A Note on the Gutman Index of Jaco Graphs

Johan Kok
Tshwane Metropolitan Police Department City of Tshwane, Republic of South Africa
kokkiek2@tshwane.gov.za
Susanth C
Department of Mathematics
Vidya Academy of Science and Technology
Thalakkottukara, Thrissur-680501, India
susanth_c@yahoo.com
Sunny Joseph Kalayathankal
Department of Mathematics
Kuriakose Elias College
Mannaman, Kottayam-686561, India
sunnyjoseph2014@yahoo.com

Abstract

The concept of the Gutman index, denoted $G u t(G)$ was introduced for a connected undirected graph G. In this note we apply the concept to the underlying graphs of the family of Jaco graphs, (directed graphs by definition), and decribe a recursive formula for the Gutman index $G u t\left(J_{n+1}^{*}(x)\right)$. We also determine the Gutman index for the trivial edge-joint between Jaco graphs.

Keywords: Gutman index, Jaco graph, edge-joint

AMS Classification Numbers: 05C12, 05C20, 05C38, 05C40, 05C75

1 Introduction

For general reference to notation and concepts of graph theory see [2]. Unless mentioned otherwise, a graph $G=G(V, E)$ on $\nu(G)$ vertices (order of G) with $\epsilon(G)$ edges (size of G) will be a finite
undirected and connected simple graph. The degree of a vertex in G is denoted $d_{G}(v)$ and if the context of G is clear the degree is denoted $d(v)$ for brevity. Also in a directed graph $G \rightarrow$ the degree is $d_{G \rightarrow} \rightarrow(v)=d_{G \rightarrow}^{+}(v)+d_{G \rightarrow}^{-}(v)$ or for brevity, $d(v)=d^{+}(v)+d^{-}(v)$ if G is clear.

The concept of the Gutman index $G u t(G)$ of a connected undirected graph G was introduced in 1994 by Gutman [4]. It is defined to be $\operatorname{Gut}(G)=\sum_{\{v, u\} \subseteq V(G)} d_{G}(v) d_{G}(u) d_{G}(v, u)$, where $d_{G}(v)$ and $d_{G}(u)$ are the degree of v and u in G respectively, and $d_{G}(v, u)$ is the distance between v and u in G. Clearly, if the vertices of G of order n are randomly labeled $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ the definition states that $\operatorname{Gut}(G)=\sum_{\ell=1}^{n-1} \sum_{j=\ell+1}^{n} d_{G}\left(v_{\ell}\right) d_{G}\left(v_{j}\right) d_{G}\left(v_{\ell}, v_{j}\right)$. Worthy results are reported in Andova et al. [1] and Dankelmann et al. [3].

2 The Gutman Index of the Underlying Graph of a Jaco Graph

Despite earlier definitions in respect of the family of Jaco graphs [5, 6], the definitions found in [7] serve as the unifying definitions. For ease of reference some of the important definitions are repeated here.

Definition 2.1. [7] Let $f(x)=m x+c ; x \in \mathbb{N}, m, c \in \mathbb{N}_{0}$. The family of infinite linear Jaco graphs denoted by $\left\{J_{\infty}(f(x)): f(x)=m x+c ; x \in \mathbb{N}\right.$ and $\left.m, c \in \mathbb{N}_{0}\right\}$ is defined by $V\left(J_{\infty}(f(x))\right)=$ $\left\{v_{i}: i \in \mathbb{N}\right\}, A\left(J_{\infty}(f(x))\right) \subseteq\left\{\left(v_{i}, v_{j}\right): i, j \in \mathbb{N}, i<j\right\}$ and $\left(v_{i}, v_{j}\right) \in A\left(J_{\infty}(f(x))\right)$ if and only if $(f(i)+i)-d^{-}\left(v_{i}\right) \geq j$.

Definition 2.2. [7] The family of finite linear Jaco graphs denoted by $\left\{J_{n}(f(x)): f(x)=m x+c ; x \in\right.$ \mathbb{N} and $\left.m, c \in \mathbb{N}_{0}\right\}$ is defined by $V\left(J_{n}(f(x))\right)=\left\{v_{i}: i \in \mathbb{N}, i \leq n\right\}$, $A\left(J_{n}(f(x))\right) \subseteq\left\{\left(v_{i}, v_{j}\right): i, j \in\right.$ $\mathbb{N}, i<j \leq n\}$ and $\left(v_{i}, v_{j}\right) \in A\left(J_{n}(f(x))\right)$ if and only if $(f(i)+i)-d^{-}\left(v_{i}\right) \geq j$.

The reader is referred to [7] for the definition of the prime Jaconian vertex and the Hope graph. The graph has four fundamental properties which are:
(i) $V\left(J_{\infty}(f(x))\right)=\left\{v_{i}: i \in \mathbb{N}\right\}$ and,
(ii) if v_{j} is the head of an arc then the tail is always a vertex $v_{i}, i<j$ and,
(iii) if v_{k}, for smallest $k \in \mathbb{N}$ is a tail vertex then all vertices $v_{\ell}, k<\ell<j$ are tails of arcs to v_{j} and finally,
(iv) the degree of vertex k is $d\left(v_{k}\right)=f(k)$.

The family of finite directed graphs are those limited to $n \in \mathbb{N}$ vertices by lobbing off all vertices (and arcs to vertices) $v_{t}, t>n$. Hence, trivially $d\left(v_{i}\right) \leq i$ for $i \in \mathbb{N}$. For $m=0$ and $c \geq 0$ two special
classes of disconnected linear Jaco graphs exist. For $c=0$ the Jaco graph $J_{n}(0)$ is a null graph (edgeless graph) on n vertices. For $c>0$, the Jaco graph $J_{n}(c)=\underset{\left\lfloor\frac{n}{c+1}\right\rfloor-c o p i e s}{\bigcup} K_{c+1}^{\rightarrow} \bigcup K_{n-(c+1) \cdot\left\lfloor\frac{n}{c+1}\right\rfloor}^{\rightarrow}$ since the Gutman index is defined for connected graphs the bound $m \geq 1$ will apply.

In this note we only consider the case $m=1, c=0$. The generalisation for $f(x)=m x+c$ in general remains open. Denote the underlying Jaco graph by $J_{n}^{*}(f(x))$. A recursive formula of the Gutman index $\operatorname{Gut}\left(J_{n+1}^{*}(x)\right)$ in terms of $\operatorname{Gut}\left(J_{n}^{*}(x)\right)$ is given in the next theorem.

Theorem 2.1. For the underlying graph $J_{n}^{*}(x)$ of a finitie Jaco Graph $J_{n}(x), n \in \mathbb{N}, n \geq 2$ with Jaconian vertex v_{i} we have that recursively:
$\operatorname{Gut}\left(J_{n+1}^{*}(x)\right)=\operatorname{Gut}\left(J_{n}^{*}(x)\right)+\sum_{k=1}^{i} \sum_{t=i+1}^{n} d_{J_{n}^{*}(x)}\left(v_{k}\right) d_{J_{n}^{*}(x)}\left(v_{k}, v_{t}\right)+\sum_{t=i+1}^{n-1} \sum_{q=t+1}^{n}\left(d_{J_{n}^{*}(x)}\left(v_{t}\right)+d_{J_{n}^{*}(x)}\left(v_{q}\right)\right)+$ $(n-i)\left(\sum_{k=1}^{i} d_{J_{n}^{*}(x)}\left(v_{k}\right) d_{J_{n}^{*}(x)}\left(v_{k}, v_{n}\right)+\sum_{t=i+1}^{n} d_{J_{n}^{*}(x)}\left(v_{t}\right)\right)+(n-i-1)+i(n-i)$.

Proof. Consider the underlying Jaco graph, $J_{n}^{*}(x), n \in \mathbb{N}, n \geq 2$ with prime Jaconian vertex v_{i}. Now consider $J_{n+1}^{*}(x)$. From the definition of a Jaco graph the extension from $J_{n}^{*}(x)$ to $J_{n+1}^{*}(x)$ adds the vertex v_{n+1} and the edges $v_{i+1} v_{n+1}, v_{i+2} v_{n+1}, \ldots, v_{n} v_{n+1}$.

Step 1: Consider any ordered pair of vertices $\left(v_{k}, v_{q}\right)_{k<q}, 1 \leq k \leq i-1$, and $k+1 \leq q \leq i$. By applying the definition of the Gutman index to this pair of vertices we have the term:
$d_{J_{n+1}^{*}(x)}\left(v_{k}\right) d_{J_{n+1}^{*}(1)}\left(v_{q}\right) d_{J_{n+1}^{*}(x)}\left(v_{k}, v_{q}\right)=d_{J_{n}^{*}(x)}\left(v_{k}\right) d_{J_{n}^{*}(x)}\left(v_{q}\right) d_{J_{n}^{*}(x)}\left(v_{k}, v_{q}\right)$.
By applying this step $\forall v_{k}, 1 \leq k \leq i-1$, and $\forall v_{q}, k+1 \leq q \leq i$ with $k<q$ we obtain:
$\sum_{k=1}^{i-1} \sum_{q=k+1}^{i} d_{J_{n}^{*}(x)}\left(v_{k}\right) d_{J_{n}^{*}(x)}\left(v_{q}\right) d_{J_{n}^{*}(x)}\left(v_{k}, v_{q}\right)$.
Step 2: Consider any vertex $v_{k}, 1 \leq k \leq i$ and any other vertex $v_{t}, i+1 \leq t \leq n$. By applying the definition of the Gutman index to this pair of vertices we have the term:
$d_{J_{n+1}^{*}(x)}\left(v_{k}\right) d_{J_{n+1}^{*}(x)}\left(v_{t}\right) d_{J_{n+1}^{*}(x)}\left(v_{k}, v_{t}\right)=d_{J_{n}^{*}(x)}\left(v_{k}\right)\left(d_{J_{n}^{*}(x)}\left(v_{t}\right)+1\right) d_{J_{n}^{*}(x)}\left(v_{k}, v_{t}\right)=$
$d_{J_{n}^{*}(x)}\left(v_{k}\right) d_{J_{n}^{*}(x)}\left(v_{t}\right) d_{J_{n}^{*}(x)}\left(v_{k}, v_{t}\right)+d_{J_{n}^{*}(x)}\left(v_{k}\right) d_{J_{n}^{*}(x)}\left(v_{k}, v_{t}\right)$.
By applying this step $\forall v_{k}, 1 \leq k \leq i$ and $\forall v_{t}, i+1 \leq t \leq n$, we obtain:
$\sum_{k=1}^{i} \sum_{t=i+1}^{n} d_{J_{n}^{*}(x)}\left(v_{k}\right) d_{J_{n}^{*}(x)}\left(v_{t}\right) d_{J_{n}^{*}(x)}\left(v_{k}, v_{t}\right)+\sum_{k=1}^{i} \sum_{t=i+1}^{n} d_{J_{n}^{*}(x)}\left(v_{k}\right) d_{J_{n}^{*}(x)}\left(v_{k}, v_{t}\right)$.
Step 3: Consider any two distinct vertices $v_{t}, v_{q}, i+1 \leq t \leq n-1$, and $t+1 \leq q \leq n$. By applying the definition of the Gutman index to this pair of vertices we have the term:
$d_{J_{n+1}^{*}(x)}\left(v_{t}\right) d_{J_{n+1}^{*}(x)}\left(v_{q}\right) d_{J_{n+1}^{*}(x)}\left(v_{t}, v_{q}\right)=\left(d_{J_{n}^{*}(x)}\left(v_{t}\right)+1\right)\left(d_{J_{n}^{*}(x)}\left(v_{q}\right)+1\right) d_{J_{n}^{*}(x)}\left(v_{t}, v_{q}\right)=$
$d_{J_{n}^{*}(x)}\left(v_{t}\right) d_{J_{n}^{*}(x)}\left(v_{q}\right)+d_{J_{n}^{*}(x)}\left(v_{t}\right)+d_{J_{n}^{*}(x)}\left(v_{q}\right)+1$.
By applying this step $\forall v_{t}, i+1 \leq t \leq n-1$ and $\forall v_{q}, t+1 \leq q \leq n$, we obtain:
$\sum_{t=i+1}^{n-1} \sum_{q=t+1}^{n} d_{J_{n}^{*}(x)}\left(v_{t}\right) d_{J_{n}^{*}(x)}\left(v_{q}\right)+\sum_{t=i+1}^{n-1} \sum_{q=t+1}^{n}\left(d_{J_{n}^{*}(x)}\left(v_{t}\right)+d_{J_{n}^{*}(x)}\left(v_{q}\right)\right)+(n-i-1)$.
Step 4: Consider any vertex $v_{k}, 1 \leq k \leq i$ and the vertex v_{n+1}. By applying the definition of the Gutman index to this pair of vertices we have the term:
$d_{J_{n+1}^{*}(x)}\left(v_{k}\right) d_{J_{n+1}^{*}(x)}\left(v_{n+1}\right) d_{J_{n+1}^{*}(x)}\left(v_{k}, v_{n+1}\right)=d_{J_{n}^{*}(x)}\left(v_{k}\right)(n-i)\left(d_{J_{n}^{*}(x)}\left(v_{k}, v_{n}\right)+1\right)$.
By applying this step $\forall v_{k}, 1 \leq k \leq i$ we obtain:
$\sum_{k=1}^{i} d_{J_{n}^{*}(x)}\left(v_{k}\right)(n-i)\left(d_{J_{n}^{*}(x)}\left(v_{k}, v_{n}\right)+1\right)=(n-i) \sum_{k=1}^{i} d_{J_{n}^{*}(x)}\left(v_{k}\right) d_{J_{n}^{*}(x)}\left(v_{k}, v_{n}\right)+i(n-i)$.
Step 5: Consider any vertex $v_{t}, i+1 \leq t \leq n$ and the vertex v_{n+1}. By applying the definition of the Gutman index to this pair of vertices we have the term:
$d_{J_{n+1}^{*}(x)}\left(v_{t}\right) d_{J_{n+1}^{*}(x)}\left(v_{n+1}\right) d_{J_{n+1}^{*}(x)}\left(v_{t}, v_{n+1}\right)=d_{J_{n}^{*}(x)}\left(v_{t}\right)(n-i) d_{J_{n}^{*}(x)}\left(v_{t}, v_{n}\right)$.
By applying this step $\forall v_{t}, i+1 \leq t \leq n$ we obtain:

$$
\sum_{t=i+1}^{n} d_{J_{n}^{*}(x)}\left(v_{t}\right)(n-i)=(n-i) \sum_{t=i+1}^{n} d_{J_{n}^{*}(x)}\left(v_{t}\right) .
$$

Final summation step: Adding Steps 1 to 5 and noting that:
$\operatorname{Gut}\left(J_{n}^{*}(x)\right)=\sum_{k=1}^{i-1} \sum_{q=k+1}^{i} d_{J_{n}^{*}(x)}\left(v_{k}\right) d_{J_{n}^{*}(x)}\left(v_{q}\right) d_{J_{n}^{*}(x)}\left(v_{k}, v_{q}\right)+\sum_{k=1}^{i} \sum_{t=i+1}^{n} d_{J_{n}^{*}(x)}\left(v_{k}\right) d_{J_{n}^{*}(x)}\left(v_{t}\right) d_{J_{n}^{*}(x)}\left(v_{k}, v_{t}\right)+$ $\sum_{t=i+1}^{n-1} \sum_{q=t+1}^{n} d_{J_{n}^{*}(x)}\left(v_{t}\right) d_{J_{n}^{*}(x)}\left(v_{q}\right)$, provides the result:

$$
\begin{aligned}
& \operatorname{Gut}\left(J_{n+1}^{*}(x)\right)=\operatorname{Gut}\left(J_{n}^{*}(x)\right)+\sum_{k=1}^{i} \sum_{t=i+1}^{n} d_{J_{n}^{*}(x)}\left(v_{k}\right) d_{J_{n}^{*}(x)}\left(v_{k}, v_{t}\right)+\sum_{t=i+1}^{n-1} \sum_{q=t+1}^{n}\left(d_{J_{n}^{*}(x)}\left(v_{t}\right)+d_{J_{n}^{*}(x)}\left(v_{q}\right)\right)+ \\
& (n-i)\left(\sum_{k=1}^{i} d_{J_{n}^{*}(x)}\left(v_{k}\right) d_{J_{n}^{*}(x)}\left(v_{k}, v_{n}\right)+\sum_{t=i+1}^{n} d_{J_{n}^{*}(x)}\left(v_{t}\right)\right)+(n-i-1)+i(n-i) .
\end{aligned}
$$

3 The Gutman Index of the Edge-joint between $J_{n}^{*}(x), n \in \mathbb{N}$ and $J_{m}^{*}(x), m \in \mathbb{N}$

The concept of an edge-joint between two simple undirected graphs G and H is defined below.
Definition 3.1. The edge-joint of two simple undirected graphs G and H is the graph obtained by linking the edge $v u, v \in V(G), u \in V(H)$ and denoted, $G \rightsquigarrow v u H$.

Note: $G \rightsquigarrow_{v u} H=G \cup H+v u, v \in V(G), u \in V(H)$.
The next theorem provides $\operatorname{Gut}\left(J_{n}^{*}(x) \rightsquigarrow_{v_{1} u_{1}} J_{m}^{*}(x)\right)$ in terms of $\operatorname{Gut}\left(J_{n}^{*}(x)\right)$ and $\operatorname{Gut}\left(J_{m}^{*}(x)\right)$. The edge-joint $J_{n}^{*}(x) \rightsquigarrow v_{1} u_{1} J_{m}^{*}(x)$ is called trivial. Edge-joints $J_{n}^{*}(x) \rightsquigarrow v_{i} u_{j} J_{m}^{*}(x), i \neq 1$ or $j \neq 1$ are called non-trivial. For families (classes) of graphs such as paths P_{n}, cycles C_{n}, complete graphs K_{n}, Jaco graphs $J_{n}(f(x))$, etc, the notation is abbreviated as $P_{n} \rightsquigarrow v_{v u} P_{m}=P_{n, m}^{\rightsquigarrow \jmath_{v}}$ and $J_{n}^{*}(f(x)) \rightsquigarrow v_{i} u_{j} J_{m}^{*}(f(x))=J_{n, m}^{\rightsquigarrow v_{i} u_{j}}$, etc.

Theorem 3.1. For the underlying graphs $J_{n}^{*}(x)$ and $J_{m}^{*}(x)$ of the finitie Jaco Graphs $J_{n}(x), J_{m}(x)$, $n, m \in \mathbb{N}$ and $n \geq m \geq 2$:
$\operatorname{Gut}\left(J_{n}^{*}(x) \rightsquigarrow v_{1} u_{1} J_{m}^{*}(x)\right)=\operatorname{Gut}\left(J_{n, m}^{\rightsquigarrow v_{1} u_{1}}\right)=\operatorname{Gut}\left(J_{n}^{*}(x)\right)+G u t\left(J_{m}^{*}(x)\right)+\sum_{\ell=2}^{n} d_{J_{n}^{*}(x)}\left(v_{\ell}\right) d_{J_{n}^{*}(x)}\left(v_{1}, v_{\ell}\right)+$ $\sum_{s=2}^{m} d_{J_{m}^{*}(x)}\left(u_{s}\right) d_{J_{m}^{*}(x)}\left(u_{1}, u_{s}\right)+\sum_{t=2}^{m}\left(d_{J_{n}^{*}(x)}\left(v_{1}\right)+1\right) d_{J_{m}^{*}(x)}\left(u_{t}\right)\left(d_{J_{m}^{*}(x)}\left(u_{1}, u_{t}\right)+1\right)+$ $\sum_{k=2}^{n} \sum_{t=2}^{m} d_{J_{n}^{*}(x)}\left(v_{k}\right) d_{J_{m}^{*}(x)}\left(u_{t}\right)\left(d_{J_{n}^{*}(x)}\left(v_{1}, v_{k}\right)+d_{J_{m}^{*}(x)}\left(u_{1}, u_{t}\right)+1\right)+4$.

Proof. Consider the underlying Jaco graphs, $J_{n}^{*}(x), J_{m}^{*}(x)$, with $n, m \in \mathbb{N}$ and $n \geq m \geq 2$ with $J_{m}(x)$ having prime Jaconian vertex u_{i}. Also label the vertices of $J_{n}^{*}(x)$ and $J_{m}^{*}(x) ; v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ and $u_{1}, u_{2}, u_{3}, \ldots, u_{m}$, respectively. Consider $J_{n, m}^{\sim v_{1} u_{1}}=J_{n}^{*}(x) \cup J_{m}^{*}(x)+v_{1} u_{1}$. Without loss of generality apply the piecewise definition:

Step 1(a): Consider vertex v_{1} and vertex $v_{\ell}, 2 \leq \ell \leq n$. By applying the definition of the Gutman index to this pair of vertices we have the term:
$d_{J_{n, m}^{\curvearrowleft v_{1} u_{1}}}\left(v_{1}\right) d_{J_{n, m}^{\curvearrowleft v, v_{1}} u_{1}}\left(v_{\ell}\right) d_{J_{n, m}^{\rightsquigarrow v_{1} u_{1}}}\left(v_{1}, v_{\ell}\right)=\left(d_{J_{n}^{*}(x)}\left(v_{1}\right)+1\right) d_{J_{n}^{*}(x)}\left(v_{\ell}\right) d_{J_{n}^{*}(x)}\left(v_{1}, v_{\ell}\right)=$
$d_{J_{n}^{*}(x)}\left(v_{1}\right) d_{J_{n}^{*}(x)}\left(v_{\ell}\right) d_{J_{n}^{*}(x)}\left(v_{1}, v_{\ell}\right)+d_{J_{n}^{* *}(x)}\left(v_{\ell}\right) d_{J_{n}^{*}(x)}\left(v_{1}, v_{\ell}\right)$.
By applying this step $\forall v_{\ell}, 2 \leq \ell \leq n$ we obtain:
$\sum_{\ell=2}^{n} d_{J_{n}^{*}(x)}\left(v_{1}\right) d_{J_{n}^{*}(x)}\left(v_{\ell}\right) d_{J_{n}^{*}(x)}\left(v_{1}, v_{\ell}\right)+\sum_{\ell=2}^{n} d_{J_{n}^{*}(x)}\left(v_{\ell}\right) d_{J_{n}^{*}(x)}\left(v_{1}, v_{\ell}\right)$.
Step 1(b): For all ordered pairs of vertices $\left(v_{k}, v_{\ell}\right)_{k<\ell}$ with $2 \leq k \leq n-1$ and $3 \leq \ell \leq n$ we have that:
$\sum_{k=2}^{n-1} \sum_{\ell=k+1}^{n} d_{J_{n, m}^{\sim v_{1}},}\left(v_{k}\right) d_{J_{n, m}^{\sim r v_{1}},}^{\sim v_{1}}\left(v_{\ell}\right) d_{J_{n, m}^{\sim \sim v_{1}} u_{1}}^{\sim}\left(v_{k}, v_{\ell}\right)=\sum_{k=2}^{n-1} \sum_{\ell=k+1}^{n} d_{J_{n}^{*}(x)}\left(v_{k}\right) d_{J_{n}^{*}(x)}\left(v_{\ell}\right) d_{J_{n}^{*}(x)}\left(v_{k}, v_{\ell}\right)$.

By applying this step $\forall\left(v_{k}, v_{\ell}\right)_{k<\ell}, 1 \leq k \leq n-1$ and $2 \leq \ell \leq n$, we obtain:
$\sum_{k=1}^{n-1} \sum_{\ell=k+1}^{n} d_{J_{n}^{*}(x)}\left(v_{k}\right) d_{J_{n}^{*}(x)}\left(v_{\ell}\right) d_{J_{n}^{*}(x)}\left(v_{k}, v_{\ell}\right)+\sum_{\ell=2}^{n} d_{J_{n}^{*}(x)}\left(v_{\ell}\right) d_{J_{n}^{*}(x)}\left(v_{1}, v_{\ell}\right)=$
$G u t\left(J_{n}^{*}(x)\right)+\sum_{\ell=2}^{n} d_{J_{n}^{*}(x)}\left(v_{\ell}\right) d_{J_{n}^{*}(x)}\left(v_{1}, v_{\ell}\right)$.
Step 2: Similar to Step 1 we have that:

$$
\begin{aligned}
& \sum_{t=1}^{m-1} \sum_{s=t+1}^{m} d_{J_{n, m}^{\sim v_{1}} u_{1}}\left(u_{t}\right) d_{J_{n, m}^{\sim v_{1}} u_{1}}\left(u_{s}\right) d_{J_{n, m}^{\sim v_{1}} u_{1}}\left(u_{t}, u_{s}\right)=\sum_{t=1}^{m-1} \sum_{s=t+1}^{m} d_{J_{m}^{*}(x)}\left(u_{t}\right) d_{J_{m}^{*}(x)}\left(u_{s}\right) d_{J_{m}^{*}(x)}\left(u_{t}, u_{s}\right)+ \\
& \sum_{s=2}^{m} d_{J_{m}^{*}(x)}\left(u_{s}\right) d_{J_{m}^{*}(x)}\left(u_{1}, u_{s}\right)=\operatorname{Gut}\left(J_{m}^{*}(x)\right)+\sum_{s=2}^{m} d_{J_{m}^{*}(x)}\left(u_{s}\right) d_{J_{m}^{*}(x)}\left(u_{1}, u_{s}\right) .
\end{aligned}
$$

Step 3: To conclude this step we will provide the next partial summation as a piecewise summation, to be:

$\sum_{k=2}^{n} \sum_{t=2}^{m} d_{J_{n, m}^{\sim v_{1}} u_{1}}\left(v_{k}\right) d_{J_{n, m}^{\sim v_{1}} u_{1}}\left(u_{t}\right) d_{J_{n, m}^{\sim v v_{1}} u_{1}}\left(v_{k}, u_{t}\right)$.

Step 3(a): Consider vertex v_{1} and vertex $u_{t}, 2 \leq t \leq m$. By applying the definition of the Gutman index to this pair of vertices we have the term:

By applying this step $\forall u_{t}, 2 \leq t \leq m$ we obtain:
$\sum_{t=2}^{m}\left(d_{J_{n}^{*}(x)}\left(v_{1}\right)+1\right) d_{J_{m}^{*}(x)}\left(u_{t}\right)\left(d_{J_{m}^{*}(x)}\left(u_{1}, u_{t}\right)+1\right)$.

Step 3(b): Consider vertex $v_{k}, 2 \leq k \leq n$ and vertex $u_{t}, 2 \leq t \leq m$. By applying the definition of the Gutman index to this pair of vertices we have the term:
$d_{J_{n, m}^{\leadsto v_{1} u_{1}}}\left(v_{k}\right) d_{J_{n, m}^{\sim v_{1}} u_{1}}\left(u_{t}\right) d_{J_{n, m}^{\leadsto v v_{1}} u_{1}}\left(v_{k}, u_{t}\right)=d_{J_{n}^{*}(x)}\left(v_{k}\right) d_{J_{m}^{*}(x)}\left(u_{t}\right)\left(d_{J_{n}^{*}(x)}\left(v_{1}, v_{k}\right)+d_{J_{m}^{*}(x)}\left(u_{1}, u_{t}\right)+1\right)$.
By applying the step $\forall v_{k}, 2 \leq k \leq n$ and $\forall u_{t}, 2 \leq t \leq m$, we obtain:
$\sum_{k+2}^{n} \sum_{t=2}^{m} d_{J_{n}^{*}(x)}\left(v_{k}\right) d_{J_{m}^{*}(x)}\left(u_{t}\right)\left(d_{J_{n}^{*}(x)}\left(v_{1}, v_{k}\right)+d_{J_{m}^{*}(x)}\left(u_{1}, u_{t}\right)+1\right)$.

Step 4: It is easy to see that:
$d_{J_{n, m}^{\rightsquigarrow v_{1} u_{1}}}\left(v_{1}\right) d_{J_{n, m}^{\rightsquigarrow v_{1}} u_{1}}\left(u_{1}\right) d_{J_{n, m}^{\leadsto v_{1}}}\left(v_{1}, u_{1}\right)=4$.
Final summation step: Adding Steps 1 to 4 provides the result:
$G u t\left(J_{n, m}^{\leadsto v_{1} u_{1}}\right)=\operatorname{Gut}\left(J_{n}^{*}(x)\right)+G u t\left(J_{m}^{*}(x)\right)+\sum_{\ell=2}^{n} d_{J_{n}^{*}(x)}\left(v_{\ell}\right) d_{J_{n}^{*}(x)}\left(v_{1}, v_{\ell}\right)+\sum_{s=2}^{m} d_{J_{m}^{*}(x)}\left(u_{s}\right) d_{J_{m}^{*}(x)}\left(u_{1}, u_{s}\right)+$
$\sum_{t=2}^{m}\left(d_{J_{n}^{*}(x)}\left(v_{1}\right)+1\right) d_{J_{m}^{*}(x)}\left(u_{t}\right)\left(d_{J_{m}^{*}(x)}\left(u_{1}, u_{t}\right)+1\right)+\sum_{k=2}^{n} \sum_{t=2}^{m} d_{J_{n}^{*}(x)}\left(v_{k}\right) d_{J_{m}^{*}(x)}\left(u_{t}\right)\left(d_{J_{n}^{*}(x)}\left(v_{1}, v_{k}\right)+\right.$
$\left.d_{J_{m}^{*}(x)}\left(u_{1}, u_{t}\right)+1\right)+4$.

4 Conclusion

For the simple case $f(x)=x$ the calculation of the Gutman index for Jaco graph and the edgejoint between them is immediately complicated. Finding a result similar to Theorem 3.1 for $J_{n}^{*}(x) \rightsquigarrow_{v_{i} u_{j}} J_{m}^{*}(x), i \neq 1$ or $j \neq 1$ (non-trivial edge-joints) remains open. The single most important challege is to find a closed formula for the number of edges in $J_{n}(x)$. Such closed formula will enable finding a closed formula for distances between given vertices and a simplied formula for many invariants of Jaco graphs might result from such finding. Hence, important open questions remain such as: Is there a closed formula for the number of edges of $J_{n}(x), n \in \mathbb{N}$? Is there a closed formula for the cardinality of the Jaconian set $\mathbb{J}\left(J_{n}(x)\right)$ of $J_{n}(x), n \in \mathbb{N}$? Is there a closed formula for $d_{J_{n}^{*}(x)}\left(v_{1}, v_{n}\right)$ in $J_{n}^{*}(x), n \in \mathbb{N}$?. Refer to [7] for further reading.

Open access: This paper is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and the source are credited.

References (Limited)
[1] V. Andova, D. Dimitrov, J. Fink, R. Škrekovski, Bounds on Gutman Index, MATCH Communications in Mathematical and in Computer Chemistry, Vol 67 (2012), pp 515-524.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan Press, London, (1976).
[3] P. Dankelmann, I. Gutman, S. Mukwembi, H.C. Swart, The edge-Wiener index of a graph, Discrete Mathematics, Vol 309 (2009), pp 3452-3457.
[4] I. Gutman, Selected properties of the Schultz molecular topological index, Journal of Chemical Information and Computer Sciences, Vol 34, (1994) pp 1087-1089.
[5] J. Kok, P. Fisher, B. Wilkens, M. Mabula, V. Mukungunugwa, Characteristics of Finite Jaco Graphs, $J_{n}(1), n \in \mathbb{N}$, arXiv: 1404.0484v1 [math.CO], 2 April 2014.
[6] J. Kok, P. Fisher, B. Wilkens, M. Mabula, V. Mukungunugwa, Characteristics of Jaco Graphs, $J_{\infty}(a), a \in \mathbb{N}$, arXiv: 1404.1714v1 [math.CO], 7 April 2014.
[7] J. Kok, C. Susanth, S.J. Kalayathankal, A Study on Linear Jaco Graphs, arXiv:1506.06538v1, [math.CO], 22 June 2015, Journal of Informatics and Mathematical Sciences (Accepted).

