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Abstract

The concept of the Gutman index, denoted Gut(G) was introduced for a connected undirected
graph G. In this note we apply the concept to the underlying graphs of the family of Jaco
graphs, (directed graphs by definition), and decribe a recursive formula for the Gutman index
Gut(J∗

n+1(x)). We also determine the Gutman index for the trivial edge-joint between Jaco
graphs.
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1 Introduction

For general reference to notation and concepts of graph theory see [2]. Unless mentioned otherwise,
a graph G = G(V,E) on ν(G) vertices (order of G) with ǫ(G) edges (size of G) will be a finite
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undirected and connected simple graph. The degree of a vertex in G is denoted dG(v) and if the
context of G is clear the degree is denoted d(v) for brevity. Also in a directed graph G→ the degree
is dG→(v) = d+G→(v) + d−G→(v) or for brevity, d(v) = d+(v) + d−(v) if G is clear.

The concept of the Gutman index Gut(G) of a connected undirected graph G was introduced
in 1994 by Gutman [4]. It is defined to be Gut(G) =

∑

{v,u}⊆V (G)

dG(v)dG(u)dG(v, u), where dG(v)

and dG(u) are the degree of v and u in G respectively, and dG(v, u) is the distance between v and
u in G. Clearly, if the vertices of G of order n are randomly labeled v1, v2, v3, ..., vn the definition

states that Gut(G) =
n−1∑

ℓ=1

n∑

j=ℓ+1

dG(vℓ)dG(vj)dG(vℓ, vj). Worthy results are reported in Andova et

al. [1] and Dankelmann et al. [3].

2 The Gutman Index of the Underlying Graph of a Jaco Graph

Despite earlier definitions in respect of the family of Jaco graphs [5, 6], the definitions found in
[7] serve as the unifying definitions. For ease of reference some of the important definitions are
repeated here.

Definition 2.1. [7] Let f(x) = mx + c;x ∈ N, m, c ∈ N0. The family of infinite linear Jaco
graphs denoted by {J∞(f(x)) : f(x) = mx+ c;x ∈ N and m, c ∈ N0} is defined by V (J∞(f(x))) =
{vi : i ∈ N}, A(J∞(f(x))) ⊆ {(vi, vj) : i, j ∈ N, i < j} and (vi, vj) ∈ A(J∞(f(x))) if and only if
(f(i) + i)− d−(vi) ≥ j.

Definition 2.2. [7] The family of finite linear Jaco graphs denoted by {Jn(f(x)) : f(x) = mx+c;x ∈
N and m, c ∈ N0} is defined by V (Jn(f(x))) = {vi : i ∈ N, i ≤ n}, A(Jn(f(x))) ⊆ {(vi, vj) : i, j ∈
N, i < j ≤ n} and (vi, vj) ∈ A(Jn(f(x))) if and only if (f(i) + i)− d−(vi) ≥ j.

The reader is referred to [7] for the definition of the prime Jaconian vertex and the Hope graph.
The graph has four fundamental properties which are:
(i) V (J∞(f(x))) = {vi : i ∈ N} and,
(ii) if vj is the head of an arc then the tail is always a vertex vi, i < j and,
(iii) if vk, for smallest k ∈ N is a tail vertex then all vertices vℓ, k < ℓ < j are tails of arcs to vj and
finally,
(iv) the degree of vertex k is d(vk) = f(k).

The family of finite directed graphs are those limited to n ∈ N vertices by lobbing off all vertices
(and arcs to vertices) vt, t > n. Hence, trivially d(vi) ≤ i for i ∈ N. For m = 0 and c ≥ 0 two special

2



classes of disconnected linear Jaco graphs exist. For c = 0 the Jaco graph Jn(0) is a null graph
(edgeless graph) on n vertices. For c > 0, the Jaco graph Jn(c) =

⋃

⌊ n
c+1

⌋−copies

K→
c+1

⋃
K→

n−(c+1)·⌊ n
c+1

⌋.

since the Gutman index is defined for connected graphs the bound m ≥ 1 will apply.

In this note we only consider the case m = 1, c = 0. The generalisation for f(x) = mx + c in
general remains open. Denote the underlying Jaco graph by J∗

n(f(x)). A recursive formula of the
Gutman index Gut(J∗

n+1(x)) in terms of Gut(J∗
n(x)) is given in the next theorem.

Theorem 2.1. For the underlying graph J∗
n(x) of a finitie Jaco Graph Jn(x), n ∈ N, n ≥ 2 with

Jaconian vertex vi we have that recursively:

Gut(J∗
n+1(x)) = Gut(J∗

n(x))+
i∑

k=1

n∑

t=i+1
dJ∗

n(x)
(vk)dJ∗

n(x)
(vk, vt)+

n−1∑

t=i+1

n∑

q=t+1
(dJ∗

n(x)
(vt)+dJ∗

n(x)
(vq))+

(n− i)(
i∑

k=1

dJ∗

n(x)
(vk)dJ∗

n(x)
(vk, vn) +

n∑

t=i+1
dJ∗

n(x)
(vt)) + (n− i− 1) + i(n− i).

Proof. Consider the underlying Jaco graph, J∗
n(x), n ∈ N, n ≥ 2 with prime Jaconian vertex vi.

Now consider J∗
n+1(x). From the definition of a Jaco graph the extension from J∗

n(x) to J∗
n+1(x)

adds the vertex vn+1 and the edges vi+1vn+1, vi+2vn+1, ..., vnvn+1.

Step 1: Consider any ordered pair of vertices (vk, vq)k<q, 1 ≤ k ≤ i − 1, and k + 1 ≤ q ≤ i.

By applying the definition of the Gutman index to this pair of vertices we have the term:

dJ∗

n+1
(x)(vk)dJ∗

n+1
(1)(vq)dJ∗

n+1
(x)(vk, vq) = dJ∗

n(x)
(vk)dJ∗

n(x)
(vq)dJ∗

n(x)
(vk, vq).

By applying this step ∀vk, 1 ≤ k ≤ i− 1, and ∀vq, k + 1 ≤ q ≤ i with k < q we obtain:

i−1∑

k=1

i∑

q=k+1

dJ∗

n(x)
(vk)dJ∗

n(x)
(vq)dJ∗

n(x)
(vk, vq).

Step 2: Consider any vertex vk, 1 ≤ k ≤ i and any other vertex vt, i + 1 ≤ t ≤ n. By apply-
ing the definition of the Gutman index to this pair of vertices we have the term:

dJ∗

n+1
(x)(vk)dJ∗

n+1
(x)(vt)dJ∗

n+1
(x)(vk, vt) = dJ∗

n(x)
(vk)(dJ∗

n(x)
(vt) + 1)dJ∗

n(x)
(vk, vt) =

dJ∗

n(x)
(vk)dJ∗

n(x)
(vt)dJ∗

n(x)
(vk, vt) + dJ∗

n(x)
(vk)dJ∗

n(x)
(vk, vt).

By applying this step ∀vk, 1 ≤ k ≤ i and ∀vt, i+ 1 ≤ t ≤ n, we obtain:
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i∑

k=1

n∑

t=i+1
dJ∗

n(x)
(vk)dJ∗

n(x)
(vt)dJ∗

n(x)
(vk, vt) +

i∑

k=1

n∑

t=i+1
dJ∗

n(x)
(vk)dJ∗

n(x)
(vk, vt).

Step 3: Consider any two distinct vertices vt, vq, i + 1 ≤ t ≤ n − 1, and t + 1 ≤ q ≤ n. By
applying the definition of the Gutman index to this pair of vertices we have the term:

dJ∗

n+1
(x)(vt)dJ∗

n+1
(x)(vq)dJ∗

n+1
(x)(vt, vq) = (dJ∗

n(x)
(vt) + 1)(dJ∗

n(x)
(vq) + 1)dJ∗

n(x)
(vt, vq) =

dJ∗

n(x)
(vt)dJ∗

n(x)
(vq) + dJ∗

n(x)
(vt) + dJ∗

n(x)
(vq) + 1.

By applying this step ∀vt, i+ 1 ≤ t ≤ n− 1 and ∀vq, t+ 1 ≤ q ≤ n, we obtain:

n−1∑

t=i+1

n∑

q=t+1
dJ∗

n(x)
(vt)dJ∗

n(x)
(vq) +

n−1∑

t=i+1

n∑

q=t+1
(dJ∗

n(x)
(vt) + dJ∗

n(x)
(vq)) + (n − i− 1).

Step 4: Consider any vertex vk, 1 ≤ k ≤ i and the vertex vn+1. By applying the definition of
the Gutman index to this pair of vertices we have the term:

dJ∗

n+1
(x)(vk)dJ∗

n+1
(x)(vn+1)dJ∗

n+1
(x)(vk, vn+1) = dJ∗

n(x)
(vk)(n − i)(dJ∗

n(x)
(vk, vn) + 1).

By applying this step ∀vk, 1 ≤ k ≤ i we obtain:

i∑

k=1

dJ∗

n(x)
(vk)(n − i)(dJ∗

n(x)
(vk, vn) + 1) = (n− i)

i∑

k=1

dJ∗

n(x)
(vk)dJ∗

n(x)
(vk, vn) + i(n− i).

Step 5: Consider any vertex vt, i + 1 ≤ t ≤ n and the vertex vn+1. By applying the definition
of the Gutman index to this pair of vertices we have the term:

dJ∗

n+1
(x)(vt)dJ∗

n+1
(x)(vn+1)dJ∗

n+1
(x)(vt, vn+1) = dJ∗

n(x)
(vt)(n − i)dJ∗

n(x)
(vt, vn).

By applying this step ∀vt, i+ 1 ≤ t ≤ n we obtain:

n∑

t=i+1
dJ∗

n(x)
(vt)(n− i) = (n− i)

n∑

t=i+1
dJ∗

n(x)
(vt).

Final summation step: Adding Steps 1 to 5 and noting that:

Gut(J∗
n(x)) =

i−1∑

k=1

i∑

q=k+1

dJ∗

n(x)
(vk)dJ∗

n(x)
(vq)dJ∗

n(x)
(vk, vq)+

i∑

k=1

n∑

t=i+1
dJ∗

n(x)
(vk)dJ∗

n(x)
(vt)dJ∗

n(x)
(vk, vt)+

n−1∑

t=i+1

n∑

q=t+1
dJ∗

n(x)
(vt)dJ∗

n(x)
(vq), provides the result:
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Gut(J∗
n+1(x)) = Gut(J∗

n(x))+
i∑

k=1

n∑

t=i+1
dJ∗

n(x)
(vk)dJ∗

n(x)
(vk, vt)+

n−1∑

t=i+1

n∑

q=t+1
(dJ∗

n(x)
(vt)+dJ∗

n(x)
(vq))+

(n− i)(
i∑

k=1

dJ∗

n(x)
(vk)dJ∗

n(x)
(vk, vn) +

n∑

t=i+1
dJ∗

n(x)
(vt)) + (n− i− 1) + i(n− i).

3 The Gutman Index of the Edge-joint between J∗
n(x), n ∈ N and

J∗
m(x), m ∈ N

The concept of an edge-joint between two simple undirected graphs G and H is defined below.

Definition 3.1. The edge-joint of two simple undirected graphs G and H is the graph obtained by
linking the edge vu, v ∈ V (G), u ∈ V (H) and denoted, G vu H.

Note: G vu H = G ∪H + vu, v ∈ V (G), u ∈ V (H).

The next theorem provides Gut(J∗
n(x)  v1u1

J∗
m(x)) in terms of Gut(J∗

n(x)) and Gut(J∗
m(x)).

The edge-joint J∗
n(x)  v1u1

J∗
m(x) is called trivial. Edge-joints J∗

n(x)  viuj
J∗
m(x), i 6= 1 or

j 6= 1 are called non-trivial. For families (classes) of graphs such as paths Pn, cycles Cn, complete
graphs Kn, Jaco graphs Jn(f(x)), etc, the notation is abbreviated as Pn  vu Pm = P uv

n,m and

J∗
n(f(x)) viuj

J∗
m(f(x)) = J

 viuj
n,m , etc.

Theorem 3.1. For the underlying graphs J∗
n(x) and J∗

m(x) of the finitie Jaco Graphs Jn(x), Jm(x),
n,m ∈ N and n ≥ m ≥ 2:

Gut(J∗
n(x) v1u1

J∗
m(x)) = Gut(J

 v1u1
n,m ) = Gut(J∗

n(x))+Gut(J∗
m(x))+

n∑

ℓ=2

dJ∗

n(x)
(vℓ)dJ∗

n(x)
(v1, vℓ)+

m∑

s=2
dJ∗

m(x)(us)dJ∗

m(x)(u1, us) +
m∑

t=2
(dJ∗

n(x)
(v1) + 1)dJ∗

m(x)(ut)(dJ∗

m(x)(u1, ut) + 1) +

n∑

k=2

m∑

t=2
dJ∗

n(x)
(vk)dJ∗

m(x)(ut)(dJ∗

n(x)
(v1, vk) + dJ∗

m(x)(u1, ut) + 1) + 4.

Proof. Consider the underlying Jaco graphs, J∗
n(x), J

∗
m(x), with n,m ∈ N and n ≥ m ≥ 2 with

Jm(x) having prime Jaconian vertex ui. Also label the vertices of J∗
n(x) and J∗

m(x); v1, v2, v3, ..., vn
and u1, u2, u3, ..., um, respectively. Consider J

 v1u1
n,m = J∗

n(x) ∪ J∗
m(x) + v1u1. Without loss of gen-

erality apply the piecewise definition:
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Gut(J
 v1u1
n,m ) =

n−1∑

k=1

n∑

ℓ=k+1

d
J
 v1u1
n,m

(vk)dJ
 v1u1
n,m

(vℓ)dJ
 v1u1
n,m

(vk, vℓ)+
m−1∑

t=1

m∑

s=t+1
d
J
 v1u1
n,m

(ut)dJ
 v1u1
n,m

(us)dJ
 v1u1
n,m

(ut, us)+

n∑

k=1

m∑

t=2
d
J
 v1u1
n,m

(vk)dJ
 v1u1
n,m

(ut)dJ
 v1u1
n,m

(vk, ut) + d
J
 v1u1
n,m

(v1)dJ
 v1u1
n,m

(u1)dJ
 v1u1
n,m

(v1, u1).

Step 1(a): Consider vertex v1 and vertex vℓ, 2 ≤ ℓ ≤ n. By applying the definition of the Gut-
man index to this pair of vertices we have the term:

d
J
 v1u1
n,m

(v1)dJ
 v1u1
n,m

(vℓ)dJ
 v1u1
n,m

(v1, vℓ) = (dJ∗

n(x)
(v1) + 1)dJ∗

n(x)
(vℓ)dJ∗

n(x)
(v1, vℓ) =

dJ∗

n(x)
(v1)dJ∗

n(x)
(vℓ)dJ∗

n(x)
(v1, vℓ) + dJ∗

n(x)
(vℓ)dJ∗

n(x)
(v1, vℓ).

By applying this step ∀vℓ, 2 ≤ ℓ ≤ n we obtain:

n∑

ℓ=2

dJ∗

n(x)
(v1)dJ∗

n(x)
(vℓ)dJ∗

n(x)
(v1, vℓ) +

n∑

ℓ=2

dJ∗

n(x)
(vℓ)dJ∗

n(x)
(v1, vℓ).

Step 1(b): For all ordered pairs of vertices (vk, vℓ)k<ℓ with 2 ≤ k ≤ n − 1 and 3 ≤ ℓ ≤ n we
have that:

n−1∑

k=2

n∑

ℓ=k+1

d
J
 v1u1
n,m

(vk)dJ
 v1u1
n,m

(vℓ)dJ
 v1u1
n,m

(vk, vℓ) =
n−1∑

k=2

n∑

ℓ=k+1

dJ∗

n(x)
(vk)dJ∗

n(x)
(vℓ)dJ∗

n(x)
(vk, vℓ).

By applying this step ∀(vk, vℓ)k<ℓ, 1 ≤ k ≤ n− 1 and 2 ≤ ℓ ≤ n, we obtain:

n−1∑

k=1

n∑

ℓ=k+1

dJ∗

n(x)
(vk)dJ∗

n(x)
(vℓ)dJ∗

n(x)
(vk, vℓ) +

n∑

ℓ=2

dJ∗

n(x)
(vℓ)dJ∗

n(x)
(v1, vℓ) =

Gut(J∗
n(x)) +

n∑

ℓ=2

dJ∗

n(x)
(vℓ)dJ∗

n(x)
(v1, vℓ).

Step 2: Similar to Step 1 we have that:

m−1∑

t=1

m∑

s=t+1
d
J
 v1u1
n,m

(ut)dJ
 v1u1
n,m

(us)dJ
 v1u1
n,m

(ut, us) =
m−1∑

t=1

m∑

s=t+1
dJ∗

m(x)(ut)dJ∗

m(x)(us)dJ∗

m(x)(ut, us) +

m∑

s=2
dJ∗

m(x)(us)dJ∗

m(x)(u1, us) = Gut(J∗
m(x)) +

m∑

s=2
dJ∗

m(x)(us)dJ∗

m(x)(u1, us).

Step 3: To conclude this step we will provide the next partial summation as a piecewise sum-
mation, to be:

n∑

k=1

m∑

t=2
d
J
 v1u1
n,m

(vk)dJ
 v1u1
n,m

(ut)dJ
 v1u1
n,m

(vk, ut) =
m∑

t=2
d
J
 v1u1
n,m

(v1)dJ
 v1u1
n,m

(ut)dJ
 v1u1
n,m

(v1, ut) +
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n∑

k=2

m∑

t=2
d
J
 v1u1
n,m

(vk)dJ
 v1u1
n,m

(ut)dJ
 v1u1
n,m

(vk, ut).

Step 3(a): Consider vertex v1 and vertex ut, 2 ≤ t ≤ m. By applying the definition of the Gutman
index to this pair of vertices we have the term:

d
J
 v1u1
n,m

(v1)dJ
 v1u1
n,m

(ut)dJ
 v1u1
n,m

(v1, ut) = (dJ∗

n(x)
(v1) + 1)dJ∗

m(x)(ut)(dJ∗

m(x)(u1, ut) + 1).

By applying this step ∀ut, 2 ≤ t ≤ m we obtain:

m∑

t=2
(dJ∗

n(x)
(v1) + 1)dJ∗

m(x)(ut)(dJ∗

m(x)(u1, ut) + 1).

Step 3(b): Consider vertex vk, 2 ≤ k ≤ n and vertex ut, 2 ≤ t ≤ m. By applying the defini-
tion of the Gutman index to this pair of vertices we have the term:

d
J
 v1u1
n,m

(vk)dJ
 v1u1
n,m

(ut)dJ
 v1u1
n,m

(vk, ut) = dJ∗

n(x)
(vk)dJ∗

m(x)(ut)(dJ∗

n(x)
(v1, vk) + dJ∗

m(x)(u1, ut) + 1).

By applying the step ∀vk, 2 ≤ k ≤ n and ∀ut, 2 ≤ t ≤ m, we obtain:

n∑

k+2

m∑

t=2
dJ∗

n(x)
(vk)dJ∗

m(x)(ut)(dJ∗

n(x)
(v1, vk) + dJ∗

m(x)(u1, ut) + 1).

Step 4: It is easy to see that:

d
J
 v1u1
n,m

(v1)dJ
 v1u1
n,m

(u1)dJ
 v1u1
n,m

(v1, u1) = 4.

Final summation step: Adding Steps 1 to 4 provides the result:

Gut(J
 v1u1
n,m ) = Gut(J∗

n(x))+Gut(J∗
m(x))+

n∑

ℓ=2

dJ∗

n(x)
(vℓ)dJ∗

n(x)
(v1, vℓ)+

m∑

s=2
dJ∗

m(x)(us)dJ∗

m(x)(u1, us)+

m∑

t=2
(dJ∗

n(x)
(v1) + 1)dJ∗

m(x)(ut)(dJ∗

m(x)(u1, ut) + 1) +
n∑

k=2

m∑

t=2
dJ∗

n(x)
(vk)dJ∗

m(x)(ut)(dJ∗

n(x)
(v1, vk) +

dJ∗

m(x)(u1, ut) + 1) + 4.
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4 Conclusion

For the simple case f(x) = x the calculation of the Gutman index for Jaco graph and the edge-
joint between them is immediately complicated. Finding a result similar to Theorem 3.1 for
J∗
n(x)  viuj

J∗
m(x), i 6= 1 or j 6= 1 (non-trivial edge-joints) remains open. The single most im-

portant challege is to find a closed formula for the number of edges in Jn(x). Such closed formula
will enable finding a closed formula for distances between given vertices and a simplied formula for
many invariants of Jaco graphs might result from such finding. Hence, important open questions
remain such as: Is there a closed formula for the number of edges of Jn(x), n ∈ N? Is there a
closed formula for the cardinality of the Jaconian set J(Jn(x)) of Jn(x), n ∈ N? Is there a closed
formula for dJ∗

n(x)
(v1, vn) in J∗

n(x), n ∈ N?. Refer to [7] for further reading.

Open access: This paper is distributed under the terms of the Creative Commons Attribution
License which permits any use, distribution and reproduction in any medium, provided the original
author(s) and the source are credited.
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