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TOPIC MODELING

1. Discover the thematic structure
2. Annotate the documents

3. Use the annotations to visualize, organize, summarize, ...
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Charles Darwin’s library The NYC subway

> People read documents.
» These might be people for whom we want to form predictions.

> And, their behavior is an additional signal about the meaning of the
documents and the organization of the collection.



This talk

1. Introduction to topic modeling
2. Recommendation and exploration with collaborative topic models

3. The bigger picture: Using probability models to solve problems with data



Introduction to Topic Modeling



Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many genes does an[Organism need to
survive! Last week at the genome meeting
here,* two genome researchers with radically
different approaches presented complemen-
tary views of the b
One research team, using computer analy-
ses to compare known genomes, concluded
that today’s|Organisms can be sustained with
just 250 genes, and that the earliest life forms
required a mere 128 venes. The
other researcher mapped genes
in a simple parasite and esti-
mated that for this organism,
800 genes are plenty to do the
job—but that anything short
of 100 wouldn’t be enough.
Although the numbers don’t
match precisely, those predictions

asic genes needed for life:

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,
May 8 to 12.
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“are not all that far apart,” especially

comparison to the 75,000 genes in the hu-
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
800 number. But coming up with a consen-
sus answer may be more than just a generic
numbers game, particularly as more and

more genomes are completely mapped and
sequenced. “It may be a way of or
any newly sequenced genome,”
Arcady Mushegian, a computational mo-
lecular biologist at the National Center

\ for Biotechnology Information (NCBI)
| in Bethesda, Maryland. Comparing an
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Stripping down. Computer analysis yields an esti-
mate of the minimum modern and ancient genomes.

Documents exhibit multiple topics.

ADAPTED FROM NCBI
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LDA as a graphical model

» Nodes are random variables; edges indicate dependence.

» Shaded nodes are observed; unshaded nodes are hidden.

» Plates indicate replicated variables.



Per-word

Proportions topi ianment
parameter Opic assignme
Per-document Observed
topic proportions word

L

Topics

|

parameter

()

-OfO-@

Zd.;n Wy ,n

N

D

_/
B

K

LDA as a graphical model

» Defines a factorization of the joint probability distribution

» Encodes independence assumptions about the variables

» Connects to algorithms for computing with data
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» The joint defines a posterior, p(6, z, B | w).

» From a collection of documents, infer
— Per-word topic assignment z4 ,
— Per-document topic proportions 6,4
— Per-corpus topic distributions B

» Then use posterior expectations to perform the task at hand:
information retrieval, document similarity, exploration, and others.
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Mean field variational methods (Blei et al., 2001, 2003)
Expectation propagation (Minka and Lafferty, 2002)
Collapsed Gibbs sampling (Griffiths and Steyvers, 2002)

Distributed sampling (Newman et al., 2008; Ahmed et al., 2012)

Collapsed variational inference (Teh et al., 2006)

Stochastic inference (Hoffman et al., 2010, 2013; Mimno et al., 2012)
Factorization inference (Arora et al., 2012; Anandkumar et al., 2012)

Amortized inference (Srivastava and Sutton, 2016)
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LDAin R [nttps://cran.r-project.org/web/packages/Ida/]

GenSim [https:/radimrehurek.com/gensim]
Mallet [http://mallet.cs.umass.edu]
Vowpal Wabbit [http://hunch.net/~vw/]
Apache Spark [http:/spark.apache.org/]
SciKit Learn [http:/scikit-learn.org/]

=



» Data: The OCR’ed collection of Science from 1990-2000

— 17K documents
— 11M words
— 20K unique terms (stop words and rare words removed)

> Model: 100-topic LDA model using variational inference.
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How does LDA “work”?

» LDA trades off two goals.

1. In each document, allocate its words to few topics.
2. In each topic, assign high probability to few terms.

» These goals are at odds.

— Putting a document in a single topic makes #2 hard:
All of its words must have probability under that topic.

— Putting very few words in each topic makes #1 hard:
To cover a document’s words, it must assign many topics to it.

» Trading off these goals finds groups of tightly co-occurring words.



o e e
o 0; | Zdn Wdn Bk
N D K

=

» Summary: LDA discovers themes through posterior inference.

» Other perspectives

Latent semantic analysis [Deerwester et al., 1990; Hofmann, 1999]
— A mixed-membership model [Erosheva, 2004]

— PCA and matrix factorization [Jakulin and Buntine, 2002]

Was independently invented for genetics [Pritchard et al., 2000]
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» LDA has become a building block that enables many applications.

» Algorithmic improvements let us fit models to massive data.
(See VW, Gensim, Mallet, others.)

» Organizing and finding patterns in text is important
in the sciences, humanities, industry, and culture.




KNOWLEDGE &
QUESTION

3
l

Make assumptions

\4

Discover patterns

\4

Predict & Explore

» Case study in text analysis with probability models

» Topic modeling research

— develops new models.

— develops new inference algorithms.
— develops new applications, visualizations, tools.




Collaborative Topic Models
with Prem Gopalan, Laurent Charlin, and Chong Wang



Charles Darwin’s library Reading on the New York subway

> People read documents.

» Collaborative topic models connect content to consumption



Users

Maximum likelihood from incomplete data via the EM algorithm .
Conditional Random Fields
Introduction to Variational Methods for Graphical Models
The Mathematics of Statistical Machine Translation |

Topic Models for Recommendation [ [ [ [T T T[T TTTTTT1]

» Example: Scientists share their research libraries.

» Collaborative topic models can
— Helps readers discover documents, old and new.
— Describe readers in terms of topical preferences
— ldentify documents that are impactful, interdisciplinary

suadpg



» Consider EM (Dempster et al., 1977). We infer topics from its text:

Maximum Likelihood from Incomplete Data via the EM Algorithm

By A. P. Desester, N. M. Latmp and D. B. Rupi
Harcard University and Educational Testng Sereice

[Read tefore the Rovat S
‘Secmon on Wedaesday,

Vision Statistics
> Suppose there are two types of scientists

STATISTICIAN VISION RESEARCHER

Vision —e

Statistics —@

» We first recommend the EM paper to statisticians.



» With user data, we can adjust the topics to account for who liked it:

Papers

(]

Users

N\,

Vision Statistics
» Consider again the scientists

STATISTICIAN VISION RESEARCHER

Vision —e

Statistics —@

» We now recommend the EM paper to vision researchers.



Maximum Likelihood from Incomplete Data via the EM Algorithm

By A. P. Deeestex, N. M. Lot and D. B. Rupiv
1y and Educar

Vision Statistics

Papers

(]

Users

Vision Statistics

Without text, we cannot initially recommend to anyone.
Without user data, we cannot recommend to vision researchers.
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» Blends factorization-based and content-based recommendation

» Describes user preferences with interpretable topics

» Builds on Poisson factorization

[Canney 2004; Dunson and Herring 2005; Gopalan et al. 2014]



SR MENDELEY

> Big data set from Mendeley.com

» The data:
— 261K documents
80K users
10K vocabulary terms
25M observed words
5.1M entries (sparsity is 0.02%)



Maximum Likelihood from Incomplete Data via the EM Algorithm

By A. P. DEMPSTER, N. M. LAIRD and D. B. RuBIN
Harvard University and Educational Testing Service

[Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the RESEARCH
SeEcTION on Wednesday, December 8th, 1976, Professor S. D. SILVEY in the Chair]

SUMMARY

A broadly applicable algorithm for computing maximum likelihood estimates from
incomplete data is presented at various levels of generality. Theory showing the
monotone behaviour of the likelihood and convergence of the algorithm is derived.
Many examples are sketched, including missing value situations, applications to
grouped, censored or truncated data, finite mixture models, variance component
estimation, hyperparameter estimation, iteratively reweighted least squares and
factor analysis.
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Mendeley
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Number of recommendations

Method

~— Collaborative Poisson Topic Factorization

~ Decoupled Poisson Factorization

== Content Only

~ Ratings Only (Gopalan et al., 2014)

~ Collaborative Topic Regression (Wang and Blei, 2011)



Darwin’s library Einstein reading Another scientist reading

» The readers also tell us about the articles.

> We can look at posterior estimates to find
— Interdisciplinary articles
— Influential articles within a field
— Qutside influences on a field



“Network Analysis”

network; connected; modules; nodes; links; topology; connectivity; graph;
robustness; connections; modular; world; degree; properties




Assortative mixing in networks
M. E. J. Newman

Department of Physics, University of Michigan, Ann Arbor, MI 48109-1120 and
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501

About networks

» Assortative mixing in networks
(Newman, 2002)

» Mixing patterns in networks
(Newman, 2002)

!

networks

(everything else)

» Catastrophic cascade of failures in interdependent networks

(Buldyrev et al., 2010)
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networks (everything else)

About networks; for readers of networks

» Emergence of scaling in random networks
(Barabassi and Albert, 1999)

> Statistical mechanics of complex networks
(Albert and Barabassi, 2002)

» Complex networks: Structure and dynamics
(Boccaletti et al., 2006)



!

networks (everything else)

About networks; for readers of other fields

» Mapping the Structural Core of Human Cerebral Cortex
(Hagmann et al., 2008)

> Network thinking in ecology and evolution
(Proulx et al., 2005)

> Linked: The New Science of Networks
(Barabasi, 2002)



networks

Not about networks; for readers of networks

» Power-law distributions in empirical data
(Clauset et al., 2009)

» Statistical physics of social dynamics
(Castellano et al., 2009)

» The origin of bursts and heavy tails in human dynamics
(Barabasi, 2005)

(everything else)




“Statistical Modeling”

About this field; read by users in this field

» A Bayesian analysis of some nonparametric problems
» Bayesian measures of model complexity and fit
» Monte Carlo Methods in Bayesian Computation

About this field; read by users in other fields

> A tutorial on HMMs and selected applications in speech recognition
» An Introduction to Bayesian Networks and Influence Diagrams
» Maximum likelihood from incomplete data via the EM algorithm

About other fields; read by users in this field

» Second Thoughts on the Bootstrap
» A guide to Eclipse and the R plug-in StatET
» Using Multivariate Statistics



> A decade of clicks on arXiv.org (2003—2013)

» The data:

— 826K documents

120K users

14K vocabulary terms

54M observed words

43.6M entries (sparsity is 0.04%)



arXiv click history
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Stat.ML: Machine Learning

In stat.ML; for stat.ML readers

» Noisy matrix decomposition via convex relaxation
» Robust computation of linear models, or how to find a needle in a haystack
» High-dimensional regression with noisy and missing data

In stat.ML; for other readers
» Co-evolution of selection and influence in social networks
» Hierarchical structure and the prediction of missing links in networks
» Learning continuous-time social network dynamics

In other categories; for stat.ML readers
» Finding structure with randomness
» Representation learning: A review and new perspectives
» Computational and statistical tradeoffs via convex relaxation



» The New York Society library is the first library in New York City (1754)
» Mark Hoffman and Peter Bearman (sociology) are using collaborative topic
models to explore the usage patterns of important figures in U.S. History
» The data
— 1789 — 1806
— 847 users (people like Aaron Burr, John Jay, etc.)
— 2,327 items (items like The Prince)
— 33M words; vocabulary of 8,000
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Collaborative topic models

» Connect text to usage, content to consumption
» Blend content-based and user-based recommendation

> Opens new windows into how people read



Discussion: Modern Probabilistic Modeling
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COOKBOOK

How to use traditional machine learning and statistics to solve modern problems
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Probabilistic machine learning: tailored models for the problem at hand.
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Probabilistic machine learning: tailored models for the problem at hand.

» Compose and connect reusable parts
» Driven by disciplinary knowledge and its questions
» Focus on discovering and using structure in unstructured data

» Exploratory, observational, causal analyses
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COOKBOOK

4

Many software packages available; typically fast and scalable



More challenging to implement; may not be fast or scalable
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I. Assume our data come from a model with hidden patterns at work
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Il. Discover those patterns from data

v* = argmax Ey [log p(x,z, B |a)] + Hg(z, B | v)]




Ill. Use the discovered patterns to predict about and explore the data
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Make assumptions

\

Discover patterns

Predict & Explore

Our perspective:

» Customized data analysis is important to many fields.

» This pipeline separates assumptions, computation, application.

> |t facilitates solving data science problems.
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\

Discover patterns

Predict & Explore

What we need:

> Flexible and expressive components for building models

> Scalable and generic inference algorithms

> Easy to use software to stretch probabilistic modeling into new areas
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Edward: Probabilistic modeling, inference, and criticism

github.com/blei-lab/edward

(lead by Dustin Tran)


github.com/blei-lab/edward

TOPIC
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We should seek out unfamiliar summaries of observational material, and establish
their useful properties... And still more novelty can come from finding, and evading,
still deeper lying constraints.

(John Tukey, The Future of Data Analysis, 1962)



A few slides about inference



Stochastic variational inference [Hoffman et al., 2013]

GLOBAL HIDDEN STRUCTURE
MASSIVE

DATA

DR
<.
/

Subsample
data

Infer local
structure

Update global
structure



Black box variational inference [Ranganath et al., 2014]

MASSIVE
DATA

REUSABLE
VARIATIONAL
FAMILIES

ANY MODEL

p(B.z|x)

BLACK BOX
VARIATIONAL
INFERENCE

» Easily use variational inference with any model

> No exponential family requirements
» No mathematical work beyond specifying the model
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Zutk ~ EXP-FAM((W] 7 011))

Xn,i ~ EXP-FAM(g(Wq ;Zn.1))

Deep Exponential Families
[Ranganath et al., 2015]

data {
int<lower-1> K;
int<lower-1> N;
real y[N;

parameters {
simplex[K] theta;
real mu[K];
real<loner=0,upper=10> signa[K];

el
real ps[Kl;
160 {
mulk] ~ normal(0,10;
for (n in 1:N) {
for (k in 1:K) {
psik] <- logCtheta[k])
+ normal_log(y[n],mulk].
3
Tp__ < lp__ + log_sum_exp(ps);
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Probabilistic Progr:

[Kucukelbir et al., 2
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