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TOPIC MODELING

1. Discover the thematic structure

2. Annotate the documents

3. Use the annotations to visualize, organize, summarize, ...
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Figure 1: Measure of “eventness,” or time interval impact on cable content (Eq. 2). Grey background indicates the number of cables

sent over time. This comes from the model fit we discuss in Section 3. Capsule successful detects real-world events from National

Archive diplomatic cables.

and the primary sources around them. We develop
Capsule, a probabilistic model for detecting and char-
acterizing important events in large collections of
historical communication.

Figure 1 illustrates Capsule’s analysis of the two
million cables from the National Archives. The
y-axis is “eventness”, a loose measure how strongly
a week’s cables deviate from the usual diplomatic
chatter to discuss a matter that is common to many
embassies. (This is described in detail in Section 2.)

The figure shows that Capsule detects many of
the important moments during this five-year span,
including Indonesia’s invasion of East Timor (Dec. 7,
1975), the Air France hijacking and Israeli rescue op-
eration (June 27–July 4, 1976), and the fall of Saigon
(April 30, 1975). It also identifies other moments,
such as the U.S. sharing lunar rocks with other coun-
tries (March 21, 1973) and the death of Mao Tse-tung
(Sept. 9, 1976). Broadly speaking, Capsule gives a
picture of the diplomatic history of these five years;
it identifies and characterizes moments and source
material that might be of interest to a historian.

The intuition behind Capsule is this: embassies
write cables throughout the year, usually describing
typical business such as the visiting of a government
official. Sometimes, however, there is an important
event, e.g., the fall of Saigon. When an event occurs,
it pulls embassies away from their typical business
to write cables that discuss what happened and its
consequences. Thus Capsule effectively defines an

“event” to be a moment in history when embassies
deviate from what each usually discusses, and when
each embassy deviates in the same way.

Capsule embeds this intuition into a Bayesian
model. It uses hidden variables to encode what “typi-
cal business” means for each embassy, how to charac-
terize the events of each week, and which cables dis-
cuss those events. Given a corpus, the corresponding
posterior distribution provides a filter on the cables
that isolates important moments in the diplomatic his-
tory. Figure 1 illustrates the mean of this posterior.

Capsule can be used to explore any corpora with
the same underlying structure: text (or other discrete
multivariate data) generated over time by known en-
tities. This includes email, consumer behavior, social
media posts, and opinion articles.

We present the model in Section 2, providing both
a formal model specification and guidance on how
to use its posterior to detect and characterize real-
worlds events. In Section 3, we evaluate Capsule
and explore its results on a collection of U.S. State
Department cables and on simulated data.

Related work. We first review previous work on
automatic event detection and other related concepts.

In both univariate and multivariate settings, the
goal is often that analysts want to predict whether or
not rare events will occur (Weiss and Hirsh, 1998;
Das et al., 2008). Capsule, in contrast, is designed
to help analysts explore and understand the original
data: our goal is interpretability, not prediction.
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Charles Darwin’s library The NYC subway

I People read documents.

I These might be people for whom we want to form predictions.

I And, their behavior is an additional signal about the meaning of the
documents and the organization of the collection.



This talk

1. Introduction to topic modeling

2. Recommendation and exploration with collaborative topic models

3. The bigger picture: Using probability models to solve problems with data



Introduction to Topic Modeling



Documents exhibit multiple topics.
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LDA as a graphical model

I Nodes are random variables; edges indicate dependence.

I Shaded nodes are observed; unshaded nodes are hidden.

I Plates indicate replicated variables.
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LDA as a graphical model

I Defines a factorization of the joint probability distribution

I Encodes independence assumptions about the variables

I Connects to algorithms for computing with data
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I The joint defines a posterior, p.�; z; ˇ jw/.
I From a collection of documents, infer

– Per-word topic assignment zd;n
– Per-document topic proportions �d
– Per-corpus topic distributions ˇk

I Then use posterior expectations to perform the task at hand:
information retrieval, document similarity, exploration, and others.
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I Mean field variational methods (Blei et al., 2001, 2003)

I Expectation propagation (Minka and Lafferty, 2002)

I Collapsed Gibbs sampling (Griffiths and Steyvers, 2002)

I Distributed sampling (Newman et al., 2008; Ahmed et al., 2012)

I Collapsed variational inference (Teh et al., 2006)

I Stochastic inference (Hoffman et al., 2010, 2013; Mimno et al., 2012)

I Factorization inference (Arora et al., 2012; Anandkumar et al., 2012)

I Amortized inference (Srivastava and Sutton, 2016)
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I LDA in R [https://cran.r-project.org/web/packages/lda/]

I GenSim [https://radimrehurek.com/gensim]

I Mallet [http://mallet.cs.umass.edu]

I Vowpal Wabbit [http://hunch.net/�vw/]

I Apache Spark [http://spark.apache.org/]

I SciKit Learn [http://scikit-learn.org/]



I Data: The OCR’ed collection of Science from 1990–2000

– 17K documents
– 11M words
– 20K unique terms (stop words and rare words removed)

I Model: 100-topic LDA model using variational inference.
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Figure 5
Topics found in a corpus of 1.8 million articles from the New York Times. Modified from Hoffman et al. (2013).

a particular movie), our prediction of the rating depends on a linear combination of the user’s
embedding and the movie’s embedding. We can also use these inferred representations to find
groups of users that have similar tastes and groups of movies that are enjoyed by the same kinds
of users.

Figure 4c illustrates the graphical model. This model is closely related to a linear factor model,
except that each cell’s distribution is determined by hidden variables that depend on the cell’s row
and column. The overlapping plates show how the observations at the nth row share its embedding
wn but use different variables γm for each column. Similarly, the observations in the mth column
share its embedding γm but use different variables wn for each row. Casting matrix factorization
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How does LDA “work”?

I LDA trades off two goals.

1. In each document, allocate its words to few topics.
2. In each topic, assign high probability to few terms.

I These goals are at odds.

– Putting a document in a single topic makes #2 hard:
All of its words must have probability under that topic.

– Putting very few words in each topic makes #1 hard:
To cover a document’s words, it must assign many topics to it.

I Trading off these goals finds groups of tightly co-occurring words.
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I Summary: LDA discovers themes through posterior inference.

I Other perspectives

– Latent semantic analysis [Deerwester et al., 1990; Hofmann, 1999]

– A mixed-membership model [Erosheva, 2004]

– PCA and matrix factorization [Jakulin and Buntine, 2002]

– Was independently invented for genetics [Pritchard et al., 2000]



by emerging groups. Both modalities are driven by the
common goal of increasing data likelihood. Consider the
voting example again; resolutions that would have been as-
signed the same topic in a model using words alone may
be assigned to different topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the
entities vote very similarly on them. Likewise, multiple dif-
ferent divisions of entities into groups are made possible by
conditioning them on the topics.

The importance of modeling the language associated with
interactions between people has recently been demonstrated
in the Author-Recipient-Topic (ART) model [16]. In ART
the words in a message between people in a network are
generated conditioned on the author, recipient and a set
of topics that describes the message. The model thus cap-
tures both the network structure within which the people
interact as well as the language associated with the inter-
actions. In experiments with Enron and academic email,
the ART model is able to discover role similarity of people
better than SNA models that consider network connectivity
alone. However, the ART model does not explicitly capture
groups formed by entities in the network.

The GT model simultaneously clusters entities to groups
and clusters words into topics, unlike models that gener-
ate topics solely based on word distributions such as Latent
Dirichlet Allocation [4]. In this way the GT model discov-
ers salient topics relevant to relationships between entities
in the social network—topics which the models that only
examine words are unable to detect.

We demonstrate the capabilities of the GT model by ap-
plying it to two large sets of voting data: one from US Sen-
ate and the other from the General Assembly of the UN.
The model clusters voting entities into coalitions and si-
multaneously discovers topics for word attributes describing
the relations (bills or resolutions) between entities. We find
that the groups obtained from the GT model are signifi-
cantly more cohesive (p-value < .01) than those obtained
from the Blockstructures model. The GT model also dis-
covers new and more salient topics in both the UN and Sen-
ate datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are
either split or joined together as influenced by the voters’
patterns of behavior.

2. GROUP-TOPIC MODEL
The Group-Topic Model is a directed graphical model that

clusters entities with relations between them, as well as at-
tributes of those relations. The relations may be either di-
rected or undirected and have multiple attributes. In this
paper, we focus on undirected relations and have words as
the attributes on relations.

In the generative process for each event (an interaction
between entities), the model first picks the topic t of the
event and then generates all the words describing the event
where each word is generated independently according to
a multinomial distribution φt, specific to the topic t. To
generate the relational structure of the network, first the
group assignment, gst for each entity s is chosen condition-
ally on the topic, from a particular multinomial distribution
θt over groups for each topic t. Given the group assignments
on an event b, the matrix V (b) is generated where each cell

V
(b)

gigj represents how often the groups of two senators be-
haved the same or not during the event b, (e.g., voted the

SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w
(b)
k the kth token in the event b

V
(b)

ij entity i and j’s groups behaved same (1)
or differently (2) on the event b

S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 1: Notation used in this paper

! " w v # $

t g % &

N
b S

b
2

T BG2

S T

B

Figure 1: The Group-Topic model

same or not on a bill). The elements of V are sampled from

a binomial distribution γ
(b)
gigj . Our notation is summarized

in Table 1, and the graphical model representation of the
model is shown in Figure 1.

Without considering the topic of an event, or by treat-
ing all events in a corpus as reflecting a single topic, the
simplified model (only the right part of Figure 1) becomes
equivalent to the stochastic Blockstructures model [17]. To
match the Blockstructures model, each event defines a re-
lationship, e.g., whether in the event two entities’ groups
behave the same or not. On the other hand, in our model a
relation may have multiple attributes (which in our exper-
iments are the words describing the event, generated by a
per-topic multinomial).

When we consider the complete model, the dataset is dy-
namically divided into T sub-blocks each of which corre-
sponds to a topic. The complete GT model is as follows,

tb ∼ Uniform(
1

T
)

wit|φt ∼ Multinomial(φt)

φt|η ∼ Dirichlet(η)

git|θt ∼ Multinomial(θt)

θt|α ∼ Dirichlet(α)

V
(b)

ij |γ(b)
gigj

∼ Binomial(γ(b)
gigj

)

γ
(b)
gh |β ∼ Beta(β).

We want to perform joint inference on (text) attributes
and relations to obtain topic-wise group memberships. Since
inference can not be done exactly on such complicated prob-
abilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our

Indian Buffet Process Compound Dirichlet Process

B selects a subset of atoms for each distribution, and the
gamma random variables φ determine the relative masses
associated with these atoms.

2.4. Focused Topic Models

Suppose H parametrizes distributions over words. Then,
the ICD defines a generative topic model, where it is used
to generate a set of sparse distributions over an infinite num-
ber of components, called “topics.” Each topic is drawn
from a Dirichlet distribution over words. In order to specify
a fully generative model, we sample the number of words
for each document from a negative binomial distribution,
n

(m)
· ∼ NB(

�
k bmkφk, 1/2).2

The generative model for M documents is

1. for k = 1, 2, . . . ,

(a) Sample the stick length πk according to Eq. 1.
(b) Sample the relative mass φk ∼ Gamma(γ, 1).
(c) Draw the topic distribution over words,

βk ∼ Dirichlet(η).

2. for m = 1, . . . ,M ,

(a) Sample a binary vector bm according to Eq. 1.
(b) Draw the total number of words,

n
(m)
· ∼ NB(

�
k bmkφk, 1/2).

(c) Sample the distribution over topics,
θm ∼ Dirichlet(bm · φ).

(d) For each word wmi, i = 1, . . . , n
(m)
· ,

i. Draw the topic index zmi ∼ Discrete(θm).
ii. Draw the word wmi ∼ Discrete(βzmi

).

We call this the focused topic model (FTM) because the
infinite binary matrix B serves to focus the distribution
over topics onto a finite subset (see Figure 1). The number
of topics within a single document is almost surely finite,
though the total number of topics is unbounded. The topic
distribution for the mth document, θm, is drawn from a
Dirichlet distribution over the topics selected by bm. The
Dirichlet distribution models uncertainty about topic pro-
portions while maintaining the restriction to a sparse set of
topics.

The ICD models the distribution over the global topic pro-
portion parameters φ separately from the distribution over
the binary matrix B. This captures the idea that a topic may
appear infrequently in a corpus, but make up a high propor-
tion of those documents in which it occurs. Conversely, a
topic may appear frequently in a corpus, but only with low
proportion.

2Notation n
(m)
k is the number of words assigned to the kth

topic of the mth document, and we use a dot notation to represent
summation - i.e. n

(m)
· =

P
k n

(m)
k .

Figure 1. Graphical model for the focused topic model

3. Related Models
Titsias (2007) introduced the infinite gamma-Poisson pro-
cess, a distribution over unbounded matrices of non-
negative integers, and used it as the basis for a topic model
of images. In this model, the distribution over features
for the mth image is given by a Dirichlet distribution over
the non-negative elements of the mth row of the infinite
gamma-Poisson process matrix, with parameters propor-
tional to the values at these elements. While this results in
a sparse matrix of distributions, the number of zero entries
in any column of the matrix is correlated with the values
of the non-zero entries. Columns which have entries with
large values will not typically be sparse. Therefore, this
model will not decouple across-data prevalence and within-
data proportions of topics. In the ICD the number of zero
entries is controlled by a separate process, the IBP, from
the values of the non-zero entries, which are controlled by
the gamma random variables.

The sparse topic model (SparseTM, Wang & Blei, 2009)
uses a finite spike and slab model to ensure that each topic
is represented by a sparse distribution over words. The
spikes are generated by Bernoulli draws with a single topic-
wide parameter. The topic distribution is then drawn from a
symmetric Dirichlet distribution defined over these spikes.
The ICD also uses a spike and slab approach, but allows
an unbounded number of “spikes” (due to the IBP) and a
more globally informative “slab” (due to the shared gamma
random variables). We extend the SparseTM’s approxima-
tion of the expectation of a finite mixture of Dirichlet dis-
tributions, to approximate the more complicated mixture of
Dirichlet distributions given in Eq. 2.

Recent work by Fox et al. (2009) uses draws from an IBP
to select subsets of an infinite set of states, to model multi-
ple dynamic systems with shared states. (A state in the dy-
namic system is like a component in a mixed membership
model.) The probability of transitioning from the ith state
to the jth state in the mth dynamic system is drawn from a
Dirichlet distribution with parameters bmjγ + τδi,j , where
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Figure 2: A two-document segment of the RTM. The variable y indicates whether the two documents are linked. The complete model
contains this variable for each pair of documents. The plates indicate replication. This model captures both the words and the link
structure of the data shown in Figure 1.

formulation, inspired by the supervised LDA model (Blei
and McAuliffe 2007), ensures that the same latent topic as-
signments used to generate the content of the documents
also generates their link structure. Models which do not
enforce this coupling, such as Nallapati et al. (2008), might
divide the topics into two independent subsets—one for
links and the other for words. Such a decomposition pre-
vents these models from making meaningful predictions
about links given words and words given links. In Sec-
tion 4 we demonstrate empirically that the RTM outper-
forms such models on these tasks.

3 INFERENCE, ESTIMATION, AND
PREDICTION

With the model defined, we turn to approximate poste-
rior inference, parameter estimation, and prediction. We
develop a variational inference procedure for approximat-
ing the posterior. We use this procedure in a variational
expectation-maximization (EM) algorithm for parameter
estimation. Finally, we show how a model whose parame-
ters have been estimated can be used as a predictive model
of words and links.

Inference In posterior inference, we seek to compute
the posterior distribution of the latent variables condi-
tioned on the observations. Exact posterior inference is in-
tractable (Blei et al. 2003; Blei and McAuliffe 2007). We
appeal to variational methods.

In variational methods, we posit a family of distributions
over the latent variables indexed by free variational pa-
rameters. Those parameters are fit to be close to the true
posterior, where closeness is measured by relative entropy.
See Jordan et al. (1999) for a review. We use the fully-
factorized family,

q(Θ,Z|γ,Φ) =
�

d [qθ(θd|γd)
�

n qz(zd,n|φd,n)] , (3)

where γ is a set of Dirichlet parameters, one for each doc-

ument, and Φ is a set of multinomial parameters, one for
each word in each document. Note that Eq [zd,n] = φd,n.

Minimizing the relative entropy is equivalent to maximiz-
ing the Jensen’s lower bound on the marginal probability of
the observations, i.e., the evidence lower bound (ELBO),

L =
�

(d1,d2)
Eq [log p(yd1,d2

|zd1
,zd2

,η, ν)]+
�

d

�
n Eq [log p(wd,n|β1:K , zd,n)]+�

d

�
n Eq [log p(zd,n|θd)]+�

d Eq [log p(θd|α)] + H(q), (4)

where (d1, d2) denotes all document pairs. The first term
of the ELBO differentiates the RTM from LDA (Blei et al.
2003). The connections between documents affect the ob-
jective in approximate posterior inference (and, below, in
parameter estimation).

We develop the inference procedure under the assumption
that only observed links will be modeled (i.e., yd1,d2 is ei-
ther 1 or unobserved).1 We do this for two reasons.

First, while one can fix yd1,d2
= 1 whenever a link is ob-

served between d1 and d2 and set yd1,d2 = 0 otherwise, this
approach is inappropriate in corpora where the absence of
a link cannot be construed as evidence for yd1,d2

= 0. In
these cases, treating these links as unobserved variables is
more faithful to the underlying semantics of the data. For
example, in large social networks such as Facebook the ab-
sence of a link between two people does not necessarily
mean that they are not friends; they may be real friends
who are unaware of each other’s existence in the network.
Treating this link as unobserved better respects our lack of
knowledge about the status of their relationship.

Second, treating non-links links as hidden decreases the
computational cost of inference; since the link variables are
leaves in the graphical model they can be removed when-

1Sums over document pairs (d1, d2) are understood to range
over pairs for which a link has been observed.
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Figure 1: In the graphical model of the STM, a document is made up of a number of sentences,
represented by a tree of latent topics z which in turn generate words w. These words’ topics are
chosen by the topic of their parent (as encoded by the tree), the topic weights for a document θ,
and the node’s parent’s successor weights π. (For clarity, not all dependencies of sentence nodes
are shown.) The structure of variables for sentences within the document plate is on the right, as
demonstrated by an automatic parse of the sentence “Some phrases laid in his mind for years.” The
STM assumes that the tree structure and words are given, but the latent topics z are not.

is going to be a noun consistent as the object of the preposition “of.” Thematically, because it is in
a travel brochure, we would expect to see words such as “Acapulco,” “Costa Rica,” or “Australia”
more than “kitchen,” “debt,” or “pocket.” Our model can capture these kinds of regularities and
exploit them in predictive problems.

Previous efforts to capture local syntactic context include semantic space models [6] and similarity
functions derived from dependency parses [7]. These methods successfully determine words that
share similar contexts, but do not account for thematic consistency. They have difficulty with pol-
ysemous words such as “fly,” which can be either an insect or a term from baseball. With a sense
of document context, i.e., a representation of whether a document is about sports or animals, the
meaning of such terms can be distinguished.

Other techniques have attempted to combine local context with document coherence using linear
sequence models [8, 9]. While these models are powerful, ordering words sequentially removes
the important connections that are preserved in a syntactic parse. Moreover, these models gener-
ate words either from the syntactic or thematic context. In the syntactic topic model, words are
constrained to be consistent with both.

The remainder of this paper is organized as follows. We describe the syntactic topic model, and
develop an approximate posterior inference technique based on variational methods. We study its
performance both on synthetic data and hand parsed data [10]. We show that the STM captures
relationships missed by other models and achieves lower held-out perplexity.

2 The syntactic topic model

We describe the syntactic topic model (STM), a document model that combines observed syntactic
structure and latent thematic structure. To motivate this model, we return to the travel brochure
sentence “In the near future, you could find yourself in .”. The word that fills in the blank is
constrained by its syntactic context and its document context. The syntactic context tells us that it is
an object of a preposition, and the document context tells us that it is a travel-related word.

The STM attempts to capture these joint influences on words. It models a document corpus as
exchangeable collections of sentences, each of which is associated with a tree structure such as a

2

This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an efficient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters βt is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and ∆sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 ≤ k ≤ K) topic’s parameter at term w is:

β0,k,w ∼ N (m, v0)

βj,k,w|βi,k,w, s ∼ N
�
βi,k,w, v∆sj ,si

�
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+1, we write ∆sj ,si

as ∆sj for short.)

1. For each topic k, 1 ≤ k ≤ K,

(a) Draw β0,k ∼ N (m, v0I).

(a) (b)

Figure 1: (a) LDA model. (b) MG-LDA model.

is still not directly dependent on the number of documents
and, therefore, the model is not expected to suffer from over-
fitting. Another approach is to use a Markov chain Monte
Carlo algorithm for inference with LDA, as proposed in [14].
In section 3 we will describe a modification of this sampling
method for the proposed Multi-grain LDA model.

Both LDA and PLSA methods use the bag-of-words rep-
resentation of documents, therefore they can only explore
co-occurrences at the document level. This is fine, provided
the goal is to represent an overall topic of the document,
but our goal is different: extracting ratable aspects. The
main topic of all the reviews for a particular item is virtu-
ally the same: a review of this item. Therefore, when such
topic modeling methods are applied to a collection of re-
views for different items, they infer topics corresponding to
distinguishing properties of these items. E.g. when applied
to a collection of hotel reviews, these models are likely to in-
fer topics: hotels in France, New York hotels, youth hostels,
or, similarly, when applied to a collection of Mp3 players’
reviews, these models will infer topics like reviews of iPod
or reviews of Creative Zen player. Though these are all valid
topics, they do not represent ratable aspects, but rather de-
fine clusterings of the reviewed items into specific types. In
further discussion we will refer to such topics as global topics,
because they correspond to a global property of the object
in the review, such as its brand or base of operation. Dis-
covering topics that correlate with ratable aspects, such as
cleanliness and location for hotels, is much more problem-
atic with LDA or PLSA methods. Most of these topics are
present in some way in every review. Therefore, it is difficult
to discover them by using only co-occurrence information at
the document level. In this case exceedingly large amounts
of training data is needed and as well as a very large num-
ber of topics K. Even in this case there is a danger that
the model will be overflown by very fine-grain global topics
or the resulting topics will be intersection of global topics
and ratable aspects, like location for hotels in New York.
We will show in Section 4 that this hypothesis is confirmed
experimentally.

One way to address this problem would be to consider co-
occurrences at the sentence level, i.e., apply LDA or PLSA to
individual sentences. But in this case we will not have a suf-
ficient co-occurrence domain, and it is known that LDA and
PLSA behave badly when applied to very short documents.
This problem can be addressed by explicitly modeling topic
transitions [5, 15, 33, 32, 28, 16], but these topic n-gram

models are considerably more computationally expensive.
Also, like LDA and PLSA, they will not be able to distin-
guish between topics corresponding to ratable aspects and
global topics representing properties of the reviewed item.
In the following section we will introduce a method which
explicitly models both types of topics and efficiently infers
ratable aspects from limited amount of training data.

2.2 MG-LDA
We propose a model called Multi-grain LDA (MG-LDA),

which models two distinct types of topics: global topics and
local topics. As in PLSA and LDA, the distribution of global
topics is fixed for a document. However, the distribution of
local topics is allowed to vary across the document. A word
in the document is sampled either from the mixture of global
topics or from the mixture of local topics specific for the
local context of the word. The hypothesis is that ratable
aspects will be captured by local topics and global topics
will capture properties of reviewed items. For example con-
sider an extract from a review of a London hotel: “. . . public
transport in London is straightforward, the tube station is
about an 8 minute walk . . . or you can get a bus for £1.50”.
It can be viewed as a mixture of topic London shared by
the entire review (words: “London”, “tube”, “£”), and the
ratable aspect location, specific for the local context of the
sentence (words: “transport”, “walk”, “bus”). Local topics
are expected to be reused between very different types of
items, whereas global topics will correspond only to partic-
ular types of items. In order to capture only genuine local
topics, we allow a large number of global topics, effectively,
creating a bottleneck at the level of local topics. Of course,
this bottleneck is specific to our purposes. Other applica-
tions of multi-grain topic models conceivably might prefer
the bottleneck reversed. Finally, we note that our definition
of multi-grain is simply for two-levels of granularity, global
and local. In principle though, there is nothing preventing
the model described in this section from extending beyond
two levels. One might expect that for other tasks even more
levels of granularity could be beneficial.

We represent a document as a set of sliding windows, each
covering T adjacent sentences within it. Each window v in
document d has an associated distribution over local topics
θloc

d,v and a distribution defining preference for local topics
versus global topics πd,v. A word can be sampled using any
window covering its sentence s, where the window is chosen
according to a categorical distribution ψs. Importantly, the
fact that the windows overlap, permits to exploit a larger
co-occurrence domain. These simple techniques are capable
of modeling local topics without more expensive modeling of
topics transitions used in [5, 15, 33, 32, 28, 16]. Introduction
of a symmetrical Dirichlet prior Dir(γ) for the distribution
ψs permits to control smoothness of topic transitions in our
model.

The formal definition of the model with Kgl global and
Kloc local topics is the following. First, draw Kgl word
distributions for global topics ϕgl

z from a Dirichlet prior
Dir(βgl) and Kloc word distributions for local topics ϕloc

z′
from Dir(βloc). Then, for each document d:

• Choose a distribution of global topics θgl
d ∼ Dir(αgl).

• For each sentence s choose a distribution ψd,s(v) ∼
Dir(γ).

• For each sliding window v
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, φz, specific to a particular
topic/author, z, however topics are selected differently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, θ, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, θ, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution θx that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution φz. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite different. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.
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I LDA has become a building block that enables many applications.

I Algorithmic improvements let us fit models to massive data.
(See VW, Gensim, Mallet, others.)

I Organizing and finding patterns in text is important
in the sciences, humanities, industry, and culture.
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Figure S2: Population structure inferred from the TGP data set using the TeraStructure algorithm
at three values for the number of populations K. The visualization of the ✓’s in the Figure shows
patterns consistent with the major geographical regions. Some of the clusters identify a specific
region (e.g. red for Africa) while others represent admixture between regions (e.g. green for Eu-
ropeans and Central/South Americans). The presence of clusters that are shared between different
regions demonstrates the more continuous nature of the structure. The new cluster from K = 7 to
K = 8 matches structure differentiating between American groups. For K = 9, the new cluster is
unpopulated.
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I Case study in text analysis with probability models

I Topic modeling research

– develops new models.
– develops new inference algorithms.
– develops new applications, visualizations, tools.



Collaborative Topic Models
with Prem Gopalan, Laurent Charlin, and Chong Wang



Charles Darwin’s library Reading on the New York subway

I People read documents.

I Collaborative topic models connect content to consumption



Introduction to Variational Methods for Graphical Models
Conditional Random Fields

Maximum likelihood from incomplete data via the EM algorithm

The Mathematics of Statistical Machine Translation

Users

Papers

Topic Models for Recommendation

I Example: Scientists share their research libraries.

I Collaborative topic models can

– Helps readers discover documents, old and new.
– Describe readers in terms of topical preferences
– Identify documents that are impactful, interdisciplinary



I Consider EM (Dempster et al., 1977). We infer topics from its text:

StatisticsVision

I Suppose there are two types of scientists

Statistics

Vision

STATISTICIAN VISION RESEARCHER

I We first recommend the EM paper to statisticians.



I With user data, we can adjust the topics to account for who liked it:
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I Consider again the scientists

Statistics

Vision

STATISTICIAN VISION RESEARCHER

I We now recommend the EM paper to vision researchers.
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Without text, we cannot initially recommend to anyone.
Without user data, we cannot recommend to vision researchers.
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I Describes user preferences with interpretable topics

I Builds on Poisson factorization
[Canney 2004; Dunson and Herring 2005; Gopalan et al. 2014]



I Big data set from Mendeley.com

I The data:

– 261K documents
– 80K users
– 10K vocabulary terms
– 25M observed words
– 5.1M entries (sparsity is 0.02%)
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Einstein reading Another scientist readingDarwin’s library

I The readers also tell us about the articles.

I We can look at posterior estimates to find

– Interdisciplinary articles
– Influential articles within a field
– Outside influences on a field



“Network Analysis”

network; connected; modules; nodes; links; topology; connectivity; graph;
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Assortative mixing in networks

M. E. J. Newman
Department of Physics, University of Michigan, Ann Arbor, MI 48109–1120 and

Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501

A network is said to show assortative mixing if the nodes in the network that have many connec-
tions tend to be connected to other nodes with many connections. We define a measure of assortative
mixing for networks and use it to show that social networks are often assortatively mixed, but that
technological and biological networks tend to be disassortative. We propose a model of an assortative
network, which we study both analytically and numerically. Within the framework of this model we
find that assortative networks tend to percolate more easily than their disassortative counterparts
and that they are also more robust to vertex removal.

Many systems take the form of networks—sets of ver-
tices joined together by edges—including social networks,
computer networks, and biological networks [1, 2, 3]. A
variety of models of networks have been proposed and
studied in the physics literature, many of which have
been successful at reproducing features of networks in the
real world [4, 5, 6]. One particularly well-studied model
is the cumulative advantage or preferential attachment
model [6, 7, 8, 9, 10] in which the probability of a given
source vertex forming a connection to a target vertex is
some (usually increasing) function of the degree of the
target vertex. (The degree of a vertex is the number of
other vertices to which it is attached.) Preferential at-
tachment processes are widely accepted as the probable
explanation for the power-law and other skewed degree
distributions seen in many networks [11, 12, 13, 14].

However, there is an important element missing from
these as well as other network models: in none of these
models does the probability of attachment to the target
vertex depend also on the degree of the source vertex. In
the real world on the other hand such dependencies are
common. Many networks show “assortative mixing” on
their degrees, i.e., a preference for high-degree vertices
to attach to other high-degree vertices. Others show dis-
assortative mixing—high-degree vertices attach to low-
degree ones. In this paper we first demonstrate the pres-
ence of assortative mixing in a variety of networks by
direct measurement, and then argue, using exactly solv-
able models and numerical simulations, that assortative
mixing can have a substantial effect on the behavior of
networked systems. Models that do not take it into ac-
count will necessarily fail to reproduce correctly many of
the behaviors of real-world networked systems.

Consider then a network, represented in the simplest
case by an undirected graph of N vertices and M edges,
with degree distribution pk. That is, pk is the probability
that a randomly chosen vertex on the graph will have
degree k. Now consider a vertex reached by following a
randomly chosen edge on the graph. The degree of this
vertex is not distributed according to pk. Instead it is
biased in favor of vertices of high degree, since more edges
end at a high-degree vertex than at a low-degree one.
This means that the degree distribution for the vertex at
the end of a randomly chosen edge is proportional kpk,

rather than just pk. In this paper, we will usually be
interested not in the total degree of such a vertex, but in
the remaining degree—the number of edges leaving the
vertex other than the one we arrived along. This number
is one less than the total degree and hence is distributed
in proportion to (k + 1)pk+1. The correctly normalized
distribution qk of the remaining degree is then

qk =
(k + 1)pk+1∑

j jpj
. (1)

Following Callaway et al. [15], we now define the quan-
tity ejk to be the joint probability distribution of the
remaining degrees of the two vertices at either end of a
randomly chosen edge [34]. This quantity is symmetric in
its indices on an undirected graph ejk = ekj , and obeys
the sum rules∑

jk

ejk = 1,
∑

j

ejk = qk. (2)

In a network with no assortative (or disassortative)
mixing ejk takes the value qjqk. If there is assortative
mixing, ejk will differ from this value and the amount
of assortative mixing can be quantified by the con-
nected degree-degree correlation function ⟨jk⟩−⟨j⟩⟨k⟩ =∑

jk jk(ejk −qjqk), where ⟨. . . ⟩ indicates an average over

edges [15]. This correlation function is zero for no as-
sortative mixing and positive or negative for assorta-
tive or disassortative mixing respectively. For the pur-
poses of comparing different networks, it is convenient
to normalize it by dividing by its maximal value, which
it achieves on a perfectly assortative network, i.e., one
with ejk = qkδjk. This value is equal to the variance

σ2
q =

∑
k k2qk −

[∑
k kqk

]2
of the distribution qk, and

hence the normalized correlation function is

r =
1

σ2
q

∑

jk

jk(ejk − qjqk), (3)

which is simply the Pearson correlation coefficient of the
degrees at either ends of an edge and lies in the range
−1 ≤ r ≤ 1 [35]. For the practical purpose of evaluating
r on an observed network, we can rewrite (3) as

r =
M−1

∑
i jiki −

[
M−1

∑
i

1
2 (ji + ki)

]2

M−1
∑

i
1
2 (j2

i + k2
i ) −

[
M−1

∑
i

1
2 (ji + ki)

]2 , (4)

About networks

I Assortative mixing in networks
(Newman, 2002)

I Mixing patterns in networks
(Newman, 2002)

I Catastrophic cascade of failures in interdependent networks
(Buldyrev et al., 2010)
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PERSPECTIVE

Scale-Free Networks: A Decade
and Beyond
Albert-László Barabási

For decades, we tacitly assumed that the components of such complex systems as the cell, the
society, or the Internet are randomly wired together. In the past decade, an avalanche of research
has shown that many real networks, independent of their age, function, and scope, converge to
similar architectures, a universality that allowed researchers from different disciplines to embrace
network theory as a common paradigm. The decade-old discovery of scale-free networks was one of
those events that had helped catalyze the emergence of network science, a new research field with
its distinct set of challenges and accomplishments.

Nature, society, and many technologies are
sustained by numerous networks that
are not only too important to fail but

paradoxically for decades have also proved too
complicated to understand. Simple models, like
the one introduced in 1959 by mathematicians
Pál Erdős and Alfréd Rényi (1), drove much of
our thinking about interconnected systems. They
assumed that complex systems are wired randomly
together, a hypothesis that was adopted by so-
ciology, biology, and computer science. It had
considerable predictive power, explaining for ex-
ample why everybody is only six handshakes
from anybody else (2–5), a phenomenon ob-
served as early as 1929 (2) but which resonated
in physical sciences only after Duncan Watts and
Stephen Strogatz extended its reach beyond so-
ciology (5). Yet, the undeniable success of the
random hypothesis did pose a fundamental ques-
tion: Are real networks truly random? That is,
could systems such as the cell or a society func-
tion seamlessly if their nodes, molecules, or
peoplewerewired randomly together? This ques-
tion motivated our work as well, leading 10 years
ago to the discovery of the scale-free property
(6, 7).

Our first clue that real networks may show
manifestly nonrandom features also came 10 years
ago from a map of the World Wide Web (WWW)
(8), finding that the probability that a Web page
has exactly k links (in other words, degree k)
follows a power law distribution

P(k) ~ k-g (1)

a stunning departure from the Poisson distribu-
tion predicted by random network theory (1). Yet,
it was not until we realized that Eq. 1 character-
izes the network of actors linked by movies and
scientific papers linked by citations (9) that we

suspected that the scale-free property (6) might
not be unique to theWWW. The main purpose of
the 1999 Science paper was to report this
unexpected similarity between networks of quite
different nature and to show that twomechanisms,
growth and preferential attachment, are the
underlying causes (Fig. 1).

When we concluded in 1999 that we “expect
that the scale invariant state […] is a generic

property of many complex networks” (7), it was
more of a prediction than a fact, because nature
could have chosen as many different architec-
tures as there are networks. Yet, probably the
most surprising discovery of modern network
theory is the universality of the network topology:
Many real networks, from the cell to the Internet,
independent of their age, function, and scope,
converge to similar architectures. It is this uni-
versality that allowed researchers from different
disciplines to embrace network theory as a com-
mon paradigm.

Today, the scale-free nature of networks of
key scientific interest, from protein interactions to
social networks and from the network of inter-
linked documents that make up the WWW to the
interconnected hardware behind the Internet, has
been established beyond doubt. The evidence
comes not only from better maps and data sets
but also from the agreement between empirical
data and analytical models that predict the network
structure (10, 11). Yet, the early euphoria was not
without negative side effects, prompting some re-
searchers to label many systems scale-free, even
when the evidence was scarce at best. However,
the net result was to force us to better understand
the factors that shape network structure. For ex-

Pushing Networks to the Limit

Center for Complex Network Research, Department of Physics,
Biology, and Computer Science, Northeastern University, Boston,
MA 02115, USA. Department of Medicine, Harvard Medical
School and Center for Cancer Systems Biology, Dana Farber
Cancer Institute, Boston, MA 02115, USA. E-mail: alb@neu.edu

Fig. 1. The birth of a scale-free network. (Top and Middle) The simplest process that can produce a
scale-free topology was introduced a decade ago in (6), and it is illustrated in the top two rows. Starting
from three connected nodes (top left), in each image a new node (shown as an empty circle) is added to
the network. When deciding where to link, new nodes prefer to attach to the more connected nodes, a
process known as preferential attachment. Thanks to growth and preferential attachment, a rich-gets-richer
process is observed, which means that the highly connected nodes acquire more links than those that are less
connected, leading to the natural emergence of a few highly connected hubs. The node size, which was
chosen to be proportional to the node’s degree, illustrates the natural emergence of hubs as the largest
nodes. The degree distribution of the resulting network follows the power law (Eq. 1) with exponent g = 3.
See also movies S1 to S3. (Bottom) Illustration of the growth process in the co-authorship network of
physicists. Each node corresponds to an individual author, and two nodes are connected if they co-
authored a paper together. The four images show the network’s growth at 1-month time intervals,
indicating how the network expands in time, leading to the emergence of a clear hub. Once again, the
node size was chosen to be proportional to the node’s degree. [Credit: D. Wang and G. Palla]

24 JULY 2009 VOL 325 SCIENCE www.sciencemag.org412

About networks; for readers of networks

I Emergence of scaling in random networks
(Barabassi and Albert, 1999)

I Statistical mechanics of complex networks
(Albert and Barabassi, 2002)

I Complex networks: Structure and dynamics
(Boccaletti et al., 2006)
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regions that are highly connected within one module) and
connector hubs (hub regions that link multiple modules) [35].
Without exception, connector hubs are located within the
anterior-posterior medial axis of the cortex (Figure 6A),
including bilaterally the rostral and caudal anterior cingulate,
the paracentral lobule, and the precuneus. Examination of
high-resolution connection matrices shows that the majority
of connector hub ROIs is consistently found in posterior
medial and parietal cortex (Figure 6B). Provincial hubs are
members of the frontal (e.g., medioorbitofrontal cortex),
temporoparietal (e.g., bank of the superior temporal sulcus,
superior temporal cortex) or occipital modules (e.g., peri-
calcarine cortex). Most core regions, as identified by k-core or
s-core decomposition, are members of the two medial
modules. When combined into a single ‘‘core module,’’ over
70% of the between-module edge mass is attached to the
core.

When modularity detection was applied to more restricted
portions of the high-resolution connection datasets, for

example the visual and frontal cortex, we were able to
recover clusters that were consistent with those found in
previous studies based on classical anatomical techniques, or
orderings that were suggested based on functional subdivi-
sions. For example, we found, in all five participants, a
segregated dorsal and ventral cluster of visual ROIs,
corresponding in location and extent to the dorsal and
ventral stream of visual cortex [36]. Clustering of frontal
cortical ROIs yielded distinct clusters centered on orbital,
medial, and lateral frontal cortex (Figure S4).

Centrality and Efficiency
Regions with elevated betweenness centrality are posi-

tioned on a high proportion of short paths within the
network [37]. The spatial distribution of ROIs with high
betweenness centrality (Figure 7A and 7B) shows high
centrality for regions of medial cortex such as the precuneus
and posterior cingulate cortex, as well as for portions of
medial orbitofrontal cortex, inferior and superior parietal
cortex, as well as portions of frontal cortex. Figure 7B

Figure 3. High-Resolution Connection Matrix, Network Layout and Connectivity Backbone (Participant A, scan 2)

(A) Matrix of fiber densities (connection weights) between all pairs of n¼ 998 ROIs. ROIs are plotted by cerebral hemispheres, with right-hemispheric
ROIs in the upper left quadrant, left-hemispheric ROIs in the lower right quadrant, and interhemispheric connections in the upper right and lower left
quadrants. The color bars at the left and bottom of the matrix correspond to the colors of the 66 anatomical subregions shown in Figure 1. All
connections are symmetric and displayed with a logarithmic color map.
(B) Kamada-Kawai force-spring layout of the connectivity backbone. Labels indicating anatomical subregions are placed at their respective centers of
mass. Nodes (individual ROIs) are coded according to strength and edges are coded according to connection weight (see legend).
(C) Dorsal and lateral views of the connectivity backbone. Node and edge coding as in (B).
doi:10.1371/journal.pbio.0060159.g003

PLoS Biology | www.plosbiology.org July 2008 | Volume 6 | Issue 7 | e1591483

The Structural Core of Human Cortex

About networks; for readers of other fields

I Mapping the Structural Core of Human Cerebral Cortex
(Hagmann et al., 2008)

I Network thinking in ecology and evolution
(Proulx et al., 2005)

I Linked: The New Science of Networks
(Barabasi, 2002)
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real process, it is one of the very few nonequilibrium
stochastic processes that can be solved exactly in any
dimension !Redner, 2001". It can also be seen as a model
for dimer-dimer heterogeneous catalysis in the reaction
controlled limit !Evans and Ray, 1993".

The definition is extremely simple: each agent is en-
dowed with a binary variable s= ±1. At each time step,
an agent i is selected along with one of its neighbors j
and si=sj, i.e., the agent takes the opinion of the neigh-
bor. This update rule implies that agents imitate their
neighbors. They feel the pressure of the majority of their
peers only in an average sense: the state of the majority
does not play a direct role and more fluctuations may be
expected with respect to the zero-temperature Glauber
dynamics. Bulk noise is absent in the model, so the
states with all sites equal !consensus" are absorbing.
Starting from a disordered initial condition, voter dy-
namics tends to increase the order of the system, as in
usual coarsening processes !Scheucher and Spohn,
1988". The question is whether full consensus is reached
in a system of infinite size. In one-dimensional lattices,
the dynamics is exactly the same as the zero-
temperature Glauber dynamics. A look at the patterns
generated in two-dimensional lattices !Fig. 2" indicates
that domains grow but interfaces are very rough, at odds
with usual coarsening systems !Bray, 1994".

Early studies, performed by probabilists !Clifford and
Sudbury, 1973; Holley and Liggett, 1975; Liggett, 1985;
Cox and Griffeath, 1986", exploited the fact that the
model can be exactly mapped on a model of random
walkers that coalesce upon encounter. This duality prop-
erty allows us to use the powerful machinery of random-
walk theory !Liggett, 1985, 1999". We prefer to follow
another derivation of the general solution on lattices
!Frachebourg and Krapivsky, 1996", based on earlier
work !Krapivsky, 1992". Considering a d-dimensional hy-
percubic lattice and denoting with S= #si$ the state of the
system, the transition rate for a spin k to flip is

Wk!S" % W!sk → − sk" =
d
4&1 −

1
2d

sk'
j

sj( , !5"

where j runs over all 2d nearest neighbors and the pref-
actor, setting the overall temporal scale, is chosen for

convenience. The probability distribution function
P!S , t" obeys the master equation

dP!S,t"/dt = '
k

)Wk!Sk"P!Sk,t" − Wk!S"P!S,t"* , !6"

where Sk is equal to S except for the flipped spin sk. The
linear structure of the rates !5" has the consequence that
the equations for correlation functions of any order
+sk¯sl,%'SP!S , t"sk¯sl can be closed, i.e., they do not
depend on higher-order functions and hence can be
solved !Scheucher and Spohn, 1988".

The equation for the one-body correlation function is

d+sk,/dt = !k+sk, , !7"

where !k is the discrete Laplace operator. Summing
over k, one sees that the global magnetization +s,
= !1/N"'k+sk, is conserved. This conservation immedi-
ately allows us to determine the probability that a finite
system will end up with all spins up or down !exit prob-
ability", depending on the initial density of up spins
"!0"= !+s,+1" /2. This gives Pup)"!0"*="!0" in any dimen-
sion.

The two-body correlation function obeys

d+sksl,/dt = !!k + !l"+sksl, . !8"

The structure of this equation, as well as of those for
higher-order correlation functions, is similar in any di-
mension to the equations for correlators of the one-
dimensional Ising model with zero-temperature Glauber
dynamics !Glauber, 1963" and can be solved analogously,
via Laplace transform. In this way, the asymptotic be-
havior of the density of active interfaces na!t"= !1
− +sksk+1," /2 is derived !Frachebourg and Krapivsky,
1996",

na!t" - .t−!2−d"/2, d # 2
1/ln!t", d = 2
a − bt−d/2, d $ 2.

/ !9"

Equation !9" shows that for d%2 the voter model under-
goes a coarsening process leading to complete consen-
sus. For d$2 instead, it exhibits asymptotically a finite
density of interfaces, i.e., no consensus is reached !in an
infinite system" and domains of opposite opinions coex-
ist indefinitely in time. In terms of duality, the lack of
order in high dimensions is a consequence of the tran-
sient nature of random walks in d$2: diffusing active
interfaces have a finite probability to meet and annihi-
late. For d=2 the exact expression of the density of ac-
tive interfaces for large times is

na!t" = &/)2 ln!t" + ln!256"* + O!ln t/t" . !10"

The large constant value in the denominator of Eq. !10"
makes the approach to the asymptotic logarithmic decay
very slow, and explains why different laws were hypoth-
esized, based on numerical evidence !Meakin and Scala-
pino, 1987; Evans and Ray, 1993".

Beyond the expression for the density na!t", the solu-
tion of Eq. !8" allows us to write down a scaling form for
the correlation function C!r , t" !Scheucher and Spohn,

FIG. 2. !Color online" Evolution of a two-dimensional voter
model starting from a droplet !top" or a fully disordered con-
figuration !bottom". From Dornic et al., 2001.

599Castellano, Fortunato, and Loreto: Statistical physics of social dynamics

Rev. Mod. Phys., Vol. 81, No. 2, April–June 2009

Not about networks; for readers of networks

I Power-law distributions in empirical data
(Clauset et al., 2009)

I Statistical physics of social dynamics
(Castellano et al., 2009)

I The origin of bursts and heavy tails in human dynamics
(Barabasi, 2005)



“Statistical Modeling”

About this field; read by users in this field

I A Bayesian analysis of some nonparametric problems
I Bayesian measures of model complexity and fit
I Monte Carlo Methods in Bayesian Computation

About this field; read by users in other fields

I A tutorial on HMMs and selected applications in speech recognition
I An Introduction to Bayesian Networks and Influence Diagrams
I Maximum likelihood from incomplete data via the EM algorithm

About other fields; read by users in this field

I Second Thoughts on the Bootstrap
I A guide to Eclipse and the R plug-in StatET
I Using Multivariate Statistics



I A decade of clicks on arXiv.org (2003–2013)

I The data:

– 826K documents
– 120K users
– 14K vocabulary terms
– 54M observed words
– 43.6M entries (sparsity is 0.04%)
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Ratings Only (Gopalan et al., 2014)

Collaborative Topic Regression (Wang and Blei, 2011)



Stat.ML: Machine Learning

In stat.ML; for stat.ML readers

I Noisy matrix decomposition via convex relaxation
I Robust computation of linear models, or how to find a needle in a haystack
I High-dimensional regression with noisy and missing data

In stat.ML; for other readers

I Co-evolution of selection and influence in social networks
I Hierarchical structure and the prediction of missing links in networks
I Learning continuous-time social network dynamics

In other categories; for stat.ML readers

I Finding structure with randomness
I Representation learning: A review and new perspectives
I Computational and statistical tradeoffs via convex relaxation



I The New York Society library is the first library in New York City (1754)
I Mark Hoffman and Peter Bearman (sociology) are using collaborative topic

models to explore the usage patterns of important figures in U.S. History
I The data

– 1789 – 1806
– 847 users (people like Aaron Burr, John Jay, etc.)
– 2,327 items (items like The Prince)
– 33M words; vocabulary of 8,000
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Collaborative topic models

I Connect text to usage, content to consumption

I Blend content-based and user-based recommendation

I Opens new windows into how people read



Discussion: Modern Probabilistic Modeling



Machine Learning in Practice

First Pass
Ñ “Cookbook + Shoehorn +

Duct Tape”.
Ñ Many available packages.
Ñ Typically fast and scalable.

Generative Prob Models
Ñ Domain-specific knowledge

and assumptions.
Ñ Challenging to implement.
Ñ May not be fast or scalable.

How to use traditional machine learning and statistics to solve modern problems



Probabilistic machine learning: tailored models for the problem at hand.



Probabilistic machine learning: tailored models for the problem at hand.

I Compose and connect reusable parts

I Driven by disciplinary knowledge and its questions

I Focus on discovering and using structure in unstructured data

I Exploratory, observational, causal analyses



Machine Learning in Practice

First Pass
Ñ “Cookbook + Shoehorn +

Duct Tape”.
Ñ Many available packages.
Ñ Typically fast and scalable.

Generative Prob Models
Ñ Domain-specific knowledge

and assumptions.
Ñ Challenging to implement.
Ñ May not be fast or scalable.

Many software packages available; typically fast and scalable



More challenging to implement; may not be fast or scalable
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DATA SCIENCE
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STATISTICS
MACHINE LEARNING

DATA SCIENCE

PROBABILISTIC 
MODELING

TOPIC 
MODELING

DEEP
LEARNING

RL

A big picture (not to scale)



I. Assume our data come from a model with hidden patterns at work

Topics Documents Topic proportions and
assignments



II. Discover those patterns from data

�� D arg max
�

Eq Œlogp.x; z; ˇ j˛/�CH Œq.z; ˇ j �/�



III. Use the discovered patterns to predict about and explore the data
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Figure S2: Population structure inferred from the TGP data set using the TeraStructure algorithm
at three values for the number of populations K. The visualization of the ✓’s in the Figure shows
patterns consistent with the major geographical regions. Some of the clusters identify a specific
region (e.g. red for Africa) while others represent admixture between regions (e.g. green for Eu-
ropeans and Central/South Americans). The presence of clusters that are shared between different
regions demonstrates the more continuous nature of the structure. The new cluster from K = 7 to
K = 8 matches structure differentiating between American groups. For K = 9, the new cluster is
unpopulated.

28

Our perspective:

I Customized data analysis is important to many fields.

I This pipeline separates assumptions, computation, application.

I It facilitates solving data science problems.
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Figure S2: Population structure inferred from the TGP data set using the TeraStructure algorithm
at three values for the number of populations K. The visualization of the ✓’s in the Figure shows
patterns consistent with the major geographical regions. Some of the clusters identify a specific
region (e.g. red for Africa) while others represent admixture between regions (e.g. green for Eu-
ropeans and Central/South Americans). The presence of clusters that are shared between different
regions demonstrates the more continuous nature of the structure. The new cluster from K = 7 to
K = 8 matches structure differentiating between American groups. For K = 9, the new cluster is
unpopulated.
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What we need:

I Flexible and expressive components for building models

I Scalable and generic inference algorithms

I Easy to use software to stretch probabilistic modeling into new areas
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Edward: Probabilistic modeling, inference, and criticism
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We should seek out unfamiliar summaries of observational material, and establish
their useful properties... And still more novelty can come from finding, and evading,
still deeper lying constraints.

(John Tukey, The Future of Data Analysis, 1962)
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Stochastic variational inference [Hoffman et al., 2013]
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Black box variational inference [Ranganath et al., 2014]
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I Easily use variational inference with any model

I No exponential family requirements

I No mathematical work beyond specifying the model
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Figure 2. The approximate predictive distribution given by variational inference at different stages of the algorithm. The
data are 100 points generated by a Gaussian DP mixture model with fixed diagonal covariance.
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Figure 3. (Left) Convergence time per dimension across ten datasets for variational inference (Var), the TDP Gibbs
sampler (TDP), and the collapsed Gibbs sampler (CDP). Grey bars are standard error. (Right) Average held-out log
likelihood for the corresponding predictive distributions.

The update for the variational multinomial on Zn is
φn,i ∝ exp(E) where:

E = E [log Vi | γi] + E [ηi | τi]
T

Xn

− E [a(ηi) | τi] +
∑i−1

j=1 E [log(1 − Vj) | γj ] .

Iterating between these updates is a coordinate ascent
algorithm for optimizing Eq. (12) with respect to the
parameters in Eq. (13). We thus find q(v,η∗, z) which
is closest, within the confines of its parameters, to the
true posterior. This yields an approximate predictive
distribution of the next data point given, as in the
TDP Gibbs sampler for a single sample, by Eq. (10).

5. Example and Results

We applied the variational algorithm of Section 4 and
the two Gibbs samplers of Section 3 to Gaussian-

Gaussian DP mixture models. The data are assumed
drawn from a multivariate Gaussian with fixed covari-
ance matrix; the mean of each data point is drawn
from a DP with a Gaussian baseline distribution (i.e.,
the conjugate prior).

In Figure 2, we illustrate the variational inference algo-
rithm on a toy problem. We have simulated 100 data
points from a two-dimensional Gaussian-Gaussian DP
mixture with diagonal covariance. We illustrate the
data and the predictive distribution given by the varia-
tional inference algorithm of Section 4 with variational
truncation level K equal to 20. In the initial setting,
the variational approximation places a largely flat dis-
tribution on the data. After one iteration, the algo-
rithm has found the various modes of the data and,
after convergence, it has further refined those modes.
Notice that even though we represent 20 mixture com-

Deep Exponential Families Probabilistic Programming
[Ranganath et al., 2015] [Kucukelbir et al., 2015]
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Time series recommendation

User 755 Item 4663: “The Google Similarity Distance”
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Figure 1: Our method, dPF, discovers evolving user interests and item audiences over time from raw click data. The top left plot shows
the aggregate click frequencies for a user on arXiv.org for 8 years. dPF separates this aggregate data into a set of 20 interest groups with
varying strengths over time (bottom left). This user was initially interested in quantum cryptography and graph theory; then, five years later,
in compressed sensing and data structures. dPF decomposes raw access counts for items in a similar way. The top right plot shows the raw
access frequencies for the paper “The Google Similarity Distance” (http://arxiv.org/pdf/cs/0412098.pdf). The bottom right plot
indicates that the paper broadened its audience during its lifetime. It was initially popular only with graph theorists, then received attention
from quantum physicists and computational complexity readers, perhaps explained by the fact that it was cited in “Google in a Quantum
Network” (on arXiv and then in the Nature journal).

fixed variance �2:

x
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⇠ Normal(x
t�1
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).

We use these state space models as the dynamic portion of dPF,
where both the users and items evolve. Formally, u

nk,t

, the kth
component of the nth user at time t is constructed as

u
nk,t

|u
nk,t�1

⇠ Normal(u
nk,t�1

�2

u

).

The state space process for items is symmetric. The static compo-
nents associated with each user u

nk

and item v
nk

are also drawn
from a Normal distribution. They form the intercepts for a time
evolving factorization with Poisson observations. That is, a user’s
expression of factor k at time t is the sum u

nk

+ u
nk,t

. In this
sense, the state space model can be viewed as governing correction
factors and thus capture the evolution of users’ preferences through
time, while static global factors capture the interest of users that are
not influenced by time.

One issue in using Gaussian state space models is that Poisson
observations have non-negative parameters. Thus, we exponenti-
ate the state-space models intercept sums for each user and item
before combining them to form the mean of the observed rating.
Concretely, the rating for user n, item m at time t, y

nm,t

has the
following distribution

y
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KX
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Putting this all together, the observations are drawn as follows:

1. Draw user global factors: ū
nk
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)

2. Draw item global factors: v̄
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)

3. For each timestep: t = 1 . . . T

Draw user and item correction factors:

if t = 1
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Draw a click:
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Analysis and Predictions. We analyze data through the poste-
rior, p(u

pk

, u
pk,t

, v
pk

, v
pk,t

|Y ). The posterior distribution places
probability mass on the latent variables in proportion to how well
they explain the observations. The posterior of standard Poisson
factorization finds a single set of preferences and attributes, while
the dPF posterior places high probability on the sequences of pref-
erences and attributes that best describe the observed data. Figure 1
plots the expected value under the posterior distribution of the ex-
pression of factor k by user n, u

pk,t

+u
pk

, and the similar posterior
expectation for the items.

(with Laurent Charlin, James McInerney, Rajesh Ranganath)



Social recommendation

A Probabilistic Model for Using Social Networks in
Personalized Item Recommendation

Author(s) placeholder
Some Institution

email@address.com

ABSTRACT
Preference-based recommendation systems have transformed how
we consume media. By analyzing usage data, these methods un-
cover our latent preferences for items (such as articles or movies)
and form recommendations based on the behavior of others with
similar tastes. But traditional preference-based recommendations
do not account for the social aspect of consumption, where a trusted
friend might point us to an interesting item that does not match our
typical preferences. In this work, we aim to bridge the gap between
preference- and social-based recommendations. We exploit that our
social structure is often encoded on the same platform as the one
which we use to find media, opening the door to algorithmic recom-
mendations based on the histories of other users we know. To this
end we develop social Poisson factorization (SPF), a probabilistic
model that incorporates social network information into a traditional
factorization method; social Poisson factorization introduces the
social aspect to algorithmic recommendation. We develop scalable
algorithms for analyzing data with SPF, and demonstrate that it
outperforms competing methods on six real-world datasets; data
sources include a social reader and Etsy.

Keywords
Recommender systems, probabilistic models, social networks.

1. INTRODUCTION
Recommendation has become a core component in the modern

online experience, such as when we watch movies, read articles,
listen to music, and shop. Given information about what a user has
consumed (e.g., items viewed, marked as “favorites,” or rated), the
goal of recommendation is to suggest a set of unobserved items that
she will like.

Most recommendation systems aim to make personalized sug-
gestions to each user based on similar users’ histories, and matrix
factorization algorithms are the workhorse methods of choice to
solve this problem [18, 30]. Factorization algorithms use historical
data to uncover recurring patterns of consumption, and then describe
each user in terms of their varying preferences for those patterns.
For example, the discovered patterns might include art supplies,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys ’15 Vienna, Austria
Copyright 2015 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Figure 1: Observed and recommended items for an Etsy user.
The user is shown in the center, with friends on the sides. The top
row is training items and the bottom row is the top recommen-
dations from our model (SPF). Some items are recommended
because they are favorites of the friends, and others because
they match the general preferences of the user.

holiday decorations, and vintage kitchenware; and each user has dif-
ferent preferences for each category. To perform recommendation,
factorization algorithms find unmarked items of each user that are
characteristic of her preferences.

Many applications of recommendation contain an additional
source of information: a social network. This network is increas-
ingly available at the same platforms on which we read, watch, and
shop. Examples include Etsy, Instagram, and various social readers.
Researchers have found that users value the opinions of their friends
for discovering and discussing content [31, 16], and online access
to their network can reinforce this phenomenon.

Factorization approaches, however, cannot exploit this informa-
tion. They can capture that you may enjoy an item because it
matches your general preferences, but they cannot capture that you
may enjoy another because your friend enjoyed it. Knowing your
connections and what items your friends like should help better
predict what you will enjoy.

In this paper we develop social Poisson factorization (SPF), a
new Bayesian factorization method that accounts for the social
aspect of how users consume items. (SPF is based on Poisson
factorization [10], a new model that is particularly suited for implicit
data.) SPF assumes that there are two signals driving each user’s
clicks: her latent preferences for items (and the latent attributes of
each) and the latent “influence” of her friends.1 From observed

1There is a large body of research literature on peer influence [20,
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Figure 3: Performance of various methods on all six datasets, measured as NCRR averaged over users with held-out data. The
Poisson-based factor models (PF and SPF) use K D 40 on Ciao, K D 125 on Epinions, K D 100 on Etsy, and K D 50 on Flixster,
Douban, and Social Reader. Similar K values are used for competing models, but some perform best with lower K, in which case those
settings are used. Models are sorted by performance. RSTE was omitted on Etsy data due to long run time and TrustSVD was omitted
on Social Reader data due to difficulty in finding appropriate parameter settings. SPF outperforms all competing methods, except on
Etsy, where our alternate model SF achieves top performance.

Note that the data—the clicks and the network—enter the variational
distribution through this optimization. Finally, we use the resulting
variational parameters of q⇤.�/ as a proxy for the exact posterior.
This lets us use SPF to perform recommendation.

In the appendix we describe the details of how we solve the
problem in Eq. 4 to find a local optimum of the KL divergence. We
use a form of alternating minimization, iteratively minimizing the
KL divergence with respect to each of the variational parameters
while holding the others fixed. This leads to a scalable iterative
algorithm, where each iteration runs on the order of the number of
non-zero entries of the matrix. (In Section 3 we empirically compare
the runtime of SPF with competing methods.) We now turn to an
empirical study of SPF.

3. EMPIRICAL STUDY
In this section we study the performance of SPF. We compared

SPF to five competing methods that involve a social network in
recommendation [22, 12, 15, 23, 32] as well as two traditional fac-
torization approaches [10, 27]. Across six real-world datasets, our
methods outperformed all of the competing methods (Figure 3). We
also demonstrate how to use SPF to explore the data, characterizing
it in terms of latent factors and social influence. Finally, we assess
sensitivity to the number of latent factors and discuss how to set
hyperparameters on the prior distributions.

3.1 Datasets, methods, and metrics
Datasets and preprocessing. We studied six datasets. Table 1
summarizes their attributes. The datasets are:

✏ Ciao (ciao.co.uk) is a consumer review website with an un-
derlying social network. Guo et al. [11] crawled DVD ratings
and trust values for a small dataset of 7K users and 98K items.

✏ Epinions (epinions.com) is another consumer reviews website
where users rate items and mark users as trustworthy. Our

data source was Massa and Avesani [25] and consists of 39K
users and 131K items.

✏ Flixster (flixster.com) is a social movie review website crawled
by Jamali and Ester [15]. We binarized ratings, thresholding
at 3 or above, resulting in 132K users and 42K items.

✏ Douban (douban.com) is a Chinese social service where users
record ratings for music, movies, and books; it was crawled
by Ma et al. [24]. It contains 129K users and 57K items.

✏ Etsy (etsy.com) is a marketplace for handmade and vintage
items, as well as art and craft supplies. Users may follow each
other and mark items as favorites. This data was provided
directly by Etsy, and culled to users with at least 10 items and
who have at least 25% of their items in common with their
friends; we also omitted any items with fewer than 5 favorites.
This is a large dataset of 40K users and 5.2M items.

✏ Social Reader is a dataset from a large media company that
deployed a reader application on a popular online social net-
work. The data contains a friendship network and a table of
article clicks. We analyzed data from April 2-6, 2012, only
including users who read at least 3 articles during that time.
It contains 122K users and 6K items.

These datasets include both explicit ratings on a star scale and
binary data. Content consumption is binary when the data is implicit
(a news article was viewed) or when the system only provides a
binary flag (favoriting). With implicit data, non-Poisson models
require us to subsample 0’s so as to differentiate between items; in
these instances, we randomly sampled negative examples such that
each user has the same number of positive and negative ratings. Note
that Poisson-based models implicitly analyze the full matrix without
needing to pay the computational cost of analyzing the zeros [10].

For each dataset, we preprocessed the network. We removed
network connections where the users have no items in common.

(with Allison Chaney)


