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Abstract

Background: Utilizing kinetic models of biological systems commonly require computational approaches to
estimate parameters, posing a variety of challenges due to their highly non-linear and dynamic nature, which is
further complicated by the issue of non-identifiability. We propose a novel parameter estimation framework by
combining approaches for solving identifiability with a recently introduced filtering technique that can uniquely
estimate parameters where conventional methods fail. This framework first conducts a thorough analysis to identify
and classify the non-identifiable parameters and provides a guideline for solving them. If no feasible solution can
be found, the framework instead initializes the filtering technique with informed prior to yield a unique solution.

Results: This framework has been applied to uniquely estimate parameter values for the sucrose accumulation
model in sugarcane culm tissue and a gene regulatory network. In the first experiment the results show the
progression of improvement in reliable and unique parameter estimation through the use of each tool to reduce
and remove non-identifiability. The latter experiment illustrates the common situation where no further measurement
data is available to solve the non-identifiability. These results show the successful application of the informed prior as
well as the ease with which parallel data sources may be utilized without increasing the model complexity.

Conclusion: The proposed unified framework is distinct from other approaches by providing a robust and complete
solution which yields reliable and unique parameter estimation even in the face of non-identifiability.

Keywords: Constrained parameter estimation, Identifiability analysis, Kalman filter, Kinetic models, Parameter estimation
framework
Background
Systems biology integrates computational modelling with
experimental techniques in order to better understand
the function of living organisms, the regulation of their
cellular processes and how these cells react to environ-
mental perturbations [1]. Among the different computa-
tional approaches, kinetic modelling gives the most
detailed representation of the biological system. These
models build on the stoichiometry of the reactions, in-
corporating the dynamic interactions between different
components of the network. The dynamics in kinetic
models are driven through ordinary differential equations
(ODEs) that represent the internal reaction mechanism as
a function of species concentration and parameters. These
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model parameters play a crucial role in describing the cor-
rect dynamics of the model. However, it is only possible to
measure a fraction of these kinetic parameters in wet lab
experiments due to high cost, difficulty and limitations in
current techniques or methods [2]. Therefore these pa-
rameters are indirectly determined through computational
methods from other measurement quantities, in particular
the time course data of metabolite concentrations. How-
ever, as biological models are often multi-modal it is not
uncommon for traditional parameter estimation methods
to become stuck in local optima [3]. In addition, trad-
itional methods tend to perform badly in the presence of
high measurement noise. Furthermore most of these
methods do not consider any form of model uncertainty.
Bayesian estimation is an alternative to traditional
optimization techniques. This method considers both the
system and measurement noise during the estimation. It
calculates the posterior density of the parameter θ condi-
tioned on observed data y. However, the calculation of this
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posterior involves high-dimensional integration for which
no analytical solution is generally available. Therefore a
numerical approximation has to be made for this posterior
probability density. Among different Bayesian approaches,
sequential methods have been shown to have a higher ac-
curacy [4]. The widely used sequential Bayesian methods
for parameter estimation are the sequential Monte Carlo
(SMC), also known as particle filtering [5], and the Kalman
filtering (KF) type methods. Particle filtering is computa-
tionally expensive due to the calculation of several hyper-
parameters [6]. This makes it unsuitable for large biological
systems. The Kalman filter has the capability of using
noise-corrupted measurement data and other inaccuracies
to estimate the parameter values in a recursive manner,
even when none of the variables are directly measurable
[7,8]. In terms of computational cost, KF type approaches
are more moderate. The Kalman filter was originally de-
rived as a state estimator used to estimate the hidden
state variables (i.e. variables that are not directly measur-
able). Within the KF framework, the parameter estimation
problem can be reformulated as a state estimation prob-
lem, where it considers the parameters as hidden variables
and tries to estimate their values [9]. The KF operates by
approximating the probability density function of the pa-
rameters and can cope efficiently with multi-modality,
asymmetries and discontinuities [10]. This is a very
powerful technique which can perform estimation even
when the precise knowledge of the model is not available
or the measurement data is noisy and incomplete [11].
However, the basic KF is limited to linear systems
whereas most biological models are non-linear. Several
non linear extensions of the Kalman filter have been suc-
cessfully used for parameter estimation in biological sys-
tems, of which the two most widely used are the
extended Kalman filter (EKF) and the unscented Kalman
filter (UKF) [2,3,9,12]. Among these two non-linear exten-
sions, UKF has the better estimation accuracy due to its
approach of handling the non-linearity [13-15]. However,
UKF suffers from numerical instability when the estima-
tion covariance matrix is not positive definite. Moreover,
there are no general methods for introducing constraints
into the estimation process in UKF, which is crucial in
biological modelling to ensure biologically meaningful
parameter values [16]. The square-root variation of UKF
(SR-UKF) proposed by Merwe and Wan, 2001 solves the
numerical stability problem of the UKF but does not have
the mechanism to introduce constraints into its estima-
tion procedure. Recently these issues have been addressed
with the development of the constrained square-root un-
scented Kalman filter (CSUKF), a constrained extension
of the SR-UKF, which was specifically designed for use
with biological models [17]. The CSUKF estimates the pa-
rameters within a biologically meaningful parameter space
while guaranteeing numerical stability of the filtering
technique by ensuring positive definiteness of the covari-
ance matrix.
A second issue that arises in the successful parameter

estimation for any kind of model is non-identifiability [18].
Identifiability analysis tries to answer the question of
whether or not it is possible to have a unique estimation
of an unknown parameter within the constraints of the
mathematical model, the available measurement data and
the corresponding level of error (noise) in this data [19].
For a non-identifiable model, different sets of parameter
values agree equally well with the measurement data
which results in an un-reliable model [20]. Such models
might not address the underlying biological question
properly, thus reducing any value derived from the model.
Therefore it is reasonable to perform parameter estima-
tion only after non-identifiability within the model has
been determined and resolved. Non-identifiability can be
divided into two types, structural and practical non-
identifiability [21]. If the non-identifiability in the param-
eter arises due to the model structure then it is called
structural non-identifiability, whereas if it is due to meas-
urement data it is called practical non-identifiability. For
successful parameter estimation it is necessary to address
both types of non-identifiability.
In this paper we propose an integrated approach to form

a novel parameter estimation framework, leveraging the
inherent features of the CSUKF in combination with tech-
niques in identifiability analysis. This approach combines
two modules, the first for parameter estimation, centering
on the CSUKF and the second for identifiability analysis
(IA). The IA module encompasses a data-oriented iden-
tifiability analysis that categorizes both structurally and
practically non-identifiable parameters. To assist in resolv-
ing any non-identifiability, the framework includes ranking
of the parameters and the determination of the correlation
and functional relationship(s) involving non-identifiable
parameters. These features provide feedback that guide
the design of both the model and experiment to solve the
problem of non-identifiable parameters. However, under
real world situations it is not always possible to solve the
non-identifiability outright, which typically requires ac-
quiring additional data or simplifying the model. Often
the required additional measurement data is either not
available or not technically possible. Furthermore model
simplification may significantly limit the ability for gener-
ating predictive behavior, reducing the usefulness of the
model. Thus for a complete solution the framework in-
cludes a novel method for estimating parameters even in
the presence of non-identifiability. This method uses the
informed prior to formulate the prior state distribution
for the CSUKF which subsequently allows the CSUKF to
determine a unique parameter estimation for a model
which is otherwise non-identifiable from the frequentists
perspective.
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Implementation
Model representation
Biochemical networks are nonlinear and dynamic in na-
ture. In order to apply the CSUKF for parameter estima-
tion of these biochemical networks, the system has to be
formulated as a non-linear state space model [9]. In a
state space model, the dynamics of the network are repre-
sented by a set of first-order differential equations in
order to provide a powerful and convenient representation
of the system. This representation consists of state vari-
ables and observed variables along with their different
components and interactions. The total state of a system
at any given time is represented by the state variables. The
observed variables represent the values that are directly
measurable in the system. Model quantities that are not
directly observable are called hidden states. In this paper
the following state space equation is used to represent the
systems

_x ¼ F x; θ; tð Þ þ w ; x t0ð Þ ¼ x 0ð Þ
y ¼ H x; θ; tð Þ þ v

ð1Þ

The vector x = [x0, x1,…, xn] represents the state of the
system at any time t ≥ t0, with an initial value of x(0). The
state vector is composed of the variables that are time
dependent such as the concentration of proteins or metab-
olites. The state equation F defines the evolution of the
state variables over time. In addition to the states, F is
dependent on the model parameters, θ = [θ0, θ1,…, θn].
The network may only be partially observable and so x
may not be fully accessible. Thus the state variables can
only be observed through the observation equation H
where the output signals y is the quantity we can measure.
The state equation is corrupted by process noise w which
is an uncorrelated Gaussian white noise with probability
distribution p(w) ~N(0,Q). This noise describes the
amount of confidence we have in our model. The measure-
ment noise v with probability distribution p(v) ~N(0, R) is
also uncorrelated Gaussian white noise and similarly de-
scribes the reliability of the measurement data. Both the
process noise covariance matrix Q and the measurement
noise covariance matrix R are considered additive and
positive definite.

Parameter estimation in non-linear state space
The state-space definition can be extended to facilitate
simultaneous state and parameter estimation by treating
the parameters as augmented states xaug = [x θ] [12,22].
The dimension of this augmented state is the sum of the
number of states and number of parameters. These pa-
rameters are constant values in the model with a 0 rate
of change. Thus the parameter estimation problem be-
comes a state estimation problem, described by
_x ¼ F x; θ; u; tð Þ þ w ; x t0ð Þ ¼ x 0ð Þ
_θ ¼ 0 ; θ t0ð Þ ¼ θ 0ð Þ
y ¼ H x; θ; tð Þ þ v

ð2Þ

Deriving non-linear state space from ODEs
The dynamics of the biological systems are characterized
by a set of ODEs. In order to represent the ODEs with
state space equations they must first be cast into discrete
form via the functions f (k), k ≥ 0 [23], which numerically
integrates the state dynamics between the time points in
which the state is observed.

f xaug kð Þð Þ ¼ xaug kð Þ þ
Z tkþ1

tk

F xaug τð Þð Þdτ
xaug k þ 1ð Þ ¼ F xaug kð Þð Þ þ w kð Þ

ð3Þ

where xaug kð Þ ¼ x kð Þ θ½ � is the augmented state vector
at iteration k. For notational simplicity the discrete form
of the augmented state vector xaug(k) will be denoted x(k)
throughout the remainder of this work.
Using this formulation the parameter estimation prob-

lem is restated as a state estimation problem, which can
now be addressed within the framework of control theory
using an extension to the Kalman filter.

Overview of the framework
The main objective of this paper is to develop a complete
parameter estimation framework around a novel filtering
technique to successfully estimate parameters of bio-
logical kinetic models. The complete framework depicted
in Figure 1 comprises two main modules, 1) the parameter
estimation or CSUKF module and 2) the identifiability
analysis (IA) module. Designed and implemented separ-
ately, the identifiability analysis nonetheless includes func-
tions that are data driven, requiring a high degree of
interaction with the parameter estimation module.
The IA is initially utilized to determine and classify non-

identifiable parameters. Once found, the operation of the
IA turns to resolving this problem of non-identifiability
through a variety of operational sub-units. These sub-
units perform a ranking of the parameters, and determine
their correlation and functional relationships. The last step
has the IA return the sub-set of parameters that may now
be optimized for a unique solution, including the informed
prior (if required) to work with any remaining non-
identifiable parameters.
As the IA is data driven, the parameter estimation mod-

ule is used to provide sets of partially optimized parameter
values as initial values (in addition to other information
such as the residuals. Once control is passed back to the
estimation module, the CSUKF begins its basic operation
of parameter estimation, starting with small random
values. This estimation is iteratively refined until the pre-
defined stop criterion is met, such as the number of



Figure 1 Overview of the complete parameter estimation framework. The estimation process begins by presenting the parameter estimation
module with an initial set of kinetic parameters. A first pass through the parameter estimation is performed and used to initialize the identifiability
analysis (IA) module. The IA determines and classifies the non-identifiable parameters, suggesting possible solutions. The IA then returns the subset of
parameters found to be identifiable in addition to the informed prior which may be used by the CSUKF to formulate the prior state distribution. Thus
the CSUKF is able to determine a unique solution, even if some parameters remain non-identifiable.
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iterations or the objective function reaching a stable or
threshold value. Finally the optimized parameters are
combined with the model yielding the optimized model.
In the next sections the two modules are described,

starting with the parameter estimation module. The
CSUKF will be briefly described, highlighting how it in-
teracts with the identifiability analysis module. This is
then followed by a detailed description of the identifia-
bility analysis module.

Parameter estimation module
Parameter estimation is performed using the constrained
square-root unscented Kalman filter (CSUKF) [17]. Al-
though it can stand on its own, this filtering technique
was developed specifically to work within this greater
framework. To this end it is numerically stable, can esti-
mate parameters of a non-linear model and has the cap-
ability of introducing constraints into the estimation
process. Its joint state and parameter estimation capability
makes it possible to estimate parameters even in the pres-
ence of hidden variables. It takes into consideration both
the process noise, due to model uncertainty, and measure-
ment noise, due to error in the measurement data. The
CSUKF applies the Bayesian framework to estimate the
parameter values of biological models where reasoning
under uncertainty is essential. While the introduction of
constraints to this probabilistic inference technique results
in more biologically meaningful parameter estimates.

Parameter estimation with CSUKF
The CSUKF approximates the posterior probability of
the state variable x(k), i.e. p(x(k)|y(k)), given the meas-
urement data up to the time k. The posterior mean and
covariance from this distribution are optimally calcu-
lated within the state constraint, L(k) ≤ x(k) ≤U(k), where
L(k) is the vector of lower bounds and U(k) is the vector
of upper bounds. The UKF works by transforming the
non-linear model to a statistically linear one and then
applies the KF. This transformation is based on a min-
imal set of sample points, called sigma points, around
the mean. The CSUKF guarantees these sigma points,
and thus the mean, respect the boundary conditions by
properly weighting them. These weights Wm and Wc are
then adjusted according to the position of these sigma
points. Numerical stability of the algorithm is ensured
by propagating the square-root of the covariance matrix
instead of the full covariance matrix.
These features make CSUKF a strong parameter esti-

mation method for biological systems. For the complete
algorithm and detailed explanation of the CSUKF see
[17]. In addition to the general estimation, the CSUKF is
used to generate parameter estimates for the methods in
the IA module. This includes the initial parameter esti-
mation for the data driven identifiability analysis and
generating the trajectories for the profile likelihood
based parameter identifiability analysis.

Identifiability analysis module
Given a mathematical model and the associated meas-
urement data, identifiability analysis determines whether
it is possible to produce a unique solution for the un-
known parameters [24]. Identifiability analysis is particu-
larly significant for biological models as it determines
the extent to which the same parameter value is repro-
ducible in the face of noisy and limited measurement
data [20,25]. Thus it is only reasonable to perform par-
ameter estimation once identifiability issues have been
resolved. To this end, the identifiability analysis module
of the framework first determines the non-identifiable
parameters of the model, classifies them and then directs
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the solution, either directly or indirectly (i.e. via the in-
formed prior).
The identifiability analysis module is described in detail

in Figure 2. The functionality of this module is divided
into three main steps, analysis/classification, direct solu-
tion and indirect solution. The data driven identifiability
analysis receives the initial set of parameter values
together with residual values from the CSUKF in order to
determine which, if any, parameters are non-identifiable.
During the analysis, non-identifiable parameters are classi-
fied as being either structurally or practically non-
identifiable. After finding the non-identifiable parameters,
the IA module computes a sensitivity based ranking of the
parameters. This ranking lists the parameters according to
their importance. A common cause of non-identifiability
is a linear or non-linear relationship between parameters.
Linearly correlated parameters are identified through the
correlation method and non-linear relationships among
the parameters are ascertained by determining their func-
tional relationship. Information on these specific relation-
ships may then be used to determine possible solutions
Figure 2 The identifiability analysis module. This module determines, c
non-identifiability is attacked two fold, directly via a ranking of the parame
relationship(s) between parameters, and indirectly via the generation of the
of the identifiability analysis via the multiple interconnections between the
for non-identifiability among these parameters. In such re-
lationships, parameters with high ranks are given priority
for direct measurements in wet lab experiment. Using
these new values, the low ranking parameters are re-
evaluated to determine if they are still non-identifiable.
When additional wet lab data is not available for any of
the high or low rank parameters, the low ranking parame-
ters may be set to small nominal values. This effect is min-
imal due to the lower sensitivity of these parameters on
the system output [26]. The non-identifiability of the high
ranking parameters is then re-evaluated, and if necessary
the model may be reformulated to reduce the number of
states and parameters as outlined in [27]. This type of sim-
plification is targeted to solve the structural non-
identifiability of the model. However this approach is only
feasible if such simplification does not lead to a deletion of
a pathway or reaction required for the targeted study of
the model.
To solve the remaining practical non-identifiability the

state trajectories are plotted along the parameter values
to identify where the parameter uncertainty causes larger
lassifies and solves (if found) non-identifiable parameters. The issue of
ters and identification of both correlation(s) and non-linear functional
informed prior. This detailed schema highlights the data driven nature
IA and the parameter estimation module.
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deviation in the state trajectory. This identifies where an
increase in either the number of data points or the accur-
acy of the existing data would help to resolve the practical
non-identifiability. However, it is often the case with bio-
logical systems that an increase in the quantity or accuracy
of the measurements is not a practical solution.
For any remaining non-identifiable parameters the in-

direct solution is applied. The CSUKF is a Gaussian es-
timation procedure where the posterior probability
distribution of a state variable is calculated from its
prior distribution and the likelihood. This prior prob-
ability distribution expresses the subjective uncertainty
about the state variables before utilizing the measure-
ment data. An informed prior can be formulated if
there is previous information regarding the distribution
of the state variable in question [28]. The determin-
ation of an informed prior for a state variable allows
the CSUKF to produce a unique estimation.
The following sections provide more detail on each of

the specific functions comprising the identifiability ana-
lysis module shown in Figure 2.

Parameter ranking calculation
When considering solutions to non-identifiable parame-
ters, it is beneficial to first determine the sensitivity of
individual parameters. Parameters having high sensitivity
towards the state variables must be estimated accurately.
However, parameters with sensitivity below a critical
threshold essentially have little or no effect on the
model. This framework utilizes the orthogonal based
parameter ranking method [26,29]. This is a data driven
method that calculates the ranking based on the esti-
mated parameter values. The sensitivity matrix is formed
by taking the partial derivative of the system state output
with respect to each of the model parameters. Elements
of this matrix, denoted as sensitivity coefficients, are
then used to measure the effect of the change in a par-
ameter on the system output. This orthogonal based
method ranks the parameters based on their sensitivity
and linear independence with respect to the other pa-
rameters. The sensitivity matrix, denoted Za, is given by

Za ¼ ∂X
∂Θ

¼

za1;1 za1;2 ⋯ za1;n
za2;1 za2;2 ⋯ za2;m
⋮ ⋮ ⋱ ⋮

zan;1 zan;2 ⋯ zan;m

2
6664

3
7775 ð4Þ

where X is the vector with all output elements, Θ is the
parameter vector and zai;j ¼ ∂xi

∂θj
is the sensitivity of state i

with respect to parameter j. In order to normalize the
effect of high state or parameter values, individual ele-
ments of the matrix are scaled as
zi;j ¼ ∂xi
∂θj

:
θ̂ j

x̂i
ð5Þ

where θ̂ j is the optimal estimate of the jth parameter and
x̂i is the value of the ith output variable.
The parameters are then ranked using the orthogonal

based algorithm described by [26], based on their sensitiv-
ity towards the model output. This ranking selects the
parameter with the largest orthogonal distance from the
rest of the parameters in their sensitivity matrix as having
the highest impact on the model response with the max-
imum linear independence. The net influence of the se-
lected parameter on each of the remaining parameters is
adjusted by regressing the original columns of the sensitiv-
ity matrix on to the column associated with the selected
parameter. The next parameter is chosen based on a
residual value calculated from the orthogonal distance
between the sensitivity matrix and the regression matrix.
The algorithm is presented in detail in Additional file 1.
In this framework the ranking information is used in

combination with the other tools in the IA module to
better target solutions. However in some applications
the ranking is used as a direct indication of identifiability
based on a predetermined threshold. As demonstrated,
in the analysis of the sugar cane culm model, while the
ranking provides useful information, it is unreliable as
the sole indicator of identifiability.

Profile likelihood based structural and practical
identifiability analysis
In the Kalman filter, and its non-linear variants, param-
eter identifiability is typically addressed in the view of
observability [12]. However, since the computational
complexity of this analysis increases with both non-
linearity and model size, this analysis is not well suitable
for large scale biological models. In order to better target
biological modelling, our framework integrates the pro-
file likelihood based identifiability analysis [21] to deter-
mine both the structural and practical non-identifiable
parameters. In parameter estimation a weighted sum of
squared residual (the difference between estimated and
measured data) is commonly minimized to estimate the
parameter values. For normally distributed measurement
noise, this difference follows a χ2 distribution when eval-
uated at the optimal solution [30] and corresponds to
the maximum likelihood estimation of the parameters
[20]. A robust confidence region is then derived from
the asymptotic χ2 distribution of the likelihood ratio test
by calculating the profile likelihood of the parameters
[31,32]. To use the confidence interval, the profile likeli-
hood trajectory is calculated for each parameter θi along
the minimum of the χ2 (θ) with respect to all other pa-
rameters. Then for each parameter, the corresponding
trajectory is compared to the θj≠i desired confidence
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interval, a threshold of 95% (i.e., approx. 2 standard de-
viations), to determine if the parameter is structurally or
practically non-identifiable.
Essentially the profile likelihood method explores the

space around each parameter in the direction of least
increase of χ2 (θ). This method reduces the maximum
likelihood estimation to a function of a single parameter
of interest by considering the other parameters to be nuis-
ance parameters. Nuisance parameters are those parame-
ters which are not of direct interest but are required for
the successful analysis of the parameter of interest. In its
calculation the parameter vector is partitioned as θ = (ψ,η)
where ψ is the vector of parameters of interest and η is the
vector of nuisance parameters. The parameter of interest
is kept fixed at its optimal value and the nuisance parame-
ters are varied to produce the maximum likelihood (ML)
trajectory. The profile likelihood at step k is defined as

plk ¼ max
η

lk ψ; ηð Þ ð6Þ

where lk(ψ,η) is the maximum likelihood estimation of
the parameter ψ maximized over η at the kth step of the
profile likelihood calculation.
The profile likelihood trajectory can be used to build a

confidence region for each of the parameters individu-
ally. This confidence interval is called the likelihood
based confidence region which is based on the general-
ized likelihood ratio test [31]. This likelihood ratio test

follows an asymptotic χ2 distribution. Considering l θ̂
� �

as the maximum likelihood estimation (MLE) and pl(θ)
as the profile likelihood of the parameter vector θ, then
the likelihood ratio is written as

2 pl θð Þ−l θ̂
� �h i

< Δ α;mð Þ

where Δ(α,m) is the threshold value for 1-α quantile of χ2

distribution with m degrees of freedom. Following a χ2

distribution, the equation can be rewritten as [19]

χ2 θð Þ−χ2 θ̂
� �� �

< Δ α;mð Þ ð7Þ

where χ2(θ) represents the objective function value of
the profile likelihood and χ2 θ̂

� �
is the MLE of the par-

ameter vector, both calculated while keeping the param-
eter of interest fixed to a predefined value. The border
of this confidence region represents the likelihood confi-
dence interval [21]. To calculate this profile likelihood
trajectory we start with the initial optimal solution of
the parameter values calculated using the CSUKF. In
combination, the KF together with this identifiability
analysis has a likelihood interpretation with equations
derived from the chi-square merit function [33]. Using
the representation of χ2 in vector form and the notations
from the CSUKF derivation, the same χ2 merit function
used for the sum of squared residual can be used for the
CSUKF at the kth iteration as

χ2k ¼ y kð Þ−ŷ− kð Þð ÞR− y kð Þ−ŷ− kð Þð ÞT

Thus the final merit function is

χ2 ¼
Xn
k¼1

y kð Þ−ŷ− kð Þð ÞR− y kð Þ−ŷ− kð Þð ÞT ð8Þ

Where n is the number of data points, R is the obser-
vation error covariance matrix, y(k) is the vector of ob-
servation data and ŷ−(k) is the current estimate of the
observed state variables. The parameter for which we
seek to calculate the profile likelihood is then increased
step by step. The nuisance parameters are then opti-
mized using the CSUKF to reach the global optima with
the specific value of the fixed parameter. This parameter
is increased until either the χ2 crosses the threshold
value (corresponding to a 95% confidence interval) or it
is determined to run horizontal, i.e., not crossing the
threshold. This represents the upper bound of the confi-
dence interval. The same approach is applied again with
decreasing step size starting at the optimal solution to
calculate the lower bound of the confidence interval.
This process is repeated for each parameter deriving
each of their likelihood based confidence intervals. Based
on the analysis they are defined to be identifiable, struc-
turally non-identifiable or practically non-identifiable.
The ith parameter θi is said to be identifiable, if it has a

finite likelihood based confidence interval, that is σ−i > −∞
and σþ

i < þ∞ , where σ−i ; σ
þ
i

� �
are respectively the lower

and upper bounds of the confidence interval. Conversely,
when either one or both of the limits approach infinity,
i.e., χ2(θi) does not cross the given threshold; the corre-
sponding parameter cannot be estimated [20]. When a
parameter has infinite confidence interval in both direc-
tions it is classified as structurally non-identifiable. How-
ever, if the confidence interval is infinite in only one
direction, then it is classified as practically non-identifiable
(see Figure 3 for examples).
Either type of non-identifiability may be solved by direct

measurement of the parameters, However this is typically
not a feasible solution, thus each type of non-identifiability
may be attacked indirectly. Structural non-identifiability is
due to an insufficient mapping of the observation function
resulting from functionally related parameters [20]. As
such structural non-identifiability is independent of the
measurement data. Possible solutions are to alter the ob-
servation function by measuring different state variables
[21] or to modify the model definition through simplifica-
tion. On the other hand, practical non-identifiability
depends on the amount and/or the accuracy of the meas-
urement data. Therefore practical non-identifiability may
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Figure 3 (See legend on next page.)
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Figure 3 Profile likelihood based parameter identifiability analysis for each of the 12 estimated parameters. The solid line represents the
profile likelihood trajectory, with the parameter values in log scale. Panels (a) - (l) represent the 12 parameters for which the identifiability analysis
was conducted. In each plot the dotted lines represent the two thresholds. The lower threshold is the 95% point wise confidence interval and
the upper threshold is the 95% simultaneous confidence interval. If the profile likelihood of a parameter crosses the threshold line for both high
and low values then the parameter is identifiable. A horizontal (i.e., flat) profile likelihood indicates structural non-identifiability, while crossing the
threshold(s) on only one side indicates practical non-identifiability. In most of the cases it is reasonable to conclude that the parameters crossing
the pointwise confidence intervals are identifiable.
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be solved by an increase in the amount and/or the accur-
acy of the measurement data.

Determining inter-related parameters
When there exists a relationship between two or more
parameters, these parameters are non-identifiable [34].
However, if these relationships, classified as linear or
non-linear, can be determined, the non-identifiability
may be resolved for all affected parameters.
Linear relationships can be identified by analyzing the

correlation between parameters. The conventional method
uses the covariance matrix to calculate this correlation.
The inverse of the fisher information matrix (FIM) is used
to provide an estimation of the lower bound of the covari-
ance matrix according to the Cramèr − Rao inequality
[35]. However, when dealing with non-linear models the
FIM may lead to a poor approximation [36]. In this frame-
work, the correlation coefficient is calculated from the
square-root of the state covariance matrix generated by
the CSUKF during the parameter estimation process. The
covariance matrix calculated by the sigma point method is
highly accurate and does not require the calculation of
gradients or the Jacobian [36].
Non-linear relationships cause the parameters to be func-

tionally related. This framework incorporates the mean op-
timal transformation approach (MOTA) developed by [34]
to uncover functionally related parameters. MOTA is a
non-parametric bootstrap type algorithm, based on an opti-
mal transformation of the dependent (response) variable
and a set of independent (predictor) variables. This trans-
formation is estimated by the alternating conditional ex-
pectation (ACE) [37], a non-parametric regression method
used to explore the effect of one or more independent vari-
ables on the dependent variable.

Informed prior for treatment of non-identifiability
The previous techniques of the identifiability module
deal with determining non-identifiable parameters and
suggesting solutions, such as which additional measure-
ment data would help solve the non-identifiability. How-
ever situations frequently arise in systems biology where
it is not possible to collect the required measurement
data and simplification of the model may be undesirable
or counter productive. In these scenarios the frequen-
tists approaches, such as least squares, are incapable of
estimation in the presence of non-identifiable parame-
ters [28,38,39]. Thus, in the absence of identifiability
these approaches cannot generate a unique set of esti-
mated parameters. In contrast, Bayesian inference can
make unique parameter estimation even in the presence
of non-identifiability, provided that an informed prior
distribution is provided [28,39].
Before discussing the informed prior, it is necessary to

describe parameter identifiability from the perspective of
a probability distribution. Given a set of parameters Θ
and a vector of observed random variables X the condi-
tional probability distribution of X given Θ is defined as
p(X|Θ). If there exists two sets of parameters Θ1 ≠ Θ2

they are said to be non-identifiable if

p X Θ1Þ ¼ p X Θ2Þjðjð ð9Þ

In other words, if the parameters are identifiable then
two different sets of parameter values can not produce
the same probability distribution [39].
However, an informed prior can be used to form a

Bayesian inference for the parameters even if they are
non-identifiable. As an example, let us consider a par-
ameter vector with two elements, Θ = [θ1, θ2]. Different
parameter values for the two sets of Θ are considered,

where Θa ¼ θa1; θ
a
2

� �
and Θb ¼ θb1; θ

b
2

� �
. The parameters

can be uniquely identified with the use of an informed
prior, e.g., θ1 = y with probability 1 then Θ1 =Θ2 only

when θa2 ¼ θb2 making the model identifiable. Thus, if an
informed prior is available, Bayesian inference is possible
even for models which are otherwise non-identifiable
from the perspective of likelihood. However by itself it is
not sufficient to trust the solution from Bayesian infer-
ence. Without due care, such as an improper network
definition or ill defined probabilities, Bayesian inference
may not converge to the true value of a parameter [28].
As the CSUKF is an extension of dynamic Bayesian in-
ference, the same approach can be applied to CSUKF. In
CSUKF this proper prior is formulated by informedly
initializing the state covariance matrix and the state
noise covariance matrix.

Results
To verify the applicability and accuracy of the proposed
framework, it was implemented in the numerical tool-kit
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MATLAB and used to estimate parameters of two in-
silico models, a kinetic model for sucrose accumulation
in the sugar cane culm tissue [40,41] (SBML model
available from the Biomodels database [42]), and a gene
regulatory network supplied by the DREAM6 Estimation
of Model Parameters Challenge [43] (the SBML model is
available from the Sage Bionetworks’ Synapse database
[44]a). Utilizing the Systems Biology toolkit, the models
were converted from SBML to MATLAB as a system of
ODEs. The framework was evaluated using synthetic
measurement data generated by first simulating each
model using all of the known parameters and then add-
ing random Gaussian white noise to this simulated data.
Despite starting with data generated directly from the
known parameters, the information is lost between the
movement of the parameter values to simulate the syn-
thetic data and the return to parameters via estimation
[45]. Thus the use of synthetic measurement data has
become a general method to validate numerical algo-
rithms [45].

Experiment 1: The sucrose accumulation model in the
sugar cane culm tissue
Rohwer and Botha [40] published the kinetic model for
sucrose accumulation in the sugar cane culm tissue which
was then extended by [41] to account for isoforms of
sucrose synthesis and fructokinase. The model helps to
assess the biochemical control of sucrose accumulation
and futile cycling in sugarcane. It provides the possibility
of using different strategies to enhance sucrose accumula-
tion and then selects the most promising one. The sche-
matic diagram of the model is given in Figure 4. Details of
the rate laws can be found in Additional file 1.
Figure 4 Schematic diagram of the sucrose accumulation model of su
Suc6P: sucrose-6-phosphate; HexP (Hexose phosphates); Fru: fructose; Glc: g
‘vac’ stands for vacuolar. The numbered V’s denote the reactions which are
V2: Glucose (Glc) uptake; V3: Hexokinase (Glc); V4: Hexokinase (Fru phosphor
phosphate phosphatase; V8: Sucrose synthase; V9: Invertase; V10: Glycolysis;
Experimental setup
The model has 54 parameters from which 12 are selected
for estimation, corresponding to the same 12 parameters
that Rohwer estimated in his work [40]. The remaining
42 parameters are considered to be known and kept fixed
throughout the estimation. Five metabolites have variable
concentrations; Fru, Glc, HexP, Suc6P and Suc, while the
rest are held constant. All five of these metabolites have
an initial concentration of 1 mM. Synthetic time series
data was generated for use as the measurement data, over
the time interval [0 2340] seconds with a step size of Δt =
10 seconds. The noisy measurement data was generated
from the simulated time-series data y, as ynoisy ¼ max

0; y� 1þ 0:2� rð Þ½ �, where r is a random variable hav-
ing normal distribution with 0 mean and 1 standard devi-
ation. The process noise covariance matrix Q is initialized
with the augmented noise of the parameters and the state
variables. The measurement noise covariance matrix R is
initialized to 0.2 × r × y. The CSUKF is used to generate an
initial approximation of the parameters as well as the data-
sets used to conduct the ranking and identifiability
analysis.
Orthogonal identifiability analysis and ranking
In this paper an orthogonal based ranking method is
used to rank the parameters based on their probability
of being identifiable [46]. Table 1 summarizes the results
with the estimation from 50 runs of CSUKF along with
the ranking of the parameters chosen from the most
common ranking of those 50 runs. The threshold of the
stop criteria for the ranking method is 0.004. Seven out
of 12 parameters in the estimation have a standard
gar cane culm tissue. Abbreviations are as follows Suc: sucrose;
lucose. The subscript ‘ex’ stands for extracellular and the subscript
represented by rate laws. The reactions are V1: Fructose (Fru) uptake;
ylating); V5: Fructokinase; V6: Sucrose phosphate synthase; V7: Sucrose
V11: Vacuolar sucrose import.



Table 1 Parameter estimation results using the CSUKF,
parameter ranking and profile likelihood analysis from
the sugarcane model

CSUKF

Parameter
name

Actual
value

Mean Std. Dev. Orthogonal
ranking

Proflile
likelhood
analysis

Vmax6r 0.2 0.34 0.670 1 Practically NI

Km6Suc6P 0.1 5.97 4.580 2 Structurally NI

Ki6UDPGlc 1.4 0.32 0.400 3 Identifiable

Ki1Fru 1 1.00 0.010 4 Identifiable

Ki3G6P 0.1 0.67 1.460 5 Practically NI

Km6UDP 0.3 4.73 3.450 6 Structurally NI

Vmax11 1 0.28 0.190 7 Identifiable

Ki6Suc6P 0.07 0.45 0.770 8 Practically NI

Ki2Glc 1 1.00 0.009 9 Identifiable

Ki4F6P 10 0.63 0.850 N.I. Practically NI

Ki6F6P 0.4 0.65 1.060 N.I. Practically NI

Km11Suc 100 21.43 21.820 N.I. Practically NI

N.I. - Not Identifiable.
The mean and standard deviation of the estimated parameters are calculated
from 50 repetitions. The ranking is chosen based on the weighted average
ranking from each of the 50 runs. The profile likelihood analysis determines all
non-identifiable parameters and classifies the non-identifiability as practical or
structural. In each repetition the parameters are randomly initialized to values
between 0 and 1.
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deviation greater than 100% of their mean values. Fur-
thermore, the mean value of six of these parameters is
greater than 1 standard deviation from the actual param-
eter value. Parameters with high sensitivity (i.e., higher
ranked parameters) must be well estimated as by defin-
ition the system is most sensitive to small variations in
these parameters. For example, Vmax6r which is ranked
first) has the highest magnitude in the sensitivity coeffi-
cient matrix and thus the system is most sensitive to any
variation in this parameter. On the other hand variations
within low ranking parameters have substantially less
effect on the system. Thus the high deviation of the esti-
mate of parameter Km6Suc6P (rank 2) is of more concern
than the similar deviation of Km6UDP (rank 6).
As we will see, the relatively poor estimation, is due to

several of the parameters being non-identifiable, which
affects the estimation of all of the parameters. This al-
lows the values of the parameters to vary within a wide
range. Furthermore these parameters may affect the esti-
mation of other parameters when the non-identifiability
is due to a functional relationship between the parame-
ters. This is more fully discussed in Additional file 1
with an example of functional relationships.

Profile likelihood based analysis
The orthogonal identifiability analysis has several draw-
backs, chief among them that it cannot conduct a full
identifiability analysis. One indication of this is the rela-
tively high standard deviations of the high ranking iden-
tifiable parameters, specifically the two parameters
Vmax6r (nearly 200% of the mean value) and Km6Suc6P

(77% of the mean value) in Table 1. One point to note is
that this analysis depends on the initial value of the
parameters. In some cases these parameters have high
initial values at the beginning of the estimation which
then decreases with the number of iterations [26]. Thus
sensitivity analysis alone is not sufficient to perform a
full identifiability analysis of a system. To this end, a
profile likelihood based identifiability analysis is used to
identify both the structural and practical non-identifiable
parameters, by calculating the profile likelihood trajec-
tories using data from the CSUKF. For this sugarcane
model with 12 parameters and 234 data points, a good
data agreement is found with an objective function value
of χ2 = 90.27. The step size is adjusted based on both the
parameters and their profile likelihood values. When the
profile likelihood trajectory is not smooth, a smaller step
size is chosen. The step size is increased if the iteration
stops prematurely, e.g. due to reaching the maximum
number of iterations. For these 12 parameters the result
of the profile likelihood identifiability analysis using a
confidence interval of 95% is depicted in Figure 3. Defin-
ing the point-wise confidence interval threshold (i.e.
when the degree of freedom is one) for a 95% confidence
level is Δ(α,m) = 3.84 and the simultaneous confidence
interval threshold (i.e., when the degree of freedom is
equal to the number of parameters) is Δ(α,m) = 21.03.
As shown in Figure 3, only four of the parameters are

actually identifiable, Ki1Fru, Ki2Glc, Ki6UDPGlc and Vmax11,
with finite likelihood based confidence intervals in both
the increasing and decreasing directions of the parameter
values. Two parameters are structurally non-identifiable,
the more severe of the two, with completely flat profile
likelihoods, Km6Suc6P and Km6UDP. The elevated standard
deviations, a feature associated with structurally non-
identifiable parameter estimates [34], are, if anything mis-
leadingly optimistic. In fact, structurally non-identifiable
parameters can take any value within a wide range without
having any affect on the objective function (recall the flat
profile likelihoods’), and typically cannot be solved solely
through additional measurements. Such non-identifiability
is often due to the over-parameterization of the model
[18], which may be due to functional relationships among
the parameters of the model [39].
The remaining parameters, Ki3G6P, Ki4F6P, Ki6Suc6P,

Vmax6r, Ki6F6P and Km11Suc, were found to be practically
non-identifiable with their likelihood-based confidence
region extending infinitely in one direction (Figure 3).
This indicates that these parameters cannot be reliably
estimated with acceptable accuracy from the available
noisy measurement data [20,21,47].
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Solving parameter non-identifiability, parameter reduction
and targeted measurements
After the appropriate categorization of all parameters,
these non-identifiabilities must be solved to have a
unique parameter set. The simplest approach to solve
the structural non-identifiability of the parameters is to
directly measure them. To minimize or eliminate param-
eter measurements there are methods which try to
change the model structure in order to remove over
parameterization. This includes changing the mapping
of the observation function through new measurement
data [19,21] or to use a known functional relationship.
In the latter case only a subset of the functionally related
parameters need to be directly solved. In this case the
higher ranked parameters are measured while the lower
ranked parameter(s) remain estimated or when parameter
measurements are not possible, the high ranking parame-
ters are estimated while keeping the low rank parameter(s)
fixed to a nominal value [26].
In this framework, we first try to determine whether the

two structurally non-identifiable parameters have a linear
or non-linear relationship with any other parameter(s), then
take guided action. The mean optimal transformation ap-
proach (MOTA) using the profile likelihood estimation data
of the two structurally non-identifiable parameters was ap-
plied to determine any functional relationships. MOTA
identified functional relationships for both of these parame-
ters, Km6UDP and Km6Suc6P. Parameter Km6UDP was found to
have two functional relationships, one with Ki3G6P and one
with Vmax6r. The second structurally non-identifiable para-
meter, Km6Suc6P was also found to be functionally related to
Vmax6r. SinceVmax6r, which was determined to be practically
non-identifiable, is also the highest ranking parameter, it is
targeted for measurement. Thus in this example the meas-
urement of a single parameter, Vmax6r, solves the structural
non-identifiability of both Km6UDP and Km6Suc6P. A more
detailed discussion on function relationship is given in
Additional file 1.
Practical non-identifiability is typically due to an insuffi-

cient amount and/or quality of measurement data, [19,21].
The model trajectories of the state variables along the
profile likelihood of the practically non-identifiable pa-
rameters are examined to determine which measurements
are needed to solve the practical non-identifiability. An
example of these trajectories is illustrated in Figure 5.
This is used to identify the points where the uncertainty
in a specific parameter has the largest impact on the
model uncertainty. Thus regions of high variation within
these trajectories help to identify which measurements
will have the largest impact on the model uncertainty
[20]. A second cause of practical non-identifiability is cor-
relation between parameters [48,49]. The flattening of the
trajectory of a practically non-identifiable parameter may
be due to the correlation with one or more other
parameters. The non-identifiability among two or more
correlated parameters requires measurement data for all
but one of the correlated parameters to be available. Guedj
et al. [50] discussed a similar approach where they ana-
lyzed the practical identifiability of a dynamic model of
HIV through the correlation of the parameters. At each
iteration the CSUKF estimates both the mean and the
square-root of the covariance. From this the correlation
coefficient matrix is calculated, and used to guide the tar-
geting of parameters to be measured.
The analysis found a strong correlation between Ki3G6P

and Ki4F6P. It is not possible to use the ranking to select
between Ki3G6P and Ki4F6P as the latter was found to be
non-identifiable during the orthogonal ranking. However,
as both techniques identified parameter Ki4F6P as non-
identifiable, it was selected for measurement. A significant
correlation was also found between Ki6F6P, Vmax6r and
Ki6UDPGlc. Among these three parameters Ki6UDPGlc is an
identifiable parameter and Vmax6r has already been picked
up for measurement. In the best case this would also solve
the non-identifiability of Ki6F6P, however this parameter
remained non-identifiable and therefore was additionally
selected for measurement.
Of the remaining two unidentifiable parameters,

Km11Suc and Ki6Suc6P, the state trajectories of each con-
centration were plotted over the range of profile likeli-
hood values of these parameters. This analysis revealed
variations in the states of fructose and sucrose, Figure 5(a)
and (b) respectively, over the profile likelihood values
of Km11Suc. This trajectory suggests a large variation in
state trajectories, for both uptakes, which indicates
that new measurement data for these states may solve
the practical non-identifiability of Km11Suc. Thus new
synthetic measurement data was generated with a
smaller time step of 0.25 seconds.
The analyses did not find any explicit relationships for

the last non-identifiable parameter, Ki6Suc6P. However, it
was found that the preceding measurements were suffi-
cient to solve this non-identifiability. It is thought that
an as yet undetermined, more complicated, functional
relationship exists among Ki6Suc6P and multiple other pa-
rameters. The results from utilizing these additional
measurements are summarized in Table 2. By properly
identifying and solving the non-identifiability through
additional targeted measurements the estimated values
more closely approach the original values. Furthermore
it clearly illustrates that the CSUKF can accurately esti-
mate the parameters once the issue of non-identifiability
has been dealt with. The dynamics of the sugarcane
model states were simulated using the newly estimated
parameter values, see Figure 6. As expected, accurately
estimated parameter values are able to reproduce not
only a reasonable prediction of the stationary state, but
are also able to accurately reproduce the dynamics of
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Km11Suc generated during the calculation of the profile likelihood. Places of larger variability denote points where new measurement would
efficiently estimate the parameter.
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the system. However, solving the non-identifiabilities in
the first place required additional measurement data
for the metabolites or directly measuring the parame-
ters. The next section illustrates the alternative when
additional information is simply not available or even
not possible.
Results using the informed prior
While the typical course to solving non-identifiability is
through additional measurements, the simple fact is that
this is not generally feasible through biological experi-
ments [51]. While the situation is continuously improv-
ing, such as recent developments in devices and
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protocols for measuring time series data, these datasets
remain noisy and incomplete due to the ever increasing
model complexity coupled with limitations in measure-
ment techniques [52]. Thus it is not always possible to
directly measure parameter values or to measure extra
data points in the time-series data.
In such cases an accurate estimation requires alternative

methods for solving non-identifiability. As the CSUKF is
an extension of the Kalman filter it benefits from the abil-
ity to make use of an informed prior. Thus as an
alternative to additional measurements this framework ap-
plies the informed prior treatment of the Bayesian ap-
proach to solve any remaining non-identifiability. In this
approach an informed prior distribution is defined for the
parameters in the IA module. This informed prior is pro-
vided to the CSUKF which utilizes it to uniquely estimate
the parameters even in the case of non-identifiability. The
CSUKF belongs to the Gaussian family, thus the conjugate
prior distribution can be used to define the prior for the
parameters and state variables, while maintaining the



Table 2 Final parameter estimation result with
confidence intervals after solving the non-identifiability

Parameter name Original value Value σ+ σ-

Ki1Fru 1.00 0.99 1.19 0.18

Ki2Glc 1.00 1.00 2.07 0.40

Ki3G6P 0.10 0.10 0.11 0.10

Ki6Suc6P 0.07 0.05 0.09 0.01

Ki6UDPGlc 1.40 1.16 2.32 0.05

Km6UDP 0.30 0.40 0.63 0.18

Km6Suc6P 0.10 0.16 0.56 0.06

Vmax11 1.00 0.99 1.45 0.09

Km11Suc 100.00 99.59 102.48 96.70

*Ki4F6P 10.00 10.00 - -

*Vmax6r 0.20 0.20 - -

*Ki6F6P 0.40 0.40 - -

*Parameters that were measured.
To achieve this, three non-identifiable parameters (Ki4F6P, Vmax6r and Ki6F6P)
were “explicitly” measured and the rest were estimated. During each successive
estimation phase, parameters estimated with high confidence in a previous run
are fixed. The asymmetric confidence interval has upper bound σ + and lower
bound σ-.
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same probability density function (pdf) after transform-
ation [53]. Lindley & El-Sayyad [54] applied a similar treat-
ment for non-identifiable parameters, using Bayesian
inference to estimate parameters with respect to linear
constraints.
This approach was applied to the sugarcane model

using the original synthetic measurement data and with
the expectation that no extra experimental data can be
measured to otherwise solve the non-identifiability. Thus
not only must all twelve unknown parameters be
Table 3 Results of parameter estimation using CSUKF with an

CSUKF w

Parameter name Original value Mean

Ki1Fru 1.00 1.00

Ki2Glc 1.00 1.00

Ki3G6P 0.10 NI 0.67

Ki4F6P 10.00 NI 0.63

Ki6Suc6P 0.07 NI 0.45

Ki6UDPGlc 1.40 0.32

Vmax6r 0.20 NI 0.34

Km6UDP 0.30 NI 4.73

Km6Suc6P 0.10 NI 5.97

Ki6F6P 0.40 NI 0.65

Vmax11 1.00 0.28

Km11Suc 100.00 NI 21.43

NI - Non-identifiable parameter.
The mean and standard deviation are from 50 repetitions. For each of the iteration
range of 0 to 1, with the same initial values used for both cases.
estimated, but no additional time series measurement
data is available for use.
During the estimation the informed prior is introduced

into the distribution through the uncertainty of the par-
ameter values. The square-root of the covariance matrix
for the state estimation matrix V and the state noise co-
variance matrix Q are initialized with subjective uncer-
tainty to formulate the prior. Initially the orthogonal
based method finds the rank of the parameters. During
the rank calculation the uninformed prior is used. Re-
sults from this ranking are then used to formulate the
informed prior. Both V and Q are realized on the basis
of the rank of the parameters, where high ranking pa-
rameters are more sensitive towards the model states
and consequently are initialized with low standard devia-
tions. Similarly the insensitive low ranking parameters
are initialized with high standard deviations.
The results from the parameter estimation using the

informed prior are summarized in Table 3, with statistics
from 50 repetitions. Using the informed prior the result-
ing estimates are shown to have low standard deviations,
with only two parameters having a deviation above 2%
of its estimated mean value, Ki4F6P with 18.5% and
Ki3G6P with 5%. Overall there is a decrease in the relative
standard deviations of from one to three orders of magni-
tude. From this it is clear that by utilizing the informed
prior this framework can uniquely estimate parameters
even in the presence of non-identifiability. While this does
not guarantee a corresponding improvement in estimation
accuracy, all but two of the parameters show improvement
in their estimation over the previous results without using
the informed prior. What must be emphasized is that no
additional data has been added, thus the parameter
d without the informed prior

ithout informed prior CSUKF with informed prior

Std. Dev. Mean Std. Dev.

0.010 1.00 0.0100

0.009 1.00 0.0100

1.460 0.16 0.0080

0.850 6.26 1.1600

0.770 0.25 0.0010

0.400 0.14 0.0005

0.670 0.07 0.0003

3.450 4.69 0.0550

4.580 3.49 0.0100

1.060 0.93 0.0050

0.190 1.03 0.0200

21.820 104.64 2.1200

, the initial values for the parameters were initialized to random values in the
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estimation yields a unique set of parameters that can best
recreate the state space of the time series data and not the
specific underlying values of the biological parameters. A
steady state analysis with the estimated values using the
informed prior verifies the in vivo behavior of the model
by reproducing the distribution of metabolite concentra-
tions (Table 4). This indicates that although some of the
parameters were not close to the value described by
Rohwer, these parameters are in good agreement for cap-
turing the actual dynamics of the original system.
Experiment 2: The gene regulatory network
In order to illustrate the broader applicability of this param-
eter estimation framework to general biological networks,
the framework utilizing the informed prior was applied to a
gene regulatory network, Figure 7. This experiment was
based on the Dream6 challenge for the estimation of non-
identifiable parameters in a predetermined model [43]. This
model uses linear kinetics for mRNA degradation and pro-
tein synthesis and degradation. In addition, Hill type kinet-
ics is used to model mRNA synthesis with one or two
regulatory inputs. Each regulatory input works as either an
activating or an inhibitory input. In the absence of a regula-
tory input to a gene, a constant rate of transcription is as-
sumed. Both the network topology (Figure 7) and its
mathematical description (Additional file 1) were provided
by the contest. Protein production was modeled in combin-
ation with the transcription and translation steps.
Table 4 Steady state analysis with actual parameters
(from Rohwer) and with the estimated parameters
without and with the informed prior

Concentration (mmol/l)

Species From
original

parameters
(Rohwer)

From estimated parameters

without with

Informed prior Informed prior

Fru 40.5800 44.6964 42.6673

Glc 30.1100 29.5312 29.7667

HexP 2.9850 2.6517 2.7880

Suc6P 0.0040 0.0054 0.0051

Suc 10.4130 10.7087 10.4975

Sucvac 0.0000 0.0000 0.0000

Glycolysis 0.0000 0.0000 0.0000

Phos 5.1000 5.1000 5.1000

UDP 0.2000 0.2000 0.2000

ADP 0.2000 0.2000 0.2000

ATP 1.0000 1.0000 1.0000

Glcex 5.0000 5.0000 5.0000

Fruex 5.0000 5.0000 5.0000
A limited amount of microarray time-course data for all
mRNA concentrations is initially provided for the wild-type
variety. To reflect the actual scientific practice, additional
time-course data of mRNA and protein concentrations in
response to different network perturbations, in particular
gene deletion, siRNA-mediated knock-down and change of
RBS activity could be purchased within a predetermined
budget.
The model has a total of 30 parameters from which 29

are to be estimated. The mRNA degradation rate is kept
fixed to a nominal value of one. To test this framework,
time-series data for the mRNAs and protein abundance
for both the wild type and a mutant with RBS4 activity in-
creased by 100%, were used. The main objective of this ex-
periment is to determine a unique solution utilizing the
CSUKF with an informed prior, despite non-identifiability
and within the constraints of the provided data.

Experimental setup
The experimental data that is available is a time-series
over the interval of 0 to 20 seconds with a step size of
1 second. The lower bound of the constraint for CSUKF
is set to 10−8 to ensure that the parameters are always
positive. The upper bound is set at 100 as most parame-
ters were in agreement with this value as reported in
[55]. However, if any parameters would tend to approach
this limit it could be raised and the estimation repeated.
The experiment is divided into two phases. In the first
phase, the mutant data with high RBS4 activity is used.
The prior distribution of the model parameters are spe-
cified based on their ranking. The informed prior for the
second phase of the experiment is thus formed based on
the estimated parameter values and covariance matrix
from the first phase of experiment. The second phase is
then carried out with the wild type data. A synthetic
noisy data set is provided by the contest. The noise
model used by the contest is ynoisy =max[0, y + 0.1 × r1 +
C × r2 × y], where y is the simulated value, r1 and r2 are
Gaussian random variables with standard deviation of
one and C = 0.2.

First phase experiment
In the first stage the rank of the parameters is calculated.
Having no information on the state probability distribu-
tion at the beginning of the experiment, the diagonal of
both the state-estimation covariance matrix, P, and
process noise covariance matrix, Q, are initialized with
small random numbers between 0.001 and 0.1. The
measurement noise covariance matrix R is initialized
according to the noise model of the synthetic measure-
ment data. During the second stage of the experiment
both P and Q are initialized based on the ranking infor-
mation derived from the first stage. Table 5 lists the
ranking of the parameters along with the corresponding



Figure 7 Schematic diagram of the gene regulatory network reworked from the model provided by the Dream 6 Parameter estimation
challenge. The transcription and the translation are shown in a simplified form, combined as protein production. The symbols are, as: activator
binding site, rs: repressor binding site, rbs: ribosomal binding site, pro: promoter, cod: protein coding region, p: protein.
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standard deviations used to formulate the informed
prior. The ranking and standard deviation used to for-
mulate the informed prior are mentioned in Additional
file 1: Table S5.

Second phase experiment
The estimated parameter value and covariance matrix
from the first phase experiment was used to formulate
the informed prior for the second phase of the estima-
tion. The parameters are initialized with small perturba-
tions to the mean values of the first phase experiment.
The matrix V is initialized to the final value of V from
the first phase experiment. The process noise covariance
matrix Q is initialized with the same matrix formulated
with ranking used in the first phase. The measurement
noise covariance matrix R is based on the same noise
model as the experiment.
The results of the parameter estimation performed both

with and without the informed prior are summarized in
Table 5. The results present the mean and standard devi-
ation from 50 repetitions of the experiment.
In Table 5 it was found that the estimated values more

closely approached the actual values when using the
informed prior, even after random initialization. This
indicates higher estimation accuracy when using the in-
formed prior compared to the estimation accuracy with-
out informed prior. Furthermore the use of the informed
prior allows for a very simple approach to making use of
multiple data sets, i.e., the mutant in conjunction with
the wild type, whereas to utilize two or more data sets
without the informed prior requires parallel models
subject to relationship constraints between the appro-
priate parameters. Undoubtedly the use of the second,
mutant, data set in an essentially independent manner
contributes to the improvement in accuracy. Addition-
ally, the estimations conducted using the informed
priors were more concise, as indicated by the low
standard deviations, with the maximum relative stand-
ard deviation (parameter pro4_strength being just 60%
of the mean value) compared to the estimation with no
informed priors, where maximum standard deviation
for 3 parameters exceed 100% of the mean value. In
other words, the use of the informed prior for CSUFK
is better apt to produce unique parameter estimation of
a kinetic model, when presented with otherwise unidenti-
fiable parameters.

Discussion
Among the different types of mathematical models, kin-
etic modeling provides the most detailed picture of the
working mechanism of a biological species. Despite this
enormous prospect, the use of kinetic models has been
limited, mostly due to it dependency on parameter
values. The lack of accurate information on these



Table 5 Estimation result and standard deviation of the
29 parameters with and without informed priors

Without
informed prior

With
informed prior

Parameter name Actual
value

Mean Std. Dev. Mean Std. Dev.

p_degradation_rate 0.8 0.72 0.27 0.85 0.05

rbs1_strength 3.9 3.33 1.41 3.98 0.23

rbs2_strength 5.0 4.82 2.18 5.94 0.33

rbs3_strength 5.0 4.31 1.56 5.13 0.32

rbs4_strength 1.0 1.29 0.81 1.46 0.29

rbs5_strength 5.0 3.77 1.56 5.23 0.31

rbs6_strength 5.0 4.55 1.64 5.03 0.28

pro1_strength 3.0 2.94 0.15 3.04 0.05

pro2_strength 8.0 6.66 2.58 5.85 0.47

pro3_strength 6.0 9.14 4.43 7.12 0.68

pro4_strength 8.0 1.50 1.87 2.93 1.78

pro5_strength 3.0 3.46 0.80 3.03 0.07

pro6_strength 3.0 3.27 0.54 3.27 0.03

v1_Kd 1.0 1.40 1.62 1.54 0.18

v1_h 4.0 2.98 2.36 2.54 0.92

v2_Kd 1.0 1.17 0.74 1.87 0.15

v2_h 2.0 3.32 2.09 3.74 1.28

v3_Kd 0.1 0.61 0.31 0.56 0.18

v3_h 2.0 2.99 2.20 4.05 0.34

v4_Kd 10.0 7.17 3.10 8.04 1.12

v4_h 4.0 2.97 2.06 2.49 0.42

v5_Kd 1.0 2.16 1.52 2.22 0.41

v5_h 1.0 1.27 0.29 1.20 0.08

v6_Kd 0.1 0.64 0.57 0.28 0.02

v6_h 2.0 5.55 3.07 3.20 0.39

v7_Kd 0.1 0.48 0.28 0.26 0.02

v7_h 2.0 5.34 3.03 2.78 0.35

v8_Kd 0.2 2.14 2.40 0.41 0.30

v8_h 4.0 1.12 0.50 1.77 0.33

The mean and standard deviations are from 50 runs. For each run the
parameters were initialized to small random values between 0 and 1. The
same set of initial values was used for both cases, with and without the
informed prior.
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parameter values from wet lab experiments derails the
successful use of such models. In recent years the develop-
ment of computational methods to estimate these parame-
ters has been of great interest. However, most conventional
methods do not guarantee an optimal solution and often
fail to arrive at a satisfactory solution. To further compli-
cate the estimation process, many parameters may be non-
identifiable, i.e., parameters for which a unique solution of
the values is not possible for a given model and available
measurement data. The main objective of this work is to
propose a complete parameter estimation framework that
can handle these complexities of parameter estimation
more effectively than the conventional methods.
This framework is composed of two interconnected

modules, the parameter estimation module paired with
an identifiability analysis (IA) module. We conducted
two experiments to show the power of the proposed
framework. In the first experiment each of the compo-
nents of the IA module are utilized first to analyze and
then to systematically solve the non-identifiability in the
published model. The orthogonal ranking method was
shown to be inadequate for properly locating non-
identifiable parameters. This method was only able to
identify three, of what turned out to be eight, non-
identifiable parameters – Ki4F6P, Ki6F6P and Km11Suc

(Table 1). This was further evident by the inflated devia-
tions found after running the parameter estimation with
just these three parameters treated as being measured
(Table 1). However the ranking scheme provided useful
information towards solving the problem once fully
identified. The IA module then utilizes a profile likelihood
based analysis to more fully identify and furthermore to
classify the non-identifiable parameters (Table 1), as either
structurally or practically non-identifiable. Together these
two techniques provide a clearer picture of the scale of the
problem, with two thirds of the parameters being non-
identifiable given the available measurement data. They
also provide some guidance towards the possible cause of
the problems and thus the solutions.
The solution begins by targeting the two structurally

non-identifiable parameters, Km6Suc6P and Km6UDP. The
mean optimal transformation approach was used to de-
termine any functional relationships between the param-
eters. This approach fits well into the framework as it
can make use of the profile likelihood estimation data.
Both of these parameters were found to have functional
relationships to other practically non-identifiable param-
eters, in particular both were related to Vmax6r. Com-
bined with the previous ranking data (ranked first) the
framework was able to target this parameter as being
crucial to solve the identifiability problems with this
model. It should be noted that during this phase of the
experiment there only constraint to solving the non-
identifiability was keeping a fixed model. Thus any par-
ameter may be targeted for measurement. One of the other
benefits of functional analysis is to provide choices in the
case where some parameters may be measurable or the
model may be simplified. However, that still left several
practically non-identifiable parameters to be dealt with.
A second method was used to determine correlation

between parameters, based on the integrated parameter
estimation algorithm. The mean and square root of the
covariance is provided at each iteration of the CSUKF,
which yields the correlation coefficient matrix. The



Baker et al. BMC Bioinformatics  (2015) 16:104 Page 19 of 21
correlation analysis identified strong between Ki3G6P and
Ki4F6P, and between Ki6F6P, Vmax6r and Ki6UDPGlc. Typic-
ally the ranking would be used to select between param-
eters in the first correlation, however as Ki4F6P was not
ranked (i.e., it was determined to be non-identifiable by
the ranking algorithm) the framework selected it as a
target for solution. In the latter relationship there
already exists one parameter targeted for measurement,
Vmax6r. However, after applying the various solutions,
and using a measured value for Vmax6r, the non-
identifiability persisted. The framework then identified
the next parameter to target for measurement, similar to
Ki4F6P, Ki6F6P was selected as being found non-
identifiable during ranking.
No functional relationship was found for the last two

non-identifiable parameters, Km11Suc and Ki6Suc6P, so the
last approach to solving the non-identifiability was ap-
plied, state trajectory analysis. Of the two, only Km11Suc

displayed large variations in its state trajectories with
fructose and sucrose (Figure 5). Large variations in the
state trajectories are indicative of points of more uncer-
tainty. Thus the framework identified that additional
(and/or more accurate) measurement data at this point
for the fructose and sucrose states may solve the non-
identifiability in Km11Suc.
With no additional information available to provide a

solution for Ki6Suc6P the framework provides no direct
solution. However, after applying the existing solutions,
measuring Vmax6r, Ki6F6P and Ki4F6P, and doubling the
measurements of fructose and sucrose (at the same ac-
curacy), the IA determined that all remaining parameters
were identifiable. One possible reason is an as yet un-
determined functional relationship between Ki6Suc6P and
one or more other parameters.
By creating an integrated framework that combines

several interrelated techniques it was possible to not
only correctly analyze the non-identifiability but to
solve it, requiring no more measured parameters than
originally required by the ranking algorithm alone.
However, despite selecting two of the three parameters
originally identified during ranking, the correct identifi-
cation of the third was crucial to correctly estimating
the parameters (Table 2) and recreating the state trajec-
tories of the original model (Figure 6).
As previously mentioned, in evaluating the IA no con-

straints were placed on the acquisition of additional data.
To complete the evaluation the most stringent case was
considered, where it is not possible to measure any of the
unknown parameters, to obtain additional measurement
data or to make any changes to the model. In this case, the
IA is used not to formulate suggested solutions to non-
identifiability, but instead it is used to formulate the
informed prior. The results (Table 3) clearly show the ad-
vantage of using a parameter estimation technique based
on the Bayesian approach. The inclusion of the informed
prior to initialize the filtering technique, which sets the
uncertainty of the parameter instead of a random
initialization, leads to a unique estimation value for
nearly all of the parameters, even in the presence of
non-identifiability.
The second experiment is used to further validate the

use of the informed prior for improved parameter esti-
mation. The model, a gene regulatory network, comes
from a different area of biological research. The results
are similar to the first experiment, a unique estimation
of value for nearly all of the parameters, even in the
presence of non-identifiability. What is more interesting
is the manner in which the experiment proceeds, making
use of two data sets for different genetic cases (the wild
type and a mutant with upregulated RBS4) as opposed
to increased frequency of measurement. Essentially the
Bayesian approach of constantly refining the prediction
allows for multiple data sets to be used sequentially.
That is, the estimated parameter values and final covari-
ance matrix from the first data set, may be used to
initialize the informed prior for the second data set.
Contrast this to a least squares global optimizer which
benefits less from this refinement preferring the parallel
model approach. Thus, this approach is both conceptu-
ally and computationally more efficient when utilizing
parallel data sets, which is the most likely method for in-
creased measurement data in biological systems.
Conclusion
The widespread adoption of modeling techniques to bio-
logical problems is driving the need for parameter esti-
mation methods adapted to the inherent limitations of
the field. The highly non-linear and dynamic nature of
biological systems combined with the often severely lim-
ited and noisy measurement data is further complicated
by the issue of non-identifiability.
The unified parameter estimation framework presented

here provides a robust and complete solution by coupling
parameter estimation and identifiability analysis. The par-
ameter estimation makes use of the recently proposed
constrained square-root unscented Kalman filter, designed
specifically to address the estimation problem in biological
modeling. The identifiability module includes multiple ap-
proaches, which may be further extended, to identify, clas-
sify and suggest solutions for non-identifiable parameters.
By leveraging the unique properties of the CSUKF, the
unified framework is also able to provide an informed
prior for parameter estimation, when non-identifiability
cannot be directly solved.
The results from applying this framework show that these

tools combine to yield reliable and unique estimations, even
when constrained by limited and noisy measurement data.
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Availability and requirements
The software is available upon request from the author
Syed M. Baker.

� Project name: Unified framework for parameter
estimation

� Operating system(s): Platform independent
� Programming language: MATLAB
� Other requirements: None
� License: GNU GPL
� Any restrictions to use by non-academics: None

Endnote
aThe SBML model is called model1.sbml in the folder:
DREAM6_ParEst_Data_v4\Model1\Model Representations.

Additional file

Additional file 1: A supplement is provided with supporting
information. Supplement 1. Provides detailed background information
describing the method of orthogonal based ranking. Supplement 2.
Gives the specific rate laws used in the sugarcane culm model.
Supplement 3. Provides additional illustrations and discussion to more
fully explain the non-identifiability issue due to functional relationships. In
supplement 4. The specific rate laws of the Gene regulatory network are
provided. Supplement 5. Has a table of the complete set of results from
the gene regulatory network model. Lastly Supplements 6 and 7. Provide
verification tables comparing the state results from the original SBML
models in Copasi to the models in MATLAB after importing the SBML files.
Supplement 6. Is for the sugarcane model and Supplement 7. For the
gene regulatory network.
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