesis. I was responsible for all programming, simulation and data fitting part, also
contributed to the development of mathematical models. Hypha interact through some abstract (in real
world likely electric) fields that they can both generate and sense; they can respond by changing the
growth rate and direction. I implemented multiple versions of both scalar and vector fields with various
properties. Again, the major task (that converts computer game into scientific project) is statistical
fitting of the experimental data into mathematical models, estimating the parameter distribution and
overall goodness of fit.

Fig 3. A “proof of concept” simulator that we used to obtain the grant (the serious analysis requires
bath mode).

While I also wrote a “live” visualizer that did a good job when obtaining grant application, the real
simulations of three dimensional development are computational intensive and were done in bath
mode, using Manchester supercomputing facilities and parallelised algorithms. The program was
generating frequent XML snapshots of the current “universe”. These XML files contained enough
information to resume the simulation using any of them as starting point. Later another tool converted

these files to the series of images and finally into AVI animations.

Rio Viz

My first task in Spectraseis was to implement a specialized map-based visualization of the
newly discovered seismic attributes. While Spectraseis has evaluated several map frameworks in the
past, the required level of interaction was so complex that a specialized application was required. The
data were stored partially on a PostgreSQL database and partially on a shared filesystem. It was a
requirement to provide user-friendly tuning on how far from the point interpolation is still good enough
to display the data. The data distribution was quite noisy and the user needed the dialog to pick the
range of interest from the graph of statistical distribution of values. I have received the detailed
specification about that the system should do but not how.

Fig 4. RioViz displays the complex and partially transparent shape of computed data (shades of
orange) over the existing map.

I have picked the existing interpolation library in C++ and the open source tool to draw charts
and histograms (JFreeChart). I have implemented the rest myself in Java, fully matching and in many
cases exceeding the requirements.

Rio Range

After completing the first task I started to look around and noticed that data processing
specialists spend a lot of they time on a highly inconvenient Matlab application to show various charts
and spectrograms of the recorded seismic data and to mark manually areas of interest (in time axis) that
are too noisy for the further analysis.

The main problem with Matlab tool was the lack of multithreading. At the same time due huge
amounts of data to process the application had many slow steps. As a result, the Matlab tool was
freezing for many seconds if not minutes after each user action. It was not possible to make more input
before completions of the currently running heavyweight threads.

Using Java, I was able to move heavy calculations to the background, utilizing multiple CPU
cores, keeping application responsive and maintaining possibility to cancel unneeded processes if the
context changes after the new user input.

RioRange uses database server (PostgreSQL, JDBC) to keep the output of the whole team in one
place and allowing to share the results. At the same time it performs spectral decomposition of the data
from files on a shared filesystem (native call to FFT algorithm) and presents multiple parallel
spectrogram charts, where the noisy areas can be marked with the mouse. After marking action the
program starts preparing the updated data in the background but transparently cancels this if the user
thinks the situation is clear enough and marks more regions.

This application has raised the productivity by the good order of magnitude and (as it was my

own project from idea through design till product) likely earned me the status of the team leader in
Spectraseis. The company started to get serious interest in software development and hired two
additional programmers for me. I have prepared several clearly formulated tasks on extending
RioRange with new functionality. These tasks were successfully implemented by my team that now I
needed to teach quickly about test driven development, iterations, releases, code repository, Bugzilla
and so on, remembering the rules of GNU Classpath. RioRange and RioViz initially had only several
users but needed to work reliably, as bugs in data processing were very costly for use. To satisfy this
requirement we wrote a number of JUnit tests, including tests for GUI.

Fig 5. RioRange. The operator marks valid-invalid areas in the spectrograms on the right. After
each marking, all view must be recalculated but the operator frequently wants to mark again without
waiting for.

My tasks for the team were usually quite technical, like “I need a class with this and this
functionality, here is the algorithm and talk with this and this geophysicist for additional details on it.
Your class must implement the interface I give you. Please include JUnit tests to be sure about this and
this”. I was continuing active development myself as well. We were working next table to
geophysicists, talking with them during various meetings so it was not difficult to figure out which new
features or even new tools are required.

RioImport

As Spectraseis uses a database to store the data it acquires on a field, it needs a separate tool to
add the field data to that database. The database at the end has evolved into sophisticated system with
many connected tables for multiple levels of hierarchy (survey, measurement, measurement section,
measurement channel, pictures, additional data, etc). Even worse, due company profile the data sets
had different structure for near every survey, and the tool needed to be adapted quickly – frequently in
days only and without the time for proper testing. The company initially used Matlab scripts that were
struggling dramatically, making another major bottleneck in the data processing. I started a challenging
project to develop importation tool that would be flexible enough to import almost “every data into
every database schema”, as long as the talk is about seismic measurements. The tool runs numerous
tests on the consistency of the incoming data. Simple tests (like if the number is between the two
boundaries) are defined through GUI. However most of the tests are written in SQL (or PL/PSQL
where SQL was not enough), they include cases as “looks like the same device measures in two places
at the same time” and the like. Before importation, RioImport shows data and metadata preview for
every measurement. A team of geophysicists can work on the same data set; they see each others
actions in real time through the CORBA based centralizing server. The data import is transactional.

I have designed all concept and wrote the majority of the code, while some clearly defined
components (like a GUI area to show signal traces or data readers for various formats) were delegated
for the other members of the team. Again we used some libraries to produce embedded charts but we
found no any reasonable “super framework” to build a quality control, data visualization and database
populating application of this complexity.

Fig 6. RioImport configurator (left) and the main window, usually seen by geophysicist (right).

The field handheld

On the field during the survey, the technician needs to deploy the measuring equipment but also
collect some other data about the surrounding terrain, rocks, vegetation and potential sources of the
interfering noise (like roads). He also makes pictures. These actions are taken during every of hundreds
of measurements. It was a huge work to sort photos from the cameras and enter the data into computer
from paper protocols that were initially used.

Using the TDS Nomad under Qtopia our team gradually developed a field device that has forms
to enter the data, picks GPS from the internal chip, takes pictures with internal camera, downloads test
data samples through USB and in the office automatically delivers all data to the central storage
through wireless. The fields and chapters of the on screen protocol that have been changing all the time
can be updated for all accessible devices also through wireless. The user friendly Java tool shows all
visible devices on the screen allowing both bulk and individual actions with them. Nomad has ARM
processor, but we anyway installed and used PostgreSQL (to access it from C++) and many Linux tools
on it. The device also has laser scanner that we also use to scan barcodes on equipment. The barcodes
contain destination tag and device places the scanned data into appropriate fields of the protocol by

itself.

Fig 7. Handheld screen shots, obtained while debugging the application on desktop (QT code is
cross platform).

Additional difficulty was the need to merge protocol that is taken during the measurement
placement with the protocol that is taken during the measurement pickup. Placements and pickups
occur in random order and are not necessarily done with the same device.

I had some really excellent developers in the team, and we reused pieces of the old Spectraseis
code to download test data samples (written in Perl) but the project would not have been even started
without my initiative that originated from the past OpenMoko project. It have done a lot of “proof of
concept” scouting (can we use PostgreSQL on device? Can we join Qtopia and Perl? Can we get
wireless working the way we want)? After being sure everything works I was delegating the now
obvious and doable task to my people, frequently with in general working skeleton-prototype. Some
developers just continued with that skeleton when others were reimplementing the production
application from scratch – both approaches worked well.

I also wrote two separate Makefile's to build the same code either for Qtopia or for desktop PC.
This allowed to debug the applications efficiently without the need of emulators or remote debugging
on device.

At that time members of my team also started some more independent projects, me more caring
about the successful integration of tools under development and maintenance of the libraries that are
shared between the multiple projects. Under the pressure of the library versioning problems (one
project requires newest version but another uses the older one and there is no time to upgrade it) we
have finally switched into Maven and Nexus repository. These tools make the versioning issues
relatively solvable.

Android

While Qtopia devices perform well in the field, it has been
highly interesting to test Android as well. This alternative approach
includes using the mainstream mobile phone or tablet rather than
specialized device. Even high end phone is cheaper than these
specialized devices and commonly has much better hardware
specifications. Android also provides the highly efficient Google
Maps component. Our Android Field Office system has not been yet
deployed on the field but it is under development and performs well
in pilot tests. Apart Google Maps, it also uses QR codes heavily.
Google Maps gives lot of features very easily, it is simple to place
custom overlays containing not just points of interest but also
complete own drawings on the top of existing maps, using available
coordinate converters. However they seem way more efficient with
the working Internet connection.

The most interesting part of this task was the requirement to
support the wired RJ45 connector, something you probably will never
see on any mobile phone. To support this nice feature, all our Android
stuff now must be rooted as I need to send ifconfig to the attached USB
to RJ45 converter. Easy to say – everything is in the cloud! The data measuring device is not, and it
only RJ45 connector, no other.

One of the interesting Android possibilities is that now programs can send crash reports to the
cloud, using ACRA library. They also self-update from the cloud using S3.

RioGrande

RioGrande is Spectraseis next generation tool that includes all functionality (and of course a lot
of my old code) from RioViz, RioRange and RioImport, as well as many additional features. Unlike

Fig 8. Our data downloader
on Google Galaxy Nexus

previous projects, we have outsourced the programming of RioGrande to the five people team in St
Petersburg, Russia. This team was found and the initial contact was made by Vlatko Davidovski, a
member of my team in Spectraseis.

Fig 9. RioGrande (multiple components are OSGI plug-ins).

I have prepared the initial specifications on how the first iteration of RioGrande should look
like, described in details all needed functionality for clarity also wrote the unimplemented interfaces for
all its components. I also contributed a lot of code from my previous projects, explaining where and
how it is possible to reuse it and where needed wrote a simple wrappers the demonstrated where and
how the code is working. Me and Vlatko fly to St Petersburg every several months to talk there a lot
and make sure there are no any misunderstandings. Russians commit the new to SVN that is closely
watched by Vlatko who also builds and checks the development snapshots. When after the first
development iteration some bug reports appeared, we started to process them through Bugzilla. All this
ensured relatively smooth start without typical problems of outsourcing. In several months we had an
impressive new tool. Similarly to Eclipse, it internally uses OSGI framework, so it is possible to
develop, deploy and debug plug-ins without even restarting the main application. Switching into plug-
in concept also allows to have multiple individual development tasks that do not conflict and can be
easily distributed: just everyone develops the assigned plug-in or the next version of it. Finally plug-ins
can have independent development and release cycles. With RioGrande I am already more an
organizing person than the primary developer, but I keep the code overview, watch the quality of the
implementation, write and run tests, do profiling and in some cases need to add features and fix bugs
personally, just to prevent talks that one or another task is too difficult or impossible to complete. I am
also still personally developing RioImport and in some degree the field device stack.

Schlumberger Petrel

It has been strategically important to integrate our tools with the standard tools, used by various
companies in oil industry. One of such tools is Petrel, a Windows/C# application with very powerful
visualization capabilities. Our group (with me being the main developer and lead designer) have
developed various modules and plug-ins, extending Petrel framework in standard way in order to
provide access to our data. In the opposite to various open source tools) these large industrial
frameworks are not documented in freely available Internet sources, where as a rule only marketing
materials can be found. Normally an expensive purchase (order 100K) is required to get the developer
API and attend the necessary courses. Even if we do not plan to use Petrel, knowledge of its internals
and architecture may bring a valuable input in making design decisions. Also, it makes the group more
aware about the real possibilities and limitations of these monster frameworks.

AppTornado AG

My major tasks in AppTornado AG were around the website this company uses to work with
people who advertise with AppTornado system on Android devices. The site has relatively complex
backend, combining PostgreSQL (where transactions and consistency are vital, like in money matters)
and Cassandra and Redis (where amount of data and ability to scale over multiple machines are more
important). The website itself is also surprisingly complex, combining JSP, Apache Velocity, Google
Web Toolkit (GWT), some custom JavaScript and extensive CSS styling to deliver very impressive
content. You can see some non authenticated pages in AppBrain.com. The build system is based on
Apache Ant.

Apart website itself (that I design using
pixel to pixel drawings from designer) I also
develop maintain its test suite, based on
Selenium and PhantomJS. We make
automated screen shots for all our numerous
pages, for various resolutions and also
separately for mobile devices (using Android
emulator). This allows to check them easily to
see that nothing is broken after we tweak CSS.
Daily builds, tests and screenshot series are
available from Jenkins continuos integration
server.

Among other interesting tasks I has
been responsible for implementation of they
credit card payment system, based on
BrainTree, designing they database schemas,
modifying and maintaining the continuos
integration build system, RPC services (based
on Google Protocol buffers) and the like. The team also has highly advanced development workflow,
keeping all code in GitHub and developing new features in branches with frequent merges.

Other

I am familiar with ANSI/AAMI/IEC
62304:2006 standard used to develop mission critical applications.

Fig. 11. User data reporting tool, implemented by me
using GWT (data come from PostgreSQL).

Fig. 12. Differential screen shots automatically
produced in continuos integration builds (my
Selenium project).

	Selected projects of Audrius Meskauskas
	High throughput analysis projects
	Sight, web robot generator
	GNU Classpath
	Three dimensional models of morphogenesis
	Rio Viz
	Rio Range
	RioImport
	The field handheld
	Android
	RioGrande
	Schlumberger Petrel
	AppTornado AG
	Other

